
<u>AURAVANA</u> <u>P</u>ROJECT

PROJECT FOR A COMMUNITY-TYPE SOCIETY

THE AURAVANA PROJECT

SOCIETAL SPECIFICATION STANDARD PROJECT PLAN

Document Reference Identifier: SSS-PP-001

Date of Document Distribution: June 2020

auravana.org

To cite this publication:

• *The Project Plan.* (2020). Auravana Project, Societal Specification Standard, AURA/SSS-PP-001. [auravana.org]

To cite an article in this publication (authors and article title will change):

• Grant, T. (2020). *The Project Plan Overview*. The Project Plan. Auravana Project, Societal Specification Standard, AURA/SSS-PP-001. [auravana.org]

The Auravana Project operates under a Creative Commons Attribution 4.0 Unported License.

ISBN: 978-1-7330651-2-2

auravana.org

GREETINGS

In an effort to provide the greatest possible clarity and value the Auravana Project has formatted the system for the proposed society (of the communitytype) into a series of standard publications. Each standard is both a component of the total, unified system, as well as intended to be a basis for deep reflective consideration of one's own community, or lack thereof. These formal standards are "living" in that they are continually edited and updated as new information becomes available; the society is not ever established, its design and situational operation exists in an emergent state, for it evolves, as we evolve, necessarily for our survival and flourishing.

Together, the standards represent a replicable, scalable, and comprehensively "useful" model for the design of a society where all individual human requirements are mutually and optimally fulfilled.

The information contained within these standards represent a potential solution to the issues universally plaguing humankind, and could possibly bring about one of the greatest revolutions in living and learning in our modern time. Change on the scale that is needed can only be realized when people see and experience a better way. The purpose of the Auravana Project is to design, to create, and to sustain a more fulfilling life experience for everyone, by facilitating the realization of a better way of living.

Cooperation and learning are an integral part of what it means to be a conscious individual human. A community-type societal environment has been designed to nurture and support the understanding and experience of this valuable orientation.

The design for a community-type society provides an entirely different way of looking at the nature of life, learning, work, and human interaction. These societal standards seek to maintain an essential alignment with humankind's evolving understandings of itself, combining the world of which humans are a regenerative part, with, the optimal that can be realized for all of humanity, given what is known. The general vision for this form of society is an urgent one considering the myriad of perceptible global societal crises. Together, we can create the next generation of regenerative and fulfilling living environments. Together, we can create a global societal-level community.

THE UNIFIED SOCIETAL SYSTEM: SOCIETAL PROJECT PLAN

This publication is one of six representing the proposed standard operation of a type of society given the category name, 'community' (a community-type society). This document is a project plan for the societal system.

Every society is composed of a set of core systems. Different types of societies have different internal compositions of these systems. The composition of these systems determines the type of society. The type of society described by the Auravana Project societal standard is a, community-type society. The standard is a composition of sub-system standards. The Auravana societal standard may be used to construct and duplicate community at the global level.

For any given society, there are four primary societal sub-systems. Each of these sub-systems can be specified and standardized (described and explained); each sub-system is a standard within a whole societal specification standard. The first four primary standards of the six total standards are: a Social System; a Decision System; a Material System; and a Lifestyle System. Each standard is given the name of its information system. The fifth publication is a Project Plan, and the sixth is an Overview of the whole societal system. Together, these standards are used to classify information about society, identify current and potential configurations, and operate an actual configuration.

- This societal specification standard is the Project Plan for a community-type societal system.
- There are more figures (and tables) associated with this standard than are identified in this document; those figures that could not fit are freely available through auravana.org, in full size, and if applicable, color.
 - Figures and tables on the website are named according to their placement in the standard.

Contents

The	Project Plan Overview	1
	Project identification	
	1.1 Project Sub-Title (technical)	2
	1.2 Project sub-title (experiential)	
	1.3 Project full description	3
	1.4 Project call identifier	
	1.5 Project duration	
2	Project purpose	
	2.1 Primary sub-purpose of document (Community Plan)	
	2.2 Secondary sub-purpose of document (Societal Standards Plan)	
	2.3 Tertiary sub-purpose of document (Contribution Plan)2.4 Quaternary sub-purpose of document (Financial Plan)	
	2.4 Quaternary sub-purpose of document (<i>Jurisdictional Plan</i>)	
3	B How to read this document	
	3.1 Document section hierarchy	
	3.1.1 Sub-sectioning	
	3.2 Reading by intelligent agents	
4	Fine challenge	
-	4.1 How is a community-type society organized?	
	4.2 Briefly, what is the problem(s), opportunity, and solution?	7
	4.3 Briefly, how might nature design a society?	7
	4.4 Briefly, what object-relationship visualization flow?	8
5	5 Simplified natural language overview [of project]	9
6	Detailed natural language overview [of project]	.11
7	' A project to develop a type of society	.13
	7.1 What is a society?	. 15
	7.2 Societal organizational elements	
	7.3 How is society experienced?	. 16
	7.4 What defines a societal-level project?	. 17
	7.5 What is the project's proposed societal sub-control units?	
8	3 'Project' definition	
	8.1 What is this document?	
	8.1.1 What is the project documents definition of ordering?	19
	8.2 What is this project?8.3 What problem does this project solve?	. 19
	8.3.1 What are the problems with the configuration of early 21st century society?	
	8.3.2 How does this project propose to solve the problem(s)?	
	8.4 What is the expected socio-technical impact of the project?	
	8.5 What are the goals of the project?	. 22
	8.5.1 Imperative goal	
	8.6 What is the expected impact of the project on the family?	. 23
	8.7 How will the solution to the problem be conceived?	. 24
	8.8 What systems of organization will use resources?	
	8.8.1 What are the societal-level products?	
	8.8.2 Where will people live?	
	8.9 What is a list of views of the project's proposal for society?	
	8.9.3 Alignment descriptors	
	8.10 What are the project's primary surveys?	
~	8.11 What is a rational overview of the project?	
	Project proposal 'systems-science studies'	
1	0 Project proposal 'definition of solution'	.35

10.1 What is a solution cycle?	37
10.1.1 Solution [cycle] integrity	
10.2 What is a 'real-world' solution?	
10.2.1 A real-world solution accounts for sustainability	
10.2.2 A real-world solution accounts for networks	
10.2.3 A real-world solution accounts for its unified composition	
10.2.4 A real-world solution accounts for material control	
10.3 What is a 'documented' solution?	
10.3.1 Formal documentation	
10.3.2 Organizational documentation coherency	
10.4 What is a 'technically standardized' solution?	
10.4.1 Global reference standards	
10.4.2 Currently applicable global standards organizations	
10.5 What is a solution 'specification'?	
10.5.1 What is a specified systems definition?	
10.5.2 What is the purpose of 'specification design'?	
10.6 What is a solution life-cycle?	
10.6.1 What is a system's life-cycle?	
10.6.2 What are some basic examples of life-cycles	
10.6.3 In application in a real world system, what is a system's life cycle?	
10.6.4 Why does the project define a system's life-cycle?	
10.7 Unified life-cycle simulation	
10.7.1 How do project life-cycles coordinate the progress of our lives?	
11 Project proposal 'definition of direction'	
11.1 What defines the project's vision?	
11.1.1 Vision statement?	
11.2 What defines the project's mission?	
11.2.1 Mission statement?	57
11.3 What defines the project's expected outcome(s)?	
11.4 What are other common naming classifications of this type of society?	
11.5 What defines a goal in the project?	
11.6 What defines a goal in the project?	
11.7 What are the primary societal project tasks?	
11.7.1 Society is a progressive emergence	
11.7.2 Societal-level planning	
11.7.3 Society is a project task	
11.7.4 Human life-cycle analysis	
11.7.5 What is a human quality standard?	60
11.8 What does humanity commonly desire out of an engineered societal system?	
11.9 What might an engineer ask first about this project?	
11.10 What is the 'socio-technical' view of society?	
11.10.1 Technology	61
11.10.2 Socio-technical issue coordination	
11.10.3 Service and asset production	
11.10.4 Societal multi-level design modeling	
11.11 What is a real world, socio-technical systems engineering solution?	
11.12 What would a real-world, socio-technical systems engineering solution visually lo	
11.12.1 Societal information system de-composition	65
11.12.2 Simplified synthesis of a community-type society	
11.12.3 Societal construction object	
11.13 What does it mean for society to have an 'engineered' direction?	
11.13.1 Cooperation principles	
11.13.2 What is societal planning?	
11.13.3 What is a humane societal information system?	
11.13.4 What is a 'humane' societal system?	

12 The 'community' hypothesis assumptions list	76
12.1 In community, what keeps the services in alignment with fulfillment?	78
12.2 In community, what is between a service for humanity and humanity	78
The Approach to a Community-Type Society Project	79
1 Introduction	
2 The systems-science approach	
2.1 Data science	
2.1 Data science	
2.2 What is a systems-based form of organization.	
2.3 What is the systems approach?	
2.3.2 Visualization	
2.3.2 Visualization	
2.4.1 Modeling system objects	
2.5 Why is the systems approach used?	86
2.5.1 Evidence of claim to existence	
2.5.2 Data validity	
2.5.3 Data reproducibility	
2.5.4 Real [world] information system processes	
2.5.5 System information flow modeling	
2.5.6 Information systems organization	88
2.6 What does society have as result of systems science?	
2.6.1 How could society be organized through systems science?	
2.6.2 Information flows	
2.7 What is a living system's approach?	
2.8 Complex systems	
2.8.1 Systems bottlenecking	
2.8.2 Systems hierarchy	
3 Why does this project propose an information system?	
3.1 What is a real world societal information systems model?	
3.2 One unifying information model	
3.3 Societal planning	
3.4 What is a real-world, community-information systems model?	
3.4.1 What is a unified approach to societal state change?	
3.4.2 How may a societal model be used as a navigation tool?	
3.4.3 Science and engineering information sub-systems	
3.4.4 Societal solution decisioning	
3.4.5 The projected societal system's development	
3.4.6 Unified societal information system coordination	97
3.5 Unified economic planning (one economic plan)	
3.5.1 Socio-economic planning	
3.5.2 [Input-output] economic tables	
4 The systems-science planned engineering approach	99
5 What is the proposed method of integration for work?	100
5.1 A unified systems approach	
5.2 System life-cycle coordination	
5.3 Service coupling	
5.4 Integrating project management and systems engineering	
5.5 Systems reference standards	
5.5.1 Systems engineering reference standards	
5.5.2 Project management reference standards	
5.5.3 Building information management reference standards	
5.5.4 Architecture reference standards	
5.5.5 Integrated reference standards	
5.6 Reference standards re-alignment	
5.6.1 Integrated reference standards data structuring	105

	5.6.2 Standards Software integration	
6	What is the proposed method for life-cycling project-engineered solutions?	105
	6.1 Simplified project systems engineering	106
	6.1.1 Historical note	
	6.1.2 A project [development] integration view of the projected system's life-cycle	
Thai		
	Project Approach	
	Introduction	
2	What is a project?	
	2.1 Project structural information set representations	113
	2.2 High-level project organization	
	2.2.1 Executable project elements	114
	2.3 Societal-level project execution elements	116
	2.4 Project measurement	116
3	[Project] Coordination	118
	3.1 Societal-level project coordination	
	3.1.1 Project 'management' [at the societal level] is redefined as project 'coordination and co 119	
	3.2 Communication coordination	120
	3.3 Technical coordination	
	3.3.1 Monitoring phase - Project quality review	
	3.3.2 Alignment and control variables	
	3.3.3 Coordination decisions	
	3.4 Project situational analysis	
	3.4.1 Assessment	
4	3.5 The project coordinator	
4	[Project] Planning	
_	4.1 Environmental surveying	
5	[Project] Plan of action	
	5.1 [Plan] Action structured view	
	5.2 [Plan] Action executable view	
	5.2.1 Simplified view of the project action life cycle	
	5.3 [Plan] Action decisioning tools	
	5.3.1 Quality function deployment (QFD) tool	
6	[Project] Life-cycle	131
	6.1 [Plan] Life-cycle control	131
	6.1.1 Control gates	132
	6.2 [Plan] Life-cycle monitoring	132
	6.3 [Plan] Life-cycle information sets	132
	6.4 [Plan] Life-cycle data inputs	133
	6.5 [Plan] Life-cycle phasing processes	
	6.5.1 [Project] Life-cycle process groups	134
	6.5.2 [Project] Life-cycle knowledge areas	136
	6.5.3 [Project] Life-cycle inputs, tools & techniques (as activities), and outputs (ITTO)	137
	6.6 [Project] Plan life-cycle coordination process	137
	6.7 [Project] Plan list view	140
	6.8 [Project] Plan documentation view	141
	6.9 [Project] Plan process group deliverables	142
7	[Project] Imperative	147
	7.1 Intention (conscious directive)	147
	7.2 Vision (imagine the vision)	
	7.3 Mission (define the mission)	
	7.4 Purpose (state the purpose)	
	7.5 Goal (identify the goal)	
	7.5.1 Action planning	148
	7.6 Project charter (document the reasoned overview)	
	7.7 Project scope (identify the work)	149

7.9. Objective (define the objective)	1 1 0
7.8 Objective (<i>define the objective</i>)1	
7.8.1 Characteristics of objective(s)	
7.8.2 Real-world objectives	
7.8.3 Project-level objectives	
8 [Project] Deliverable1	152
8.1 Project deliverable diagram - Work breakdown structure (WBS)	152
8.2 Product breakdown structure (PBS)1	153
9 [Project] Task1	
9.1 Task analysis	
9.1.1 Polymorphic task hierarchy	
9.2 Tasking	
9.2.1 Task dependency	
9.2.2 Milestone	
10 [Project] Activity1	
10.1 Tasks and activities	
10.2 Time	
10.2.1 Time duration	
10.2.2 Timing	
10.2.3 Temporal-spatial coordination is scheduling	157
11 [Project] Work	157
11.1 Work packages	157
11.1.1 Work package details	
11.1.2 Work decisions	
11.1.3 Work execution	
11.1.4 Work-ability	
12 [Project] Stakeholders	
12.1 What is a stakeholder1	
12.1.1 Personal validation	
12.2 [Project] Stakeholder register1	
13 [Project] Team	
13.1 Team-based lateral approach1	161
13.2 Contribution support1	161
13.3 Accountability 1	162
13.4 Individual status 1	162
13.5 Team decisions 1	162
13.6 Team indicators 1	162
13.7 Team expectations1	162
13.7.1 Expected team requirements	163
13.8 [Project] Team standards 1	163
13.9 [Project] Team categories1	
13.10 [Project] Organizational mapping1	164
13.11 [Project] Team and group personnel selection1	164
13.12 [Project] Team member attributes1	
13.13 [Project] Team organization1	165
13.13.1 Team work organization	165
13.13.2 Team work co-operative organization	166
13.13.3 Team work co-operational knowledge	
13.13.4 Team work recursive operations	
13.13.5 Team work planning activities	
13.13.6 Team work communication structure	
13.13.7 Team work influences	
13.13.8 Team work structure	
13.14 Team coordination	
13.14.1 Team work tasking coordination	
13.14.2 Team work monitoring and evaluating	169

13.14.3 Team work task dispatching	
13.15 What is 'optimal performance' as part of a team?	169
13.15.1 Individual, personal accountability	170
13.16 Functional teams, functional information society	171
13.17 Societal InterSystem team	
13.17.1 Socio-technical contribution	173
13.17.2 Socio-technical team viewpoints	174
13.17.3 [Societal] InterSystem team work rotation	175
13.17.4 [Societal] InterSystem team work effectiveness	
13.17.5 [Societal] InterSystem team work roles and responsibilities	
13.17.6 [Societal] Intersystem team work tasks	
13.17.7 [Habitat] InterSystem team work service structure	
13.17.8 [Inter-societal] InterSystem team work roles and responsibilities	
14 [Project] Scheduling	
14.1 Deliverables-based project schedule	
14.2 Computing and scheduling	
14.3 Schedule (timeline)	
14.3.1 Process for creating the schedule	
14.3.2 Project scheduling time-frame	
14.4 Schedule/-ing coordination	
14.4.1 Scheduling 'state' status	
14.4.2 Schedule delays	
14.4.3 Principal schedule constraints	
14.4.4 Schedule modifications	
14.5 Scheduling system and user interface	
14.6 Scheduling contribution time	
14.7 Schedule model	
14.7.1 Scheduling method	181
14.7.2 Schedule estimating	182
14.7.2 Schedule estimating 14.7.3 Scheduling tool	182 182
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach	
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering?	
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes	
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes 1.1.1 The development (including design) process	
 14.7.2 Schedule estimating	182 182 182 183 188 189 189 189 189 190 193 194
 14.7.2 Schedule estimating	182 182 182 183 188 189 189 189 190 190 191 193 194 194
 14.7.2 Schedule estimating	182 182 182 187 188 188 189 189 189 189 190 190 190 193 194 194 194 194
 14.7.2 Schedule estimating	182 182 182 187 188 188 189 189 189 189 190 190 190 193 194 194 194 194 194
 14.7.2 Schedule estimating	182 182 182 187 188 188 189 189 190 190 191 193 194 194 194 195
 14.7.2 Schedule estimating	182 182 182 187 188 188 189 189 190 190 191 193 194 194 194 195 196
14.7.2 Schedule estimating	182 182 182 187 188 188 189 189 190 190 191 192 193 194 194 194 195 196
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes 1.1.1 The development (including design) process 1.1.2 The operations process (as engineering) 1.1.3 Measurement and engineering 1.2 [Systems] Usability 1.3 [Systems] Engineering 1.3.1 System of systems engineering 1.4 [System] Engineering control 1.5 [System] Types of real world engineered control 1.6 [System] Engineering development levels 1.6.1 Technology readiness levels (TRL) 1.6.2 Level of development (LOD) 1.6.3 Level of accuracy (LOA) 1.6.5 Social readiness levels 1.6.6 BIM readiness levels	182 182 182 187 188 188 189 189 190 190 191 192 193 194 194 194 195 196 196
 14.7.2 Schedule estimating	182 182 182 183 188 189 189 189 190 190 191 192 193 194 194 194 195 196 196 196 196 196
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes 1.1.1 The development (including design) process 1.1.2 The operations process (as engineering) 1.1.3 Measurement and engineering 1.2 [Systems] Usability 1.3 [Systems] Engineering 1.4 [System] Engineering control 1.5 [System] Types of real world engineered control 1.6 [System] Engineering development levels 1.6.1 Technology readiness levels (TRL) 1.6.2 Level of development (LOD) 1.6.3 Level of design (LOD) 1.6.4 Level of accuracy (LOA) 1.6.5 Social readiness levels 1.6.6 BIM readiness levels 1.7 [System] Architectural clarifications 2 [Engineering] Life-cycle stages	182 182 182 183 188 189 189 189 190 190 191 192 193 194 194 194 195 196 196 196 196 196 197
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes 1.1.1 The development (including design) process 1.1.2 The operations process (as engineering) 1.1.3 Measurement and engineering 1.2 [Systems] Usability 1.3 [Systems] Engineering 1.4.4 [System] Engineering control 1.5 [System] Types of real world engineered control 1.6 [System] Engineering development levels 1.6.1 Technology readiness levels (TRL) 1.6.2 Level of design (LOD) 1.6.4 Level of design (LOD) 1.6.5 Social readiness level. 1.6.6 BIM readiness levels 1.7 [System] Architectural clarifications 2 [Engineering] Life-cycle stages 2.1 Requirements of engaging in systems engineering	182 182 182 187 188 189 189 189 190 190 191 193 194 194 194 195 196 196 198 198
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes 1.1.1 The development (including design) process 1.1.2 The operations process (as engineering) 1.1.3 Measurement and engineering 1.2 [Systems] Usability 1.3 [Systems] Usability 1.3 [Systems] Engineering 1.4.4 [System] Types of real world engineered control 1.5 [System] Types of real world engineered control 1.6 [System] Engineering development levels 1.6.1 Technology readiness levels (TRL) 1.6.2 Level of development (LOD) 1.6.3 Level of design (LOD) 1.6.4 Level of accuracy (LOA) 1.6.5 Social readiness levels 1.7 [System] Architectural clarifications 2 [Engineering] Life-cycle stages 2.1 Requirements of engaging in systems engineering 2.2 The product life-cycle stages	182 182 182 183 188 189 189 189 190 190 191 192 193 194 194 194 194 194 194 194 194 194 194 194 195 196 196 198 198 199
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes 1.1.1 The development (including design) process 1.1.2 The operations process (as engineering) 1.1.3 Measurement and engineering 1.2 [Systems] Usability 1.3 [Systems] Engineering control 1.4 [System] Types of real world engineered control 1.5 [System] Engineering development levels 1.6.1 Technology readiness levels (TRL) 1.6.2 Level of development (LOD) 1.6.3 Level of design (LOD) 1.6.4 Level of accuracy (LOA) 1.6.5 Social readiness levels 1.7 [System] Architectural clarifications 2 [Engineering] Life-cycle stages 2.3 The engineering life-cycle/process flows	182 182 182 182 183 188 189 189 189 190 190 191 193 194 194 194 194 194 194 194 194 194 194 194 194 194 194 195 196 196 196 197 198 199 199
14.7.2 Schedule estimating 14.7.3 Scheduling tool The Engineering Approach 1 What is engineering? 1.1 The core engineering processes 1.1.1 The development (including design) process 1.1.2 The operations process (as engineering) 1.1.3 Measurement and engineering 1.2 [Systems] Usability 1.3 [Systems] Usability 1.3 [Systems] Engineering 1.4.4 [System] Types of real world engineered control 1.5 [System] Types of real world engineered control 1.6 [System] Engineering development levels 1.6.1 Technology readiness levels (TRL) 1.6.2 Level of development (LOD) 1.6.3 Level of design (LOD) 1.6.4 Level of accuracy (LOA) 1.6.5 Social readiness levels 1.7 [System] Architectural clarifications 2 [Engineering] Life-cycle stages 2.1 Requirements of engaging in systems engineering 2.2 The product life-cycle stages	182 182 182 182 183 188 189 189 189 190 190 191 192 193 194 194 194 194 194 194 194 194 194 194 194 194 194 195 196 196 196 197 198 199 199 199 199

2.3.2 The project engineering process	205
2.3.3 The basic concept view of engineering	205
2.3.4 The risk-oriented engineering view	208
2.3.5 The asset coordination life-cycle view of engineering	209
2.3.6 Asset life-cycle software	
3 [Engineering] Life-cycle processes	
3.1 Initiation and planning stage	
3.2 Requirements definition stage	
3.2.1 Establish functional baseline	210
3.3 Functional design stage	
3.3.1 The functional design specification	
3.3.2 Determine system structure	
3.3.3 Identify design entities	
3.3.4 Identify design dependencies	
3.3.5 Design content of system inputs and outputs	
3.3.6 Design user interface	
3.3.7 Design system interface	
3.3.8 Design system controls	
3.3.9 Build logical model	
3.3.10 Build data model	
3.3.11 Develop functional design	
3.3.12 Select system architecture	
3.4 System design stage	
3.4.1 System design	
3.4.2 Design specifications for modules	
3.4.3 Design physical model and database structure	
3.4.4 Develop conversion plan	
3.4.5 Develop system design	
3.5 Construction stage	
3.5.1 Establish Development Environment	
3.5.2 Conduct unit testing	
3.5.3 Establish development baseline	
3.5.4 Plan transition to operational status	
3.5.5 Generate operating documentation	
3.5.6 Develop training plan	
3.5.7 Develop installation plan	
3.6 Testing stage	
3.6.1 Testing	
3.6.2 Conduct integration testing	
3.6.3 Conduct system testing	
3.6.4 Conduct user acceptance testing	
3.7 Implementation stage	
3.7.1 Perform installation activities	224
3.7.2 Conduct installation tests	225
3.8 Transition to operational status	
3.9 Whole systems design	226
3.9.1 Living systems design	226
3.10 Systems-oriented design	
3.11 What is human systems engineering?	
3.11.1 User-centered design	
3.12 Service product design	
3.13 Engineering service operations	
4 [Engineering] Design and development	
4.1 The design phase	
4.1.1 Define the conceptual system [a phase]	233

	4.1.2 Define the technical system [a phase]	233
	4.1.3 Modeling (visualizing-simulating) requirements as mathematical associations	
	4.1.4 Engineered system characteristics	
	4.1.5 Define system non-functional requirements (a.k.a., objectives orientational needs)	
	4.1.6 Define system functional requirements (capabilities)	
5	[Engineering] System concepts	
_	5.1 Relationship between Concept of Operations and Operational Concept	
	5.1.1 OpsCon in brief	
	5.1.2 ConOps in brief	
	5.2 System concepts standards	240
	5.2.1 Standards descriptions of ConOps	
	5.3 Concept of operations	
	5.3.1 System reasoning/justification	
	5.3.2 Operational scenarios	
	5.3.3 Operating environments	
	5.4 Types of OpsCon	
6	[Engineering] Requirements	
•	6.1 Engineering design requirements	
	6.1.1 Requirements breakdown structure (RBS)	
	6.1.2 Requirement categorization approach	
	6.2 Requirements as objectives	
	6.3 Requirements as metrics	
	6.4 Requirements list	
	6.5 Systems engineering and requirements	
	6.5.1 Types of system Requirements	
	6.5.2 Requirements analysis	
	6.5.3 Requirements analysis through prioritization	
	6.5.4 Requirements analysis through evaluation (Quality management)	
	6.5.5 Engineering assurance	
	6.5.6 Requirements management	
	6.6 System requirement constraints	
	6.7 Requirement expression: standards (Categorical, linguistic)	
	6.7.1 Requirement expression: format[ion] structure	
	6.7.2 Requirements development	
	6.7.3 Requirement sub-types	
	6.8 Requirements standards	
	6.9 Requirements engineering	
	6.9.1 Requirements coordination planning	
	6.9.2 Requirements definition	
	6.9.3 Requirements specification	
	6.10 Requirements coordination	
	6.10.1 Requirements identification system	
	6.10.2 Requirements change system	
	6.11 Requirement definition tasks	
	6.11.3 Functional requirements	
	6.11.1 Non-functional requirements	
	6.12 Requirements analysis	
7	[Engineering] Requirements for habitability	
	7.1 Support (habitat supportability)	
	7.2 Maintenance (habitat maintainability)	
	7.2.1 Team support functions	
	7.2.2 Maintainability design requirements	
	7.3 The habitat service systems views	
	7.4 Indicators of a co-habitable service system (HSS)	
8	[Engineering] Construction	

9 [Engineering] Societal information	275
9.1 Societal information system construction	275
9.2 Synthetic environment data representation and interchange specification (SEDRIS	5) 275
9.2.1 A multi-scale integrated model of ecosystem services (MIMES) and human coupling.	275
9.3 Spatial and conceptual information	276
9.3.1 Spatial information	276
9.3.2 Conceptual information	277
9.3.3 Temporal information	278
9.3.4 Spatial and conceptual interoperability	278
9.3.5 Spatial and conceptual reference frames	278
9.4 Integrated informational material modeling	
9.5 Spatial reference model (SRM) standards	280
9.6 What is a spatial coordinate system?	281
9.6.1 Database operations	
9.6.2 Environmental database	281
9.7 Spatial objects	
9.8 Temporal-spatial coordination	
9.8.1 Temporal spatial standards	
9.8.2 SEDRIS	
9.9 What are data models used for?	
9.9.1 Semantic logic	
9.9.2 Simulation	282
9.9.3 Active data models	
9.10 Environmental data standards	
9.10.1 Environmental data-base construction	283
9.11 Unified coordinate information systems algorithms	
10 [Engineering] Geoinformatics	
10.1 Habitat service planning	
10.2 Material visualization and analysis	
11 [Engineering] Geospatial information system (GIS)	
11.1 The components of a GIS	
11.2 GIS data input	
11.3 GIS Software	
11.4 Geospatial relationship types	
12 [Engineering] Building information modeling (BIM)	
12.1 Building information models (BIM)	
12.1.1 BIM use case scenario	
12.1.2 BIM asset modeling	
12.1.3 Asset model storage	291
12.1.4 BIM in Application	
12.1.5 BIM Project lifecycle phases	
12.1.6 BIM Design phase	
13 [Engineering] BIM and GIS integration	293
13.1 Spatial solution visualization resolution	
13.2 Spatial-informational mapping	
13.3 Unified visual software solution	
13.4 Open GIS and BIM standards	
13.4.1 BIM open standard	
13.4.2 GIS open standard	
13.4.3 BIM technical standards naming	
The Decision Approach	
1 Introduction	306
2 What is a decision?	308
2.1 Decision objective	
2.2 Decision mechanism	

	CONTENTS	
	2.2.1 Decision resolution methods/processes	. 309
	2.2.2 Decision tabling	
	2.3 Solution determination	
	2.3.1 Decision variable determination-acceptance methods	. 310
	2.3.2 Utility decisioning	. 310
	2.3.3 Production variance	. 311
	2.3.4 Design decisioning	. 311
	2.3.5 Human-centered decision system design	. 311
	2.4 Decisioning uncertainty	
	2.5 Wrong decisions	
_	2.6 Decision gating	
	[Decision] System life-cycle	
4	[Decision] Computation	.314
	4.1 Intelligence	
5	[Decision] Meta-decisioning	.316
	5.1 Model integrity	. 316
	5.1.1 Provide trust in model-based predictions with quantification of margins and uncertainty	316
	5.1.2 Model validation	. 316
6	[Decision] Control	.317
	6.1 Control and coordination (and communication)	
	6.2 Controllability pre-requisite to validity and reliability (error correction)	
	6.2.1 Error corrected control	. 320
	6.2.2 Trust and service	. 320
	6.3 Integration control	
	6.4 Voluntary control	
	6.5 Loss of control	
-	6.6 Controlled execution	
/	[Decision] Change control	
	7.1 Control protocols	
	7.1.1 Controller	
	7.2 Control system elements	
	7.3 A closed [-loop] system structure (feedback)7.4 The change control process	
	7.5 Change control [reliability] factors	325
	7.6 Control alignment (measured corrections)	327
	7.6.1 Indicator	
	7.6.2 Baseline	
	7.6.3 Index	
	7.6.4 Standard	
8	[Decision] Control system design	
Ŭ	8.1 Testing orientation	
	8.2 Decision space sub-composition	. 330
	8.3 Decision accountability via access control	. 330
	8.4 Rule-based systems	
	8.4.1 Rule-based systems and decision support	
	8.5 Propositional logic	. 331
	8.6 Decision support	. 331
	8.6.1 Equality notation	
	8.6.2 Decisioning inequality relation	
	8.6.3 The semantics of "if"	
	8.7 Decision problem generates	
	8.8 Decision system conception	
-	8.8.1 Automated decision control	
9	[Decision] Algorithmic control	
	9.1 Algorithms versus protocols	. 335
	9.2 Computational algorithms	. 336

9.2.1 Complete algorithms	338
9.2.2 Algorithmic optimization	
9.2.3 Types of information system algorithms	
9.3 Algorithmic computational ability: generative design	
9.4 Algorithmic terminology	
9.5 Instruction	
9.5.1 Instruction cycle	341
10 [Decision] Control logic	342
10.1 Societal control logic	
10.2 Logic Models (true decision packages)	
10.2.1 Logic model elements	
11 [Decision] Monitoring and evaluation	343
11.1 Indicators	
11.2 The 'indicator'	
11.2.1 Indicator de-composition	346
11.2.2 Indicators categorize statistics	346
11.2.3 Indication provides newly ordered information to decisioning	346
11.2.4 Indication uses visual language	346
11.2.5 Indicator timing	346
11.2.6 Characteristics of indicators	
11.2.7 Identifying and defining indicators	
11.2.8 Indicator effectiveness	
11.3 An 'index' (an indication data-base)	
11.3.1 A visual index	348
11.4 A simplified information system definition of an 'indicator'	
11.4.1 Indication in a directional information system	
11.4.2 The directionally relevant indicators	349
11.5 Information system perception of [habitat] relevant indicators	
11.5.1 A data definition of Indicator	
11.6 Societal conceptual indicator types	
11.6.1 Performance indicators	
11.6.2 A scientific indicator may be defined as	
11.6.3 An environmental indicator may be defined as	350
11.6.4 An engineering indicator is	351
11.6.5 From an environmental coordinator perspective, an indicator is	
11.6.6 Applied societal control indicators	353
11.6.7 Common societal indicators	353
11.6.8 Societal indicator types	354
11.6.9 Living environmental indicators	
11.6.10 Ecosystem service indicators and metrics	
11.6.11 Societal information system indicators	355
11.6.12 Project life-cycle phase indicators	356
11.6.13 Project and process indicators	
11.6.14 Project[-scale] indicators	
11.6.15 Project progress indicators	
11.6.16 Service indicators	
11.6.17 Societal service performance indicators	
11.7 [Decision] Indication interface	
11.8 [Decision] Indicator assessment	
11.8.1 Assessment (an analysis of results)	358
11.8.2 Environmental impact assessment	
11.8.3 Assessment of the project's progress	
11.8.4 Project indicator and assessment	
11.9 [Decision] Indicator evaluation	
11.10 Real world evaluations	

CONTENTS	
11.10.1 Scientific evaluation (a.k.a., direct measurement and analytics)	360
11.10.2 Quality/progress evaluation (a.k.a., effectiveness evaluation, performance evaluation, program evaluation, process evaluation, environmental evaluation, diagnostic evaluation, and indirect measurement, and "monitoring")	
indirect measurement, and "monitoring")	360
11.10.1 Evaluation as navigation	
11.10.1 The evaluation process	
11.11 [Decision] Evaluator	
12 [Decision] Quality indication	
12.1 Indicator(s) determinants of service quality	
12.1.1 Validity (quality of information)	
12.1.2 Reliability (trustability-testability of information)	
12.2 False quality indicators (false indication)	369
12.3 Requirements quality indicators	369
12.4 Access derived quality control indicators	
12.5 Measuring quality	
13 [Decision] Measurement 13.1 Indicators and metrics fundamentals	
13.1 Indicators and metrics fundamentals	
13.3 'Metric' from a mathematical perspective	
13.1 Simplified definition of 'metric'	
13.1.1 [Decision] Metrics classifications	
13.2 Metrics service-level overview	372
13.2.2 Service metrics	
13.3 A metric indicator random variable	
13.3.1 The resolution of a metric space, boolean	
13.3.2 Arithmetic (counting expression) operators:	
13.3.3 Assignment (expression) expressions (operators):	
13.3.4 Relational operators	
13.3.5 Operator precedence	
13.4 [Decision] Measurement method	
13.4.1 Simplified definition of a 'measure'	
13.5 Measurement optimizes decisioning	
13.6 Measurement from a scientific (discovery) perspective	
13.7 Measurement from an engineering (technical) perspective	376
14 [Decision] Tabular database	377
14.7.1 Tabular system usages	
14.7.2 Database characteristics	
14.7.3 What is data	
14.7.4 What is knowledge	
The Standardization Approach	221
1 What is a standard?	201
1.1 Why apply standardization?	
1.2 The specification standard	
1.3 Standards developing organization (SDO)	
1.4 Standard Setting Organization (SSO)	
1.4.1 What is a 'proprietary standard'?	
1.4.2 What is an 'open standard'?	
1.4.3 What is a 'voluntary standard'?	
1.4.4 Patents in standards	
1.5 Standardization in the market	
1.6 What is the difference between a specification and a standard?	
1.7 What are technical interoperability standards?	
1.7.1 System [service] interoperability	
1.8 What is standardization?	
1.8.1 What is an asset identity code?	
1.8.2 What is laboratory accreditation?	

1.8.3 What is harmonization?	388
1.8.4 What is meant by design decision standardization?	
1.8.5 What is meant by validation (conformance) assessment?	
1.8.6 What is a service ("certified") product?	
1.8.7 How do I locate standards?	
1.8.8 Who are the globally known standards setting bodies?	
1.9 What is a unified standard?	
1.10 Who uses standards?	
1.11 Why are standards used at the societal level?	
1.12 What is a societal standard?	
1.12.1 What are human access standards	
1.13 What are a societal-level projects documentation requirements?	
1.14 How do 'standards collaborations' differ from 'open source collaborations'?	
1.15 In terms of standards, what does this project propose?	
1.16 [Standard] Linguistics	
1.17 [Standard] Semiotics	
1.18 [Standard] Unifying language	393
1.18.1 [Standard] Unified modeling language (UML)	393
1.19 [Standard] Applied language	394
1.19.1 The systems language	394
1.19.2 Knowledge	
1.19.3 Optimization	
1.19.4 Simplified societal design for humanity	
2 [Standard] Working group	
2.1 Working group conferences	
2.1 Technical working groups	
2.2 What is an open-source societal standards setting working group (workgroup)?	
2.3 Community-type society workgroup sub-composition	
2.4 Workgroup decision criteria	401
2.4 Workgroup decision criteria 2.4.1 One of the more simplest workgroup decision criteria	
2.4.1 One of the more simplest workgroup decision criteria	401
2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach	401 403
2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction	401 403 40 4
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach	401 403 404 405
2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety	401 403 404 405 406
2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market.	401 403 404 405 406 406
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 407
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 407 407
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 407 407 408
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 407 407 408 408
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 406 407 407 408 408 409
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 406 407 408 408 409 410
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 406 407 408 408 409 410
2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 406 407 408 408 409 410 411
2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards	401 403 404 405 406 406 406 406 406 407 407 408 409 410 411 411
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards 4.5.1 OpenChain Open Source Specification Standard (The Linux Foundation) 	401 403 404 405 406 406 406 406 406 407 407 407 408 409 410 411 411 411
 2.4.1 One of the more simplest workgroup decision criteria	401 403 404 405 406 406 406 406 406 407 407 407 407 408 409 410 411 411 411
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards 4.5.1 OpenChain Open Source Specification Standard (The Linux Foundation) 4.5.3 Open Source Initiative annotated version 1.9 	401 403 404 405 406 406 406 406 407 407 407 407 408 409 410 411 411 411 411 412
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards 4.5.1 OpenChain Open Source Specification Standard (The Linux Foundation) 4.5.2 Open Source Initiative annotated version 1.9 4.5.4 Open Source Definition 	401 403 404 405 406 406 406 406 406 407 408 407 408 409 410 411 411 411 411 412 413
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards 4.5.1 Open Chain Open Source Specification Standard (The Linux Foundation) 4.5.2 Open Source Initiative annotated version 1.9 4.5.4 Open Source Definition 4.5.5 ITU-T 	401 403 404 405 406 406 406 406 407 407 407 407 408 409 410 411 411 411 411 411 413 413
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards 4.5.1 OpenChain Open Source Specification Standard (The Linux Foundation) 4.5.2 Open Source Initiative annotated version 1.9 4.5.4 Open Source Definition 	401 403 404 405 406 406 406 406 407 407 407 407 408 409 410 411 411 411 411 411 413 413
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards 4.5.1 Open Chain Open Source Specification Standard (The Linux Foundation) 4.5.2 Open Source Initiative annotated version 1.9 4.5.4 Open Source Definition 4.5.5 ITU-T 	401 403 404 405 406 406 406 406 407 407 407 407 407 408 409 410 411 411 411 411 411 413 413 414
 2.4.1 One of the more simplest workgroup decision criteria The Contribution Approach 1 Introduction 2 Open source systems 2.1 Source type and safety 2.2 Open licenses in the market 2.3 Open source engineering 2.4 Open society 2.4.1 Social cooperation 3 Closed source protocols 3.1 Patents 4 Open standards 4.1 Standards openness index 4.2 Basic requirements of an open standard 4.3 Open access 4.4 Basic criteria of an open standard 4.5 Organizational definitions of open source and open standards 4.5.1 OpenChain Open Source Specification Standard (The Linux Foundation) 4.5.2 Open Source Hardware Association 4.5.3 Open Source Definition 4.5.4 Open Source Definition 4.5.5 ITU-T 4.5.6 Governmental definitions of "what is" and 'open standard' 	401 403 404 405 406 406 406 406 407 407 407 407 407 408 409 410 411 411 411 411 411 413 413 414 415

4.5.10 Free Software Foundation Europe	415
4.5.11 Open Source Initiative (OSI)	
5 Market-State licensing	
5.1 Open source licensing categories	
5.1.1 Copyleft	
5.1.2 Permissive	
5.1.2 Permissive	
5.2.1 Contributor license agreement (CLA)	
5.3 Market-State organization open source considerations	
5.4 Information/intellectual property regulation	
5.4.1 Intellectual property agreements	
The Direction of a Community-Type Society	
1 Introduction	
1.1 The direction sub-composition	
1.1.1 Engineering a societal direction	
1.1.2 Flow cycle integration	
1.1.3 The InterSystem Team and the alignment of operationalizing values with human flouris fulfillment, and well-being	428
2 Human fulfillment	429
2.1 Fulfillment is individually shared	429
2.2 The common interest of humankind	
2.3 Fulfillment sub-conceptualization	430
2.3.1 Relationship completeness	
2.3.2 Optimizing human fulfillment	
2.4 Societal fulfillment sub-conceptualization	
2.5 Possible high-level survey questions indicating the level of subjective fulfillment	
2.6 Design for flourishing [conditions and behaviors]	
3 The human living system	
3.1 Human life [system] requirements	
3.2 Living system organizational design	
3.2.1 Objective criterion of a life-need support system	
4 The life system	
4.1 Scientific life study: Biology	
4.2 Societally relevant life-related conceptions	435
4.3 The life-coherence principle	
4.3.1 Life-coherency and efficiency	
4.3.2 Societal life-coherency	
4.4 Life-value	
4.4.1 Human life standards	
4.4.2 Life-value and consciousness	
4.5 Life-capacity	
4.5.1 Background extinction rate [indicator]	
4.6 Life-space	
4.7 Life-systems macro-algorithm calculation	
4.8 Life-value analysis	
4.8.1 Life-services (direction)	
4.8.2 Life-values (orientation)	
4.8.3 The life-value test (method)	
4.8.4 Applying a life-value analysis to society	
4.9 The life-ground	
4.9.1 Ecological theory	
4.9.2 Ecosystem life-ground analysis	
4.9.3 Ecosystem services	
4.9.4 Ecosystem services and environmental needs	
4.9.5 The ecosystem services	448

	4.9.6 Ecosystem services and human well-being	449
	4.10 Symbiosis	449
5	Need	450
	5.1 The fundamental structuring of 'need'	452
	5.2 The substitutability of 'need'	
6	Life needs	454
	6.1 Life	456
	6.1.1 What is life?	
	6.1.2 Earth life-forms	
	6.1.3 The fundamental structure of life need	
	6.1.4 Biological needs inventory	
	6.1.5 Life-needs are life-requirements, to an engineer	
	6.1.6 Life's environmental signalling	
	6.1.7 Pleasure and pain drives [motivation toward need fulfillment]	
_	6.1.8 The conscious mental drives	
/	Human needs	
	7.1 The simple view of human need	
	7.2 Societal organization and human need	
	7.3 Human motivation	
	7.4 A commonly evolved nature (human commonality)	
	7.4.1 The natural, organic-social nature of human need	
	7.4.2 The nature of human need, requirements of a human life	
	7.4.3 The nature of a set of life requirements, known in part, as human needs	
	7.5 'Human need' universality, and thus, society	
	7.6 Human needs assessment	
	7.7 Principal characteristics of the 'human needs' list	
	7.7.1 Common terms related to the information category of 'human need'	
	7.8 'Human need' inhibition, thwarting, and deprivation	
	7.8.1 Human needs and harm avoidance	
	7.8.2 Competition preference function and irrational behavior	
	7.9 'Human need' and social justice 7.10 'Human need' integrated into a materially significant social system	
	7.10 In service of 'human needs'	
	7.11.1 Needed habitat services	
	7.12 'Human need' services	
	7.13 'Human need' structural sub-conception	
	7.14 The fundamental 'human need' for measurement	
	7.15 The testability of a 'human need'	
	7.16 The standard linguistic expression of a 'human need'	478
	7.16.1 The relational need formula	
	7.16.2 The 'human-life need' criterion (n-criterion)	
	7.16.3 'Human need' criterion selection	
	7.16.4 'Human need' criteria	
	7.17 Cultural [societal] differences in societal structure	
	7.18 When services become an 'end' in themselves	
	7.19 'Human need' as priority functioning [service] satisfiers	
	7.20 'Human need' satisfiers	
	7.21 'Human need' thresholds	
	7.22 Basic human need (the category of)	
	7.22.1 Conception enables (Read: conceptualization - the ability co conceive)	482
	7.22.2 The primary axiom of [life] value	483
8	Human requirements	483
	8.1 Requirement	
	8.2 The nature of life-requirements	
	8.3 Individual satisfaction of life-requirements	484
	8.3.1 Habitat exploration human research subsystem	

8.4 Human environmental design requirements	
9 Need and wants	
9.1 Implication of need and want encoding for a societal decision algorithm	490
9.2 Infinite wants	
9.3 In comparison, the market (as a direction)	
9.3.1 Market needs	
9.3.2 Market price	
9.3.3 Material acquisition and possessions as materialism	493
9.3.4 Consumer demands	493
9.3.5 Consumer rights	494
9.3.6 Societal-type input differences	494
9.3.7 How conflict/anger may arise through dis-coherent wanting	494
9.3.8 Coordinated access by common [un]ownership	496
10 Preference	497
10.1 Preference for suffering	497
10.2 The logic of preference	
10.2.1 The conception of preference	498
10.2.2 The notation of preference	
11 The human needs list(s).	
11.1 The primary [human] life processes	
11.2 Real-world hierarchy of material life-cycling need	501
11.3 Former formal human needs lists (simplified)	
11.3.1 Henry Murray (1938)	
11.3.2 Abraham Maslow (1943-1971)	
11.3.3 Ian Gough and Doyal (2014)	
11.3.4 Martha Nussbaum ("capability approach", 2000)	
11.3.5 Manfred Max-Neef (1989-1991)	
11.3.6 Integration between Maslow and Max-Neef	
11.3.7 Simon Hertnon (2010)	
11.3.8 Qizilbash (1996)	
11.3.9 Narayan (1999)	
11.3.10 Robeyns (2003)	
11.3.11 Biggeri et al. (2006)	
11.3.12 Goldin (2013)	
11.3.13 U.S. National Aeronautics and Space Administration (NASA)	
11.3.14 Other significant contributors to the literature on human needs	
11.4 The habitation service-view human needs list (simplified)	
11.4.1 Water (hydration service)	
11.4.2 Atmospherics and geospherics	
11.4.3 Food (nutritional service)	
11.4.4 Shelter (architectural service)	
11.4.5 Medical (medical service)	
11.4.6 Energy (power service) 11.5 The sub-views of human need	
11.5.1 Universal goals in the context of human need fulfillment	
11.5.2 Individual needs	
11.5.3 Organic life-requirement needs	
11.5.4 Societal-level sub-conceptions of human need 11.5.5 A "goods" view of human needs	
o ,	
11.5.6 Socially embodied need types	
11.5.7 Individual human needs for access	
11.5.8 Emotively embodied human need categories	
11.5.9 Functionally embodied human need categories	
11.5.10 Species embodied human need categories	
11.5.11 Human life-need goal categories	520

11.5.12 In concern to human life need	520
11.5.13 The "basic" human need list	520
11.5.14 Absolute needs	521
11.5.15 Socio-psychological human need[ed conditional satisfiers]	521
11.5.16 Psycho-social needs	
11.5.17 Human needs for existence and flourishing	
11.5.18 Human life-finding functions	
11.5.19 Self-organizing system needs (access-service needs)	
11.5.20 Contributor autonomy needs	
11.5.21 Physiological flow needs list	
11.6 Life-quality indicator categories	
12 Well-being	
12.1 Hedonic and eudaimonic integration of well-being	
12.1.1 Mood	
12.1.2 Well-being as 'eudaimonia'	
12.1.2 Weil-being as 'hedonia'	
12.1.5 Weil-being us heading	
12.2.1 Life wellness and the "Blue Zones"	
12.2.1 Life weiliness and the Blue 20nes	
12.4 Well-being and harm	
12.5 Well-being and ecosystems	
12.6 Well-being and the city	
12.7 The evaluation of well-being	
12.7.1 Assessing the presence of well-being	
12.8 Quality of life indicators of well-being	
12.8.1 Subjective [indicators of] well-being	539
12.8.2 Objective [indicators of] well-being	
13 The criteria for well-being	
13.1 Happiness measurable elements (categories) of happiness are:	
13.2 Elements of physiosphere (conscious embodiment):	
13.3 Survival measurable elements	
13.4 Technical support measurable elements	
13.5 Exploratory support measurable elements	
14 Additional globally recognized human standards and human development in	
550	
14.1 Common global human standards	550
14.2 Common global human indices, scales, and surveys	
14.3 Human development	
14.4 Human index	552
14.4.1 Survey example: The Authentic Happiness Inventory: an instrument	552
14.5 Human rights	
15 Life access	553
15.1 City parameters	553
15.2 Access to societal structures that enable education (learning; intrinsic life-value	needs)
15.3 Access to societal structures that enable beautiful expressions (aesthetics)	553
15.4 Access to societal structures that enable caring and working, together (coordina	ting)554
15.4.1 Intrinsically life-valuable work	
16 Life Potential	
16.1 Access potential	
16.2 Contribution potential (to the intersystem team)	
16.3 The potential for freedom	
16.4 "Free"-time potential	
The Execution of a Community-Type Society	
1 Introduction	
2 [Project] Project lists	577

	2.1 What are the listable elements of a societal-level project plan?	577
	2.2 [List] Plannable elements of a project plan	578
	2.3 [List] Societal project sub-plans	
	2.4 [List] Accountable and assessable elements of a project plan	
	2.5 [List] Operationalizable societal systems	
	2.5.1 A social information system platform	
	2.5.2 A team contributions platform	
	2.6 [List] Societal standard deliverables	
	2.6.1 The functional societal specification standards:	
	2.7 [List] Societal study deliverables	
	2.7.1 Quality review deliverables	
	2.8 [List] Social awareness deliverables	
	2.9 [List] Simulation demos and experiences	
	2.9.1 What is necessarily demonstrated	
	2.9.2 A demonstration experience	
	2.9.3 Guides to facilitate understanding	
	2.10 [List] Project software	
	2.11 [List] Social awareness deliverables	
	2.12 [List] Development deliverables	
	2.13 [List] Project task analyses	
	2.13.1 Operations tasks	
	2.13.2 Construction tasks	
	2.13.3 Maintenance tasks	
	2.14 [List] Schedule	
	2.15 [List] Team functions	
	2.16 [List] Project personnel principal task roles	
	2.17 [List] Project coordinators and working groups	
	2.17.1 Information system coordinator	
	2.17.2 [List] Market-State coordinators	
	2.17.3 [List] Orientation steering coordinator	
	2.18 [List] Teams	590
_	2.19 [List] Milestones and phases	
3	[Project] Risk	
	3.1 Fundamental current risk question	
	3.2 Project uncertainty	
	3.2.1 Project risks	
	3.3 Real problems	
	3.3.1 Patchworking	
	3.4 The risk list	
	3.4.1 [Risk] Assuming bias	
	3.4.2 [Risk] Assuming that humans are broken	
	3.4.3 [Risk] Assuming that society and humanity cannot be sufficiently understood	
	3.4.4 [Risk] Assuming that it is not possible to design and operate a planned societal system .	596
	3.4.5 [Risk] Assuming that humans do not have common categories and optimal methods of	
	completing needs	
	3.4.6 [Risk] Assuming socio-economic safety	
	3.4.7 [Risk] Assuming technology	
	3.4.8 [Risk] Assuming that everything is "OK" view	
	3.4.9 [Risk] Assuming incentives badly aligned with human fulfillment	
	3.4.10 [Risk] Assuming existing lifestyle commitments	
	3.4.11 [Risk] Assuming communication and language	602
	3.4.12 [Risk] Assuming critical thinking	602
	3.4.13 [Risk] Assuming pre-existing belief	
	3.4.14 [Risk] Assuming idols	
	3.4.15 [Risk] Assuming competing projects	
	3.4.16 [Risk] Assuming trade	
	· · · · · · · · · · · · · · · · · · ·	

CONTENTS

	3.4.17 [Risk] Assuming pre-existing investment	612
	3.4.18 [Risk] Assuming the right to protection	
	3.4.19 [Risk] Assuming fear, uncertainty, and doubt (FUD)	
1 [Plan	Risk coordination and control	
	Plan for risk	
4.1		
	4.1.1 The composition of an risk entry	
	4.1.2 Semantic temporality	
	4.1.3 The structure of a risk	. 622
	4.1.4 Population risk types: Personal and social risk	
	4.1.5 Negative deviation: Negative risks	
	4.1.6 Not a risk (non-risk)	
4.2	[Plan] Risk coordination process	
	4.2.1 Organizational planning for risks	
	4.2.2 The risk plan (information set)	
	4.2.3 Risk resolution coordination	
4.3	[Plan] Organizational exposure	. 624
4.4	[Plan] Risk mitigation and remediation	. 625
4.5	[Plan] Risk response	
	4.5.1 Risk coordination process elements	
4.6	[Plan] Continuous risk analysis, coordination, and control	
	4.6.1 Identify	
	4.6.2 Analyze (Assessment)	
	4.6.3 Plan	
	4.6.4 Track	
	4.6.5 Control	
	Inter-societal market coordination	
5.1	[Plan] Purchasing interface	. 629
	5.1.1 Breakage of purchased service	
5.2	[Plan] Contracts interface	
	5.2.1 The escrow account	
5.3	[Plan] Budget interface	
	5.3.1 The budgeting interface	
	5.3.2 Budgeting	
5.4	· [Plan] Financial viability	
	5.4.1 Financial statements	
	[Plan] Financial funding	
	[Plan] Market economic interfacing	
5.7	[Plan] Market-State interface	
	5.7.1 The market perspective	
	5.7.2 The money functions	
	5.7.3 Decisioning through ownership, governance	
	5.7.4 The market mechanism under observation	. 633
	5.7.5 Market pareto rule	. 634
	5.7.6 Community versus the market perspective	. 634
	5.7.7 Land assessment and the market	. 634
	[Plan] Business sales	
6 [Plan]	Inter-societal State coordination	.635
6.1	[Plan] Government interface	. 635
6.2	[Plan] Jurisdictional-geopolitical viability	. 635
6.3	[Plan] Contractual agreements	. 635
	6.3.1 State [access] deliverable	. 635
	6.3.2 Financial [access] deliverable	. 636
	6.3.3 Market [access] deliverable	. 636
6.4	InterSocietal agreements	
	6.4.1 The Free World Charter	

		6.4.2 Governmental Declaration of the Unified Rights of Humanity (DURH)	636
		6.4.3 A – Fundamental Articles	637
		6.4.4 B – Limitations of Government	638
		6.4.5 C – Interdependence and Sustainability	
		6.4.6 D – Humanity and Equity	
		6.4.7 E – Justice and Compassion	
		6.4.8 F – Education	
7	[Plan]	Relationship development	
		[Plan] Human reorientation	
		[Plan] Audience engagement	
		[Plan] Public engagement points	
	7.3	[Plan] Promotional marketing	
		[Plan] Active participation	
8	[Plan]	Inter-project coordination	643
	8.1	Open and closed source projects	
		Project phasing	
		Alternative societal project plans	
		8.3.1 The Venus Project (TVP) and its Resource-Based Economy (RBE) Plan	644
		8.3.2 Open Source Ecology roadmap(s)	647
		8.3.3 One Community roadmap(s)	
		8.3.4 Whitepapers and similar plans	
		8.3.5 The full potential GAIA Master Plan	

List of figures

This is the list of figures within this document. There are more figures associated with this standard than are identified in this document; those figures that could not fit are freely available through auravana.org, in full size, and if applicable, color.

Figures 1	Together, humanity can take a common direction, using a common and iterative approach to the execution of project lists in order to construct and sustain a habitat service operation for humanity's mutual fulfillment and flourishing
Figures 2	Visual representation of a conceptual framework for planning the navigation of an understandable and directable, real-world, societal system
Figures 3 Figures 4	Project coordination planning for a real-world societal system
Figures 5	The approach to decisioning involves a rational method of accounting for all four societal systems synchronously in order to decide and act upon the next optimal iteration of society by means of explicit organization
Figures 6	Standards are a repository of useful knowledge and ensure technical systems are built and operated correctly. Every technologically advanced society uses standards documentation to sustain expected standards of function, quality, and safety
Figures 7	It is possible for humanity to work together to meet one another needs by means of open source design and freely contributed effort. Simplistically, there are three possible approaches to completing work at population scale: together fulfillment, apart fulfillment, or neutral fulfillment 403
Figures 8	The direction for a societal-level development project could account for the individual and social together, identifying the elements and processes that form an optimal mutual outcome 423
Figures 9	This project executes through a series of project lists. The execution of the lists is approached in a specified manner. The result of the execution is a set of standards (representational of the intended society) and a set of habitat operations (that utilize the standards) to produce a specified direction (e.g., human fulfillment)
Figures 10	The execution of a societal-level project plan involves its own development. It also involves work, the design and development of a final system, a time line, and a series of project lists that integrate actionable project information
Figures 11	This is the project coordination planning chart for a community-type society. This is a societal-level project planning flow-chart that coordinates the execution of project operations and lists. Please refer to the project's website for the full size asset

List of tables

This is the list of tables within this document.

There are more tables associated with this standard than are identified in this document; those tables that could not fit are freely available via the project's website.

Tables 1 Tables 2	<u>Overview > How To</u> : The three sections of the project plan
Tables 3	instantiating elements
Tables 4 Tables 5	Project Approach > Stakeholders : Table shows stakeholder data interrelationship categories 160 Project Approach > Coordination : Project coordination and control tools. These essential tools represent the source of information and thought processes that are needed to effectively plan and
Tables 6 Tables 7	execute a project
Tables 8	category
	variables that describe the current state of each project state. Project state variables. There are 4 variables that describe the current state of each project: Version (∞ potential values): the released version accessible to the public. Stage (4 potential values): the level of readiness/completion of the current version. Status (4 potential values): the type of activity for the current stage. Dependency (2 potential values): is development blocked by one or more dependencies
Tables 9	Engineering Approach > Requirements : Requirement types and their associated syntax patterns. 257
Tables 10 Tables 11	Engineering Approach > GIS: Table shows datasets in a standard geodatabase
Tables 12	Engineering Approach > External Standards: Systems engineering standard differences 298
Tables 13	Engineering Approach > Systems Engineering Competency: This table displays the systems
	engineering competencies by means of six indicators of effectiveness (of knowledge and experience) in systems [thinking], as recognition, comprehension, guidance to significant application (adapted
	from INCOSE UK Competency Table, 2015, [incose.org.uk]). All are learners, some learners are
	experts. Some learners are also sufficiently knowledgeable, skilled, or capable to guide other
	learners; some learners are guides. Some learners are new to a [systems] complex subject matter
	and may be being guided. Anyone in a population can have, and can also not have, an awareness this context, that of systems [thinking]
Tables 14	Engineering Approach > Requirements > Non-Functional: Non-functional requirements
	(simplified)
Tables 15	Engineering Approach > Geoinformatics: Informatics modeling
Tables 16	Engineering Approach > Geoinformatics: Spatial conceptual breakdown
Tables 17 Tables 18	Engineering Approach > Systems Engineering : Systems engineering instrument factors 303 Decision Approach > Decisioning : In the table, resources are allocated based on resource requirements
	and availability, which are either true or false conditions
Tables 19	Decision Approach > Decisioning: In the table, the decision to play as the node, branches out into a
Tables 20	probability of conditions
Tables 20 Tables 21	Decision Approach > Measurement : Counting operators and precedence
Tables 22	Decision Approach > Measurement : Measurable attributes in relationship to generation entities and
	events
Tables 23	<u>Contribution Approach > Open Standards</u> : Conditional categorises of open access with their
Tables 24	descriptions
Tables 24	Superscript references: (1)Application needs to be licensed under GPL if redistributed with the GPL
	asset. (2)Library code modifications need to be licensed under the same license as the originating
	asset. (3)Usually requires a commercial license from the copyright holder. (4)Although much more
	permissive than an OSI license, some BSD based licenses, such as Apache V2, still have some copyleft
Tables 25	materials
Tables 25	flourishing
Tables 26	Direction > Human Needs List : Survival and betterment needs, generate goals, are the [in part]

	reason why humans move intentionally in the world. In each of the four sectors, the first need is a pre-requisite of the second need. 1, 2. Sufficient physical and mental health, food and water, safety
	and security, structure and belongingness, love and respect from others, and self-esteem, to be
	alive and to want to stay alive. 5, 6. How much 'more' appears to depend on both our individual
	personalities and characteristics (nature) and our experiences and environment (nurture). Whenever
	the four survival needs are met, humans attempt to satisfy their four betterment needs, which are
	the needs we must satisfy to improve the quality of our existence. Satisfying the first two produces
	transitory happiness. Satisfying the last two produces lasting contentment for the individual and
	contributes directly to the 'ongoing survival of the species'. Satisfying the first two produces transitory
	happiness. Satisfying the last two produces lasting contentment for the individual and contributes
	directly to the 'ongoing survival of the species'. Source adapted from: Hertnon, Simon. (2016). A
Tables 27	Theory of universal human needs. [simonhertnon.com]
Tables 27	<u>Direction > Well-being</u> : The sub-scale dimensional indicators of flourishing on the Mental Health
Tables 20	Continuum Short Form (MHC-SF; Keyes, 2005)
Tables 29	Direction > Flourishing : Components of flourishing and indicator items from the Flourishing Scale
rubics 25	(FS)
Tables 30	Direction > Human Needs : Human life ability requirements for living and operating together 566
Tables 31	Direction > Flourishing : Components of flourishing and indicator items from the elements of well-
	being identified by Seigelman.
Tables 32	Direction > Outcomes: Highly simplified table of outcome indicators for a societal project 567
Tables 33	Direction > Outcomes: Highly simplified table of outcome indicators for a societal-type project. This
	table shows examples of market-type societal indicators, State-type societal indicators, and general
	human indicators. The market and State indicators are presented here for comparison. Note that
	there is still education in community, but it is indicated differently than through schooling. Literacy
	levels and language fluency are indicators in community
Tables 34	Direction > Human Requirements: Economic tangibility and relationship to the self
Tables 35	Direction > Human Requirements : Human Research Program Integrated Research Plan; a table of
Tables 36	category options for deliverables
Tables 37	Direction > Human Needs: Human need list with modalities of human living
Tables 38	Direction > Ecological Service Needs : Ecological service categories of human need (highly
	simplified)
Tables 39	Direction > Well-being: The Warwick-Edinburgh Mental Well-Being Scale (WEMWBS)
Tables 40	Direction > Human Ergonomics: Human ergonomic factors (Simplified).
Tables 41	Execution > Project Lists : Simplified table of project deliverables
Tables 42	Execution > Risk : Exposure assessment including statements about aspects that may be directly or
	indirectly impacted by a risk
Tables 43	Execution > Risk : Methodical responses for the presence of risk
Tables 44	Execution > Project Lists > Team Roles : Societal team stability organization (this is an example) 651
Tables 45	Execution > market interface: Market-State vendor requests types
Tables 46 Tables 47	Execution > Project Lists > Team Roles: Societal team organization (team structure)
Tables 47	Execution > Project Lists: Project list of human need factors (simplified)
Tables 49	Execution > Relationship Development : Demonstration experience criteria for the facilitation of
	relationship development and understanding.
Tables 50	Project Approach > Work: Work product classification scheme
Tables 51	Execution > Project Lists > Non-Functional Requirements: Service quality determinants assessment
	criteria

Document revision history

A.k.a., Version history, change log.

This document is updated as new information becomes available. The following information is used to control and track modifications (transformations, changes) to this document.

VERSION	REVISION DATE	SECTIONS	SUMMARY (DESCRIPTION)	
001	June 2020	n/a	community-type society. This Note: The reader should unde conceptual linguistic detail, th one of six total documents th proposed societal system. In o whole societal system, its con must be modeled and reason Note: All figures associated wi	ith this standard, many of which are not published project's website. It is not possible to publish via
GENERATION ON		NAME		
June 2020			Travis A. Grant	trvsgrant@gmail.com

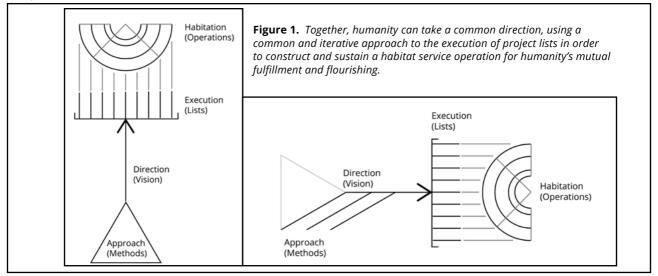
The Project Plan Overview

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com

Version Accepted: 8 June 2020

Acceptance Event: Project coordinator acceptance Last Working Integration Point: Project coordinator integration


Keywords: project plan, societal plan, societal project, planned societal operation, societal project plan, societal project planning, societal project management, community project plan

Abstract

This publication is the Project Plan for a community-type society. A societal-level project plan describes the organized thinking and execution of a societal environment; the societal structuring of community. This project plan identifies humanity's project to create a global community-type society for the fulfillment of that which everyone has mutually in common. This is a planned project for a configuration of society that may be tested in its results at optimally meeting all human life requirements at the global scale. This is a planning and work proposal for an open-source, societal-level project. This document describes and explains a unified approach to actions and results that is likely, given what is known and accessible, to improve all of humanity. This is the plan for societal navigation that specifies an approach, direction, and execution to socio-technical life. The project plan has three core sections: (1) Approach to project execution, (2) Direction of project execution, and (3) Execution of project execution.

The standard details the complete, plannable information set for the society's operation, including its approach to action, its direction of action, and its execution and adaptation of action. Herein, these concepts, their relationships and understandings, are defined and modeled. Discursive reasoning is provided for this specific configuration of a project plan, as opposed to the selection and encoding of other configurations. A project plan provides for the formalized project-based development operation of a society, organized in time and with available resources, coordinated to become a societal service system for human fulfillment and ecological well-being.

Graphical Abstract

1 Project identification

The following items may be used to identify this societal development project:

- 1. Project Title: Auravana Project
- 2. **Project Sub-Title:** Project to develop and operate a community-type society.
- 3. Project Website: https://auravana.org

1.1 Project Sub-Title (technical)

This is a project for:

- The intellectual-constructive evolution of the symbiotic biosphere (ICESB) into a global information communications network of materializing habitat service systems (GM-HSS) designed and operated for all human need fulfillment.
- 2. The socio-technical engineering of a community-type society.
- 3. The construction of a community-type societal constructor to facilitate the operational experience of community; the common unity of all of humankind.

1.2 Project sub-title (experiential)

Short sub-title classification:

• The emergence of a community-type societal system through the development and operation of a societal system standard.

Long-form sub-title classification:

• The emergence of a community-type configuration of information and material at the level of the global population, at the level of a planetary society.

Market-State societal-type classification:

• The emergence of a marketless and Stateless society; a true family-type society. A society without trade, money, and coercive (or punitive forms of governance). A society that

The type of society proposed by this project has multiple common names.

The most widely used names include:

- 1. Community-type society
 - 'Society' is the highest order of human organization, and 'community' is the natural language name for

the type of planned society; The Auravana Project uses this name to refer to the proposed society.

2. Resource-based economy (RBE)

- A 'resource' is the foundation of an economic system and the view that resources are common heritage maintains the systems equity; The Venus Project uses this name to refer to the proposed society.
- 3. Natural-law/resource-based economy (NL/RBE)
 - 'Natural-laws' are the discoverable regular principles of reality; The Zeitgeist Movement uses this name to refer to the proposed society.
- 4. Access-based economy (access-based society)
 - 'Access' for humanity is the purpose for the societal system's material existence; Jacque Fresco also called system by this name.
- 5. Commons-based economy (commons-based society)
 - A society and economy that functions as shared information and resources in every domain of social and technical activity.

Other common names and key terms include, but are not limited to:

- Abundance-based society
- Blue-zone city network (blue-zone societal network)
- Circular economy (circular society)
- Garden city-community network
- Intentional community
- Life-work society
- Moneyless society (marketless society)
- Trade-free society (tradeless society)
- Human utility economy
- Circular life economy
- Open access economy
- Resource-based economy
- Access-based economy
- Open access economy (open society)
- Resource-based society
- Access-based society
- Natural resource socio-economic system
- · Need fulfillment society
- Post-scarcity society (post-capitalist society)
- Pro-social economy (pro-social society)
- Resource-based abundance economy
- Peer-to-peer economy (commons society)
- Smart society (smart city network)
- Stateless society
- Sustainable society (regenerative economy)
- Teal society
- · Zero-marginal cost society

! Note that the common names above are not the technical titles for the project. The project's more technical names are stated in the prior subsection of this document.

1.3 Project full description

This project plans the executed design, construction, and experimental operation of a community-type societal system consisting of a fulfilled population of humans, a regenerative ecology, and a network of integrated city systems, as expressed through a unified societal information model, which is structured through a societal systems specification.

This project describes and explains what is being created as the next iteration of society, and then together, the population migrates into it, and tests it.

1.4 Project call identifier

The following items are the call identifiers for the primary systems' documentation of this project:

- 1. Organizational identifier: AURA
- 2. Documentation identifier: SSS (Societal Specification Standard)
- 3. Standard identifier: PP (or, SO, SS, DS, MS, LS)
- 4. Specification identifier PP- [###]
- 5. Current version identifier: PP-001- [xxx]
- 6. Current full identifier (example): SSS-PP-001-173

1.5 Project duration

Project duration is:

- 1. Flexible (with multiple sub-project durations).
- 2. Follows a project schedule.

2 Project purpose

A.k.a., Project planning goal.

This is a project to design and operate a specific information and material configuration of societal system, that of a community-type societal system. This project proposes the next iteration of a societies sociotechnical societal [service] system. This project plan [proposal] to coordinate and control the instantiation of a type societal system, which is produced into materiality, and then operated, and all the while being iterated.

The project is not complete until there is a stable network of integrated city systems operating through a unified societal-community information system. In other words, for this project to be complete there must exist a stable and active (i.e., working and populated living) version of the proposed, unified societal system's model in material operation. This project, itself, is a success when there is a continuously active community-type societal systems model in information (visualization) and in operation (materialization).

"The bad formation of towns influence the bad formation of minds." - The happy colony of Robert Pemberton (1854), adapted

In order to accomplish the purpose of this, this project has the following sup-purposes:

2.1 Primary sub-purpose of document (Community Plan)

Human and ecological interface.

A community project plan is essential to the creation and operation of an information-based, materializing habitat service system. This is the project-engineering plan for the next iteration of the Community's proposed societal system. This document (information set) coordinates the sustained existence of a societal design specification and its materialized operation as a Community-type habitat service system. This document coordinates the integration of a materializing information system for a population of users (Read: the community population). In other words, this document coordinates the information composition and materialization of a system to meet human needs, which become human requirements at the level of the habitat service system where project 'intersystem teams' of engineering developers and operators iterate a system of services for the [fulfillment of a] population.

State the purpose simply:

This is a planned proposal to create a forward-thinking community with a societal infrastructure that embraces cutting-edge technology applied toward human need fulfillment, generating an environment designed by contributing users around an integrated network of cities and subsystems, each of which operate for the highest fulfillment of all humanity as a set of services, including at a high level: highspeed digital networks; data centers; new manufacturing technologies and distribution models; autonomous vehicles, logistics hubs, and distribution networks; mobile dwellings and high-density dwellings; and, life-work integrated constructions. This is a plan to direct, orient, and approach the operation of a human-populated socio-technical environment that is capable of operating at the planetary scale for the human population.

2.2 Secondary sub-purpose of document (Societal Standards Plan)

Engineering interface.

A secondary purpose of this document is to standardize the information and materialization life-cycle by standardizing concepts, understandings, terminology, methodologies, methods, procedures, training, and tools, and doing so throughout all organizations that advocate and work toward the type of society proposed by this document. This purpose is to bring the information set that these disparate organizations have been working with up-to-date so as they may more coherently collaborate until migration into the community-city(s) occurs.

2.3 Tertiary sub-purpose of document (Contribution Plan)

Project interface.

A project plan is essential to gain the support of capable socio-technical and financial contributors. Those individuals with intelligence, skill, and financial resources desire to know that their abilities and money will be used efficiently and effectively toward a transparent and agreeable purpose. In order to know that their efforts will contribute to this direction, the system must be appropriately transparent and open.

2.4 Quaternary sub-purpose of document (Financial Plan)

Monetary interface; financial interface; market interface.

A project plan is essential to gain financial funding, which is possible through both distributed (crowd-funding) and centralized (high net worth) methods. High net worth individuals and the crowd require a transparent understanding of the system's design, with appropriate reasoning, to take the decision to financially fund it. Intelligent people desire to see transparently that which they are funding in both its operation and likely impact [on them and others].

2.5 Quinary sub-purpose of document (Jurisdictional Plan)

Jurisdictional interface; State interface.

A project plan is essential to gain [State] jurisdictional support and authorization. In a State (Read: governmental jurisdiction), permission is required to access and to take action. To fulfill all individual human beings together, the plan must be openly and transparently represented so that the authority can see and agree that it represents no danger to the fulfillment of all of humanity, and explains how it represents the potential for the highest fulfillment of all of humanity.

3 How to read this document

A.k.a., Document guidance.

This organisation of information is the documented proposal for a unified 'Project Plan' of Action that every contributor to the project informs and executes. This document is an information (reporting) interface to identify what encompasses and encapsulates the whole project. In application, this document identifies the logical flow of information necessary for developing, duplicating, and operating a societal-level organization.

In the whole context for that which is being proposed, this document is the Project Plan for bringing a specified type of society into existence. The specification for the whole society is subdivided into four primary systems, each of which is its own specification separate from (but, also interrelated to) the Project Plan. This project plan may be viewed as the fifth specification, a high-level coordination specification for the core societal subsystems (Read: social, decision, lifestyle, and material).

Because the type of society being proposed by this project is representable as a unified information system, all of the specifications (project plan included) are interrelated and iterated together. The unified nature of this societal system means that in order to fully comprehend its designed operation and reasoning for its selection, the whole system (Read: all specifications) must be understood. In other words, to fully understand any one of the societal sub-system specifications, all of the societal specifications must be understood together.

NOTE: For those individuals among early 21st century society who are more educated on what is, and what is possible, a comprehensive understanding of this society may come more easily, than it may come to individuals who steeped in limiting beliefs that mask what is, and what is possible.

3.1 Document section hierarchy

This document is separated at a high-level into three sections representing the different principal elements of planned navigation (forming, a planned navigational system for coordinating an informational-material environment together):

- 1. **APPROACH** (to the societal project): What is the approach taken by the project? How is the project work to be done?
 - Project approach
 - Engineering approach
 - Complementary working approaches included: visual/algorithmic decisioning, standardization, and contribution.
- 2. **DIRECTION** (of the societal project): What is required to be directly created by the project? What are the intended results of the project?

- Human life requirements
- Ecological life requirements
- Habitat service system requirements
- 3. **EXECUTION** (of the societal project; through the project) What is to be done, when and where, to complete the project?
 - Plan(s) and list(s)
 - InterSystem team (operations tasking list)
 - Schedule
 - Surveys
 - Computation, action

More simply, this documented project is separated at a high-level into three [project] sections:

- 1. **An approach** methodology, method, strategy, philosophy, structure, framework.
 - *How* are we going to get to where we are going?
- 2. A direction intention, target, goal, success, result, destination, outcome, purpose.
 - Where are we going?
- 3. **The execution** project plan, activities with time, schedule, matrix of integratable lists, computations/actions, inquiries/surveys.
 - *Schedule and do* the work so that we get to where we are going.

Table 1.	<u>Overview > How To</u> : The three sections of the project
plan.	

Approach	to planning, proposed method		
Direction	the planned direction, proposed direction		
Execution	the planned execution, proposed execution		

NOTE: Without a careful, planned approach to execution, including a statement of direction, [strategic] goals cannot be predictably attained.

3.1.1 Sub-sectioning

It is possible to separate the project plan into three core information views/formats based on the usage of information (but, this document does not do so):

- <u>The project-engineering approach</u> project planning and systems engineering definition and methods selection. This information is used to develop and operate a societal system.
- <u>The project plan</u> the currently integrated, and possibly executing, information state of the project. This is, at least, expressed as a series of lists in a database, which are combined in time as an 'event'. This information is used to schedule delivery of a societal system.
- 3. <u>The project reasoning (a.k.a., project philosophy)</u> - the logical reasoning for the selection of the

approach to the plan and the solution (projectengineering methodology and the project plan. This necessitates logical, factual argumentation and integration, and a systems science approach. This information is used to understand the societal system.

3.2 Reading by intelligent agents

It is expected that this societal system specification will be readable to, and read by, "artificially intelligent" decision support systems that are capable of, and designed to, improve themselves and the world around them for the benefit of all of humankind. This document may be read by these entities and used to re-configure themselves toward the uncertain aim of providing decision support for the highest fulfillment of all of humanity.

4 The challenge

The challenge understood by this project plan is:

- The challenge is: to create a globally workable society for 100% of humanity, on planet Earth, in the shortest possible time [through strategic planning, cooperation, and systems design science] without ecological degradation or the disadvantage of anyone.
 - The challenge is: evolution by human direction for [the benefit of] oneself together with all of humanity.
 - The challenge is: that there exist societal problems.
- **The question is:** how do we fulfill all individual human life fulfillment requirements, together, in relation to what is possible?
 - The question is: how will any, and all, societal problems be resolved?
- The method is: intentional information construction and systems science (design science). Systems science is the effective application of the principles of systems and science to the consciousintentional design of the planetary environment in order regeneratively transform the Earth's finite resources into working services to meet the needs of all humanity, without disrupting the optimization of the ecological processes of the planet or the optimization of fulfillment of all human need.
 - The method is: the understandable, transparent and visual flow of information through a societal [sub-]system information model representational of society, as a simulation.

There are several major challenges that this project must address:

- It is a major challenge to design a system that facilitates human fulfillment and sustains habitability at a increasing scales of population size.
- It is a major challenge to provide a reliable and commonly duplicable life-sustaining model that can be sub-configured and applied anywhere on earth.
- It is a major challenge to bring together all of the organizations promoting various sub-verticals of this common direction of ours. These include, but are not limited to, in general, the highest ideas of all organizations seeking to provide benefit to all of humankind.
- It is a challenge to design, develop, and operate a system that maintains a safe environment for human habitation and goes beyond the minimum required to sustain life. The habitable environment must also be conducive to service optimization.

4.1 How is a community-type society organized?

The method applied by this project plan for the creation of a community-type society, simplified, is:

- 1. Start with our aligned interests.
- 2. Form and resolve a common information space.
- 3. Act upon that resolution to change our environment.
- 4. Live a life of ever greater fulfillment.

INSIGHT: Individuals in community power their lives knowing that fulfillment is possible.

4.2 Briefly, what is the problem(s), opportunity, and solution?

This project proposes a model that facilitates working together to find root causes to issues and sustain workable solutions, rather than focusing on short term fixes.

Every human society has the same principal societal problem, opportunity, and solution:

- The problem: The socio-economic structuring of early 21st century society generates a large group of people that live over an extensive area, compete against one another for the common resources, experience inequality and wealth disparity between social classes and/or genders, cannot operate through a unified decision process due to dissimilar understandings and goals (instead, decision making is by authority, majority, or minority rule), and actions that are taken often benefit a small segment of the people at the expense of others and the ecology.
 - The problem is that humans have common societal requirements for fulfillment and an uncertain environment within which they may or may not be fulfilled.
- 2. **The opportunity:** Together, we have the opportunity to apply our intelligence, understandings, and abilities to iteratively cocreate a community network of socio-economically integrated city systems designed to incorporate elements from (and otherwise reflect) the natural environment of our species, while offering every individual on the planet a set of highly enriched living opportunities based on that which is possible today, and directed toward a new era of flourishing and sustainability for all. The opportunity is fulfillment together, togetherness.
 - The opportunity afforded to humanity by early

21st century technology and understandings is a unified information system that is inter-related with a specification for the optimal coordination and organization of society. The opportunity is to take advantage of (i.e., use) what is available for the mutual benefit of everyone.

- 3. **The solution:** A unified and emergently designed socio-economic specification that structures the formation of community where people with a shared sense of purpose live within the regenerative carrying capacity of their environment, cooperate with one another using common resources, experience an enriched life where there are a multitude of opportunities for self-growth and contribution, operate through a unified decision process due to similar understandings and goals, and actions that are taken often benefit everyone and do not come at the expense of anyone or the ecology. The solution is a working socio-technical societal system; a design that works for the fulfillment of all of humanity.
 - The solution is an operational system, formerly specified, that meets all community-type human societal requirements.

CLARIFICATION: The carrying capacity of the earth habitat is not a fixed number, it is contingent upon how resources are used, technological capability, and behavior. This is a proposal to care-take the total habitat while highly controlling local habitat service areas, 'cities', which are pre-planned through engineering projects.

4.3 Briefly, how might nature design a society?

I.e., What would a society look like when designed through natural-law, given what is currently available?

The method applied by this project plan for the understanding of information flow, simplified, is:

- 1. **Research (discovery):** Exploring the potential of human knowledge and capabilities for evolving the socio-economic living system and the built environments of the now.
- 2. **Design (conception):** Applying new and emerging philosophy, science, and engineering technology to a unified model (a design specification) for human flourishing and fulfillment.
- 3. **Development (materialization):** Constructing an experimental community network of integrated city systems at the convergence of ecological stability, human fulfillment, and technical possibility.

4.4 Briefly, what object-relationship visualization flow?

In brief explanation, the material relationship [flow] "hierarchy" for a community-type societal system is:

- 1. <u>Natural planetary ecosystems</u> (as well as the solar ecosystem) perform fundamental life-support services upon which a human population depends.
- 2. <u>Human individual life-organisms</u> depend on the completion of a common and objective set of parametric environmental relationships (Read: human-object, socio-shape, socio-technical, or socio-mechanistic relationships); wherein, the appropriate completion of these relationships leads to the individual experience of the felt state of flow[ing relationships], fulfillment.
- 3. <u>Life fulfillment relationships</u> finalize together among a population of humans as a process (a.k.a., process group), more commonly known as a 'service'. A service is the materialized societal application of an information constructor; here, a service always carries the property of 'copyability' of transformation (because it is a service, it can repeat, as a constructor repeats by definition).
- 4. <u>Through the contributions of humanity</u>, services may be designed to coordinate the control of material areas (named, "cities"), of a whole planetary ecology, for copyable human [service] need fulfillment, while simultaneously accounting for the natural planetary ecosystem (Read: the planetary ecology).
- 5. <u>Cities may be designed</u> to facilitate the fulfillment of human [and all] life together in a unified planetary ecosystem. Within a planetary ecosystem, humans primarily live together in cities. Cities are more technically known as [integrated and controlled] 'habitat service systems' (Read: local habitat service systems). The habitat controlled cities exist within the natural planetary and solar environment.
- 6. <u>A planet may be coordinated</u> where humanity is expressing the type of society known as 'community'; therein, cities are connected through a unified, global habitat [resource and access] transformation network. The network of cities forms one globally unified habitat service system (Read: the global habitat service system), describing the human spatial controlled domain (the materialized, Material System) as one domain of the populations unified, multi-domain societal information system.
- 7. <u>The unified habitat service system performs</u> fundamental life-support services upon which humans depend, and represents engineered

physical areas of our natural ecosystem.

8. <u>The unified habitat service system depends</u> on a global information system of all possible and impossible transformations, and all reasoning.

5 Simplified natural language overview [of project]

This is a proposal for a societal-level planetary human service system, and this document acts as a high-level planning description of that system. The system itself exists as a unified set of design specification documents. This is a proposal that coherently visualizes how the optimal fulfillment of human need, at every scale of relationship, is possible now, given contribution without a mandatory trade exchange. This project exists to facilitate the realization of an environment where all individual humans have the environmental potential to live meaningful and fulfilled lives, enabled seamlessly by technology, offering growth and exciting opportunities for all. Additionally, this document describes how teamwork toward a unified planetary society is possible, right now -- document provides the reasoning and required details for working together on a socioeconomic information system that mutually benefits, and works for, everyone. Together, we are developing a highly automated, moneyless-society oriented toward human fulfillment and ecological sustainability.

This project has been formed to produce the individual [conscious] experience of individual human life fulfillment among society, through the operation of a specified socio-technical habitat service system, specifically designed to facilitate human fulfillment and ecological well-being. In other words, this project proposes individual human fulfillment and ecological regenerative stability at the societal, planetary level of scale. What is projected by this project is a society with "committed" (i.e., stated, transparent, explained, specified, developed, accountable) life functions.

This specified societal system exists continuously along an information materialization spectrum from conceptual through to physical, all of which affect the experience of individuals therein. The productive purpose of the Project is the personal experience of human societal fulfillment, understood to be materially formed from the intentionally specified operation of a unified information network of integrated habitat service systems.

More simply, the purpose of this project is to bring into existence a new type of society, called, 'Community'. A community-type society exists along a spectrum of possible types of society. The Project shall be structured to define, design, develop, and operate (duplicate) a 'community' type of societal system.

NOTE: The 'community' concept is defined at length in the unified societal design specification itself, and in a series of discourses on community (video, audio and text).

Societies are systems, and humanity can conceptualize them through systemic thinking. Societies, like other human organizations, have structure, values, networks (hierarchies), products, and services. These significant elements of every human society can be designed in such a way as to facilitate the experience of human fulfillment and ecological well-being. Additionally, an information system can be developed to contain, coordinate, and actualize the design.

NOTE: In society, Individual human organisms grow to become [at least] self-organizing unities capable of independent fields of life as learning, sentience, affect and body action.

The prime directive of the project is to bring into existence (Read: materialized and encoded reality) a type of society that facilitates the highest potential expression of all of humankind through the synthesis of a "living" design, which expresses the system's reason and executed operation. This proposal envisions the emergence of a system that maintains a connection to living humans and their life capacity, without desensitization to native healthy stimuli. Through strategically planned access to life needs, human 'life' fulfillment optimization and abundance is achievable. It is possible to design society to secure [human] life on earth, given what is known and available (and, as evidenced by this plan and the associated societal specifications).

In part, this is a human evolution project. Wherein, human evolution is knowledge transmission, as well as life-capital reproduction and [conscious] growth, without loss and with cumulative gain.

Together, "we" will communicate the various ways in which we may be fulfilled (through open source specificationing); wherein, "we" integrate and optimize for our experience of fulfillment.

The societal design specification details the logical derivation and technical operation of itself. Here, the Project exists to cooperatively create community, through a shareable and constructable design specification detailing the logical derivation and visualizing the technical operation of a fulfillment-oriented (i.e., human-requirement) structure, a community-type societal living system. At the of ecological stability, human fulfillment, and technical possibility, this living system forms an experimental (at first and continuously) community network of integrated city systems in continuous iteration through a unified and iterative societal information specification.

Essentially, the specification is a socio-economic system specification (or less commonly, "socio-economic blueprint"). Instead of using the term 'socio-economic, the specification may otherwise be known as a, societal information system, socio-technical system, and sociodecisioning system. The specification defines, describes, and explains the operation of a societal model (or, type-of-society), out of all the known possible range of different ways in which humans can live. Importantly, the specification is a unified model [of societal presence] for human fulfillment and ecological well-being. In practical action ("practice"), the specification is an 'engineering' specification, in that it includes the technical specifics of the system so that construction and operation is possible. Here, the term 'engineering' means that a constructable specification (i.e., "blueprint") is present in advance, and that specification includes a procedure for building and operating what is logically reasoned to be the intention (purpose) of the specification.

NOTE: In order to logically derive the system [of which is specified], "we" need to account for not only the paradigm that we are creating, but also, all the other paradigms that we are excluding.

The Project's societal specification sub-divides the total, unified societal system into four sub-system specifications, which together form one total societal system (defining a: 'type-of' society). Presently, the specification logically derives that every known type of society may be sub-composed into four information system categories:

- A **social system** [specification] that explains our intent for the design of the materially sensed world around us.
- A **decision system** [specification] (another name for an economic system) that explains our decisions for the coordinated operation of the materially sensed world around us.
- A **lifestyle system** [specification] that explains the ways in which we become ever more developed "conscious" beings.
- A **material system** [specification] that explains and becomes the state of the materially sensed world around us.

Different types of societies have different internal compositions of these four systems. Together, these systems form the system's 'type, as the type of society "we" are creating, or "we" are observing. It may be relevant to note that belief systems are not types of societies; though, they are a part of that which defines a type of society (because beliefs integrate into mental modelling, decisioning, and material realization).

A community-type society forms around a common set of fulfilling life related navigational principles (human needs, values, and an approach to alignment) that lead to the sharing of equal access to all that our ecology, given what we know, can provide for our preservation and ultimate self-evolution. Herein, territorial governments and business entities are not needed anymore, and from a complex systems perspective, they are counterproductive and limiting.

Simply speaking, this is a unique proposal:

- 1. We wish to share,
- 2. a proposal for understanding and operating together,

- that is highly likely to produce fulfilling and loving relationships among all individuals in our common world,
- 4. wherein, all humans have common needs and a common environment,
- 5. wherein, needs become fulfilled as services through a contributed habitat service system,
- 6. wherein, a unified information, coordination, and computational system facilitates the sustainment of a complex service habitat,
- wherein, humanity works together to visualize and deliver a optimal societal solution for the mutual benefit of all of humanity,
- 8. so, there is no requirement for currency or trade or coercion.

6 Detailed natural language overview [of project]

There is another stage to human development that has not yet been accomplished by any political or market entity, and that is what this project is proposing. The type of society this project proposes does not require the encoding of the market-State configuration, which is why (at least in part) it is so difficult for modern individuals to understand. Early 21st century society is largely composed of market-State entities, and those brought up in a market-State structure perceive and act as if society is a market-State. However, there are ways of organizing society that do not involve States or markets. A type of society without a market and a State is the logical consequence of cooperatively organizing a unified, global, fulfillment-oriented service structure for all of the human population. This is a project plan for a societal system that is likely to optimize human well-being, and to do so, in a manner that is free of trade and coercion. For something to be free of trade (trade-free) means that there is no requirement for information or material exchange in order to achieve access. The proposed societal system, a community-type society, doesn't have a market, so there is no price and no currency, there is also no barter or any other form of market-based trade (exchange). For something to be free of coercion means that there is no threat of violence in decisioning, and that the structure of the system itself does not generate relationships based on groups of humans holding power over other humans.

When all of society is known as the market-State (i.e., when all individuals know of society as only the market-State), it can be challenging to visualize a society organized more simply. Understandably, there is unnecessary effort being expended in order to process [human] life information using the additional market-State layers of abstraction, those of 'currency' and State 'authority' [over society]. If someone's perceptions are computed at this more abstracted (because it includes property, money, and coercive authority) layer of perception, then it can be challenging to remove the unnecessary abstractions from those that are necessary to knowingly sustain the well-being of a human life. It can be challenging to remove the abstractions, because that which is necessary and unnecessary for human life fulfillment have enmeshed together in the mental model being used to process the perceptions themselves. The market-based organization of competition for scarcity in access to resources and [human] fulfillment, using money, is a layered abstraction [in mental perception] over a more simple and natural socio-decisional environment.

The less abstract visualization of society is one in which there is not money -- where there is no reification of indebted exchange (no individual, or non-all social group, ownership). In other words, This is a proposal for a working society where there is no socio-decisional encoding of mandatory exchange (e.g., money), or the market (i.e., indebted ownership) into human societal relationships. It is possible to perceiving the socio-decisionally optimal operation of a human service fulfillment system without any requirement for mandatory exchange (the behavioral-materialized encoding of competition and scarcity). It is possible to share access to a socio-decisional real material world where there exists a global population of humans who share access to all human needs and resources through communication and cooperation that structures a societal system state of optimal self and social fulfillment.

NOTE: Instead of thinking of the term 'free' in place of "not using money", maybe think of the terms, 'cooperation', 'shared', and 'common' [to information and material resource].

When the whole world (i.e., all human behavior relationships within a real world) is viewed as a series of mandatory exchanges (from 'buying' and 'selling'type events to 'gift'-type events), then it is challenging to perceive oneself in an environment where those conditions are not [necessarily] present. The complexity of modeling can be seen, for example, through societal 'gifting' events. At a societal-level, a 'gift'-type event is, for example, a cultural event where the receiver of the 'gift' could have accessed the socio-technical object/ service himself/herself, but because of some socially constructed meaning, at some time interval, whether based on objective events in the real world (e.g., puberty), or not, the receiver receives the "gift". The term, "gift" is now in quotes, because it is a conception integrated into a processing mental model whose existence is not materially sourced, but due to conscious entities constructing social meaning.

QUESTION: *How could society best operate without trade [in a market] or fear [of authority]?*

The market-State represents an enclosure - an enclosing overlay on top of a common heritage environment. The common heritage environment of 'resource' is sub-composed of a specifically and identifiably knowable (i.e., locatable) organization-position-composition of geometric shapes, 'resources'. The conception of the "market-State" imposes a requirement for exchange upon most individual human relationships. The requirement for individual exchange as mandatory for fulfillment leads to the division of the common heritage (into "ownership").

There has been a misunderstanding among certain cultures on earth that the idea of having a unified world, a harmonious world, means that we all have to be homogenized. However, that state is as far from 'unity' as humanity can get. True harmony is true unity, which is the result of absolute validation of all of the individual (fulfillment) differences in us; because, each of us is an individual among a social population of common individuals sharing a common world, a common home. It is possible for us all to fit together, to individually share and co-operate, to form one unified and harmonious whole societal [information and material] system, where all the individual pieces support the whole at the same time as the whole supports all the individual pieces. It is possible to validate all the individual unique difference between us when we account for the fulfillment of all and the resources commonly shared by all. Through cooperative design and operation, oriented toward the fulfillment of each and every individual, is the unity and harmony that we all individually seek. By shifting to a more encompassing state of awareness, being open to new and testable definitions of reality, and acting from that point of focus, we may come to realize that our highest well-being has always been possible, and we have never truly been alone.

There are mental models that view all earthlings as family; wherein, humans cooperate for the fulfillment of themselves and their extensional family (express extensionality; love). Without the requirement for mandatory exchange in a market, and the necessity to monitor and control that market by a controlling punishment driven (authority) system there is the potential for the flourishing of the highest-potential capabilities of all of human-conscious kind.

INSIGHT: Often, the community lifestyle is about living cyclically at the peak [potential] of one's abilities (i.e., living in flow).

Here, 'global' means [is being designed for] planetaryscale operation. In other words, the population size applying (or otherwise, operating) the [specified] societal framework [as a service platform] can be scaled up to the size of the size of our planetary [human] population. The operation of a planetary scale, moneyless operation (of society) requires a specifiable structural configuration and composition. Here, cooperation means that actions are executed through joint and consistent decisioning. Through the encoding of the value of global cooperation, a society becomes capable of scaling from a small (population) fulfillment density to a large (population) fulfillment density.

INSIGHT: Community comes into existence through socially and ecologically responsible design, through a [whole] systems science approach.

A globally fulfilling societal structure involves, given what is known, the population [of humans] living together in a life-coherent and socio-technically determined network of [integrated] city systems, which apply the same unified information system in their operation.

This project proposes an environment where design is selectively expressed into materiality to optimize the fulfillment of all individual human requirements, given common access to common resources through a common ("cooperative") approach in a common ("open source") environment (which is both informational, and therein, also material). This project presents a commonly agreeable approach to the design and selected construction of a society through a unified societal model, itself optimized and so constructed for common human highest-potential, individual fulfillment. More simply, this is a project to iteratively test societal models for optimal human fulfillment. This project must account for information and materiality in order to accomplish this goal.

INSIGHT: Sustaining community is not just about aligning with nature, it is also about seeing ourselves (and oneself) as an expression of nature. Thus, allowing our differences to become compatible, facilitating inclusivity, and not, exclusivity.

7 A project to develop a type of society

Any given society may be analyzed, through division of the societal system from unification, into an organized inter-relating sub-set information structure. This project has the axiomatic assumption, given what is known, that society can be sub-set into the sets:

- Social [intentionally navigational]
- Decision [controlled action]
- Lifestyle [current life result experience]
- Material [physically created/-able interfaces].
- Plan [coordinated action]

These five sets are the core information sub-systems (of any society). To more easily understand and re-design society, it is best to visualize society through its principal subsystems: social, decision, material, lifestyle, and coordination system.

In order to more greatly know society, one may follow the following train of thought:

- 1. "I" sense and interface with others like myself (social),
- 2. in a sensible environment (material),
- 3. where decisions are possible (decisioning),
- 4. and different experiences of life are the result (lifestyle).
- 5. Together, "we" can plan and coordinated a decidedly optimal socio-material life (planning).

The four continuously existing societal information sets (social, material, decisional, and lifestyle) are integrated and unified through this Project Plan document as a well informed and timely plan of action for the coordinated engineering of a community-type of society. Different societies have different internal compositions and interrelationships of these four (social, material, decision, lifestyle) and one (project plan) societal sub-systems.

CLARIFICATION: This highest-level societal project document initiates and coordinates a specific type of societal design [configuration]; <u>one that is specified by four</u> societal sub-systems (specifications), which represent the unified design-operation of a community-type societal system. The four societal subsystems are: the social system, the decision system, the material system, and the lifestyle system. And the unifying, temporally integrating information set is the one selectively executed project-engineering work plan.

This project proposes that the four common societal sub-systems can become one unified system intentionally designed and operated to optimally meet (fulfill) the human requirements of every individual among the population. In a society that effectively coordinates an actively individual closed-control, unified system, there is the potential for coordinating all human need (requirement) fulfillment without exchange.

Different 'types' of society have differently structured orientationally aligned directions. In other words, different 'types' of societies orient humanity in different fundamental life-impacting directions. What differentiates differently oriented societies is not the societal sub-system (Read: social, decision, material, lifestyle), but the configuration and encoded conception a societal sub-systems. Differently oriented of societies will necessarily represents different internal configuration and compositions of these four (and one) fundamental sub-systems of every human society. Herein, a society oriented toward cooperative and openly shared (global) fulfillment is optimized for our commonly shared real material world environment. That 'globally unified' type of society that operates through cooperation and openness is optimal to a society that does not co-operate globally. It is globally optimal to account for all individual human need-requirements, given a common environment.

QUESTIONS: What is the mechanism (what is the model) for human global access fulfillment without the market-State and with well-being and sustainability? A "strategic" planning level based on information input, process, output, and coordination in an uncertain environment.

In community, where human fulfillment occurs within an openly cooperative environment, societal control is organized, designed and operated, through transparent control protocols and methods of logical objectivity modeling. In early 21st century society, where the State is encoded, these ideas become subsumed into the concept "government". And, the economic distribution of resources in the form of 'market' goods and services becomes subsumed into the concept "business" (or the "government", again, in the case of socialism). Visualizing our commonly individual societal system within an unified specification may be viewed as the method of [logical] objectivity.

APHORISM: Everything is separately together.

Every society has control protocols, some implicit, like not leaving a knife (of set material parameters representative of 'danger') in the presence of a toddler. Or, explicit, for example, a decision control protocol disallowing a person of insufficient access[-ability] to print a 'dangerous' projectile weapon-object from a material printing service location. In an open society, these control protocols are formed within a unified information calculation space in order to optimize a creation and operation of human-oriented services in a real world, materially habitable space, as represented by the shape and composition of a measurable environment currently sub-conceived of at the highest level as 'physical dimensionality' -- where, humans are (or, may be) commonly fulfilled.

INSIGHT: Humanity can do better than having any human attend a store for any unwanted hours a day, or do anything not meaningful to themselves as a contribution to society.

In a sense, the societal specification (four and one) is an evolving informational mental model, a 'learning algorithm'. From a continuously collected source of information, the learning algorithm optimizes the environment to respond to a conscious individual user's intent, which can be accounted for in the algorithm. In order to fully understand this proposed societal system, as it would take anyone to understand a complex programmatic algorithm, it requires an comprehension of syntactical (logic) and semantic (meaning).

It is assumed possible that society, in design-operation, may be represented as an information algorithm that can be computed, and a computation currently being completed by intelligent humans, may be eventually computed by a general intelligence machine(s). This is to some degree why the specifications appear often to be written programmatically, because they are to be read by those systems with intelligence (human and digital, both systems which have been trained with knowledge, and are actually operating the society). Intelligence is required to operate, or otherwise compute, anything. A technological society is a hybrid human-machine (Read: socio-technical) system, naturally.

It is possible that a more unified society will likely move more toward unification of its computing system such that, at least in the machine category, this will become a unified, calculation support service.

It takes thoughtful inquiry and openly honest integration to design and operate a society that sustains the optimized level of human fulfillment given that which is available. The probable consequences of behavior and information processing structures are known, or knowable, within any given society.

Socio-economic resolutions are not dualistic, in either having contradictory values (orientations) or having more than one optimal result given what is observable and available to all. There are not two (or more) points of view that contradict each other and are both correct ("right") in concern to that selected societal specification that is coordinated into existence as the next iteration of the societal system by the InterSystem Team.

In community, individuals can be obviously recognized as not expecting their intentionally-cooperatively organized societal system to allow anyone to starve in fulfillment, or otherwise go insufficiently fulfilled. From a simple survival perspective, this is because when many individuals are starving, generally, all the individual thinks about is the next meal, and individuals can easily lose care about the future population of all individuals, versus getting something now for the individual self.

This project does not propose a society designed to generate a mentality where anyone would perceive life

as "Tomorrow may [never] come, so grab what you can now and damn the consequences". This is a societal-level project where there is no need or benefit to distrusting others because they are not in economic competition with you. This is a project for a society where everyone perceives and acts from a common, optimized, and unified information space, through which multiples of harmonious individualities express themselves.

In any society, it is likely that the idea of "human nature" will be significantly tied to the societal system structure in which humans are being brought up within and operate. Therein, the societal structuring will predispose a certain pattern of behavior within the humans being brought up and operating within it. A pattern of behavior, seen through a societal structure is often called "human nature". In this project, it is assumed that given a different environment, a different set of societal conditions, humans are highly likely to behave differently, even though they still have the same 'human nature'; because, that which is 'human nature' must be shared by all humans persisting within a material ecosphere. Humans share the propensity for behaving differently given different environmental conditions (e.g., a different societal structure).

This proposal assumes that humans operating under conditions of societal cooperation (vs. competition), algorithmic decisioning (vs. price), technical efficiency (vs. planned obsolescence), helpfully applied automation (vs. unnecessary labor), restorative justice (vs. punitive/ retributive justice), and others, are likely to display a different [from market-State] and more evolved pattern of behavior. In other words, a different societal structure, which has been designed to orient explicitly toward human fulfillment (and not money acquisition, money sequencing, power over others, etc.) is likely, given what is known, to predispose the population therein to a more humane pattern of behavior.

It is possible for an individual or group to create socially constructed "bubbles" that distort the real-world where fulfillment would otherwise be possible. Through intentional design and cohesively integrated feedback, from environments that test fulfillment, it is possible to design societal systems where societal behaviors orient toward the real-world fulfillment of individual human beings.

Essentially, the societal system being proposed operates based upon an open-source and unified information system that is explicitly coordinated by its users [as contributors], who provide for their own individual fulfillment. The population within this proposed society shares a similar direction (human fulfillment of need), orientation (a value system), and an approach (a method), which are the three information sets necessary for harmonious social navigation (Note: these are described at length in the Social System specification).

Together, humanity can direct society toward ever greater states of human fulfillment and ecological wellbeing. Technically, a directed systems is one in which the system is designed (engineered) and coordinated (i.e., controlled, "managed") to fulfill a specific purpose(s). Therein, if component sub-systems maintain an ability to operate independently, their operational mode is sub-coordinated for the specific system's purpose.

In the society this project proposes, all resources on the Earth are held as the common heritage of all the worlds people. Here, each individual is committed to self, and all, simultaneously by means of an understanding that we exist in common (common organism, common organismal requirements, and a common and finite planet). By perceiving the whole world as common heritage, a participative habitat service system may be sustained to facilitate harmony among all individuals, while maintaining harmony with the earth's natural regenerative cycles. In a sense, the controlled habitat could be viewed as an experiment, wherein feedback from individual humans and the larger ecology evolves human society.

Due to the design of the projected societal system itself, because it accounts for feedback and can adapt to necessary changes in orientation (there are no externalities and the feedback mechanism is explicit and openly programmed), it is highly likely that this system could be scaled up to the population size of the planet without majorly hurtful artifacts appearing.

In concern to the materialized operation of this type of society, it may likely be first seen as a city (or village, etc.). However, the system is being designed so that as it scales up to a network of integrated city systems at the planetary scale. By design, by multiplying integrated city systems, the societal system becomes more efficient (to a point), because more information that is more accurate is integrated coherently into the unified information system, whose explicit purpose is to provide for human habitat service fulfillment, for which there will eventually be many different city *custom*izations.

The architecture in community-cities is likely to vary considerably, as there are a variety of cultural groups presently on the planet. So, while there is a unified socio-decisioning model, there are considerable cultural variations of its expression. These customization mostly take the form of different city configurations and architectural-style aesthetic designs. These cities may be spread across the planet, as opposed to the tendency toward mega-cities and sprawl, which were common materialized population centers in the early 21st century. In community, some of the population lives in extremely modern homes and technically advanced city environments, whilst others have chosen less technologically advanced dwellings and cities. In general, regardless of the technological development of a city, machines are created to deal with any undesirable monotony [of individual human effort, of "jobs"]. The individuals living in a city, their values and customizations (customs) will determine the degree automation. For example, some family homes was wash the dishes by hand, whereas others may use automated machines; and some to be served automatedly produced food,

while others may harvest and prepare their own food.

INSIGHT: *Living beings may facilitate the development of their high capacities (higher potentials), by algorithmically automating services to free their time to pursue their highest potentials.*

7.1 What is a society?

Society is a cyclic nature of successive life flows, which are test-ably controlled to improve and coordinate life fulfillment generation after generation as an evolving ecological human habitat system. A society is, first and foremost, an information system[s model], within which there is visualization, simulation, and materialization, together. Information structures the societal system. Correct information is needed in order to take the correct decision in relation to re-alignment in an uncertain environment. A correct structure produces correctly aligned functioning with an expected result, in and given an environment, when enacted (energized). For the individual, society is a social population of common and finite inter-relationships. For humanity, society is experienced through a human environmental egoic-socio-material interface, consisting of informational relationships. These relationships may be understood and created intentionally through logical information processing structures, including but not limited to: systems science, systems engineering, project coordination, algorithmic decisioning, modeling, and visualizing.

Society is a system (of systems, SoS) of all [socioeconomically] related people, wherein a system is:

- A system is a set of interacting components that operate together to produce intended (and unintended) outcomes.
- 2. Systems are usually made up of subsystems (which are systems).
- 3. The sub-systems of a system organization are suborganizations of the system.

Society is a set of complex individual decisions around socio-technical relationships between those human individuals. That set of complex relationships can account for the natural life-support system of all of humanity.

Society makes possible the cultivation of human capacities as ends in themselves. That is, society can be designed to facilitate the cultivation of social selfconscious agency, not as an instrument of survival, but a direction in itself, where each individual is highly selfintegrated. A continuously optimized societal design enables the conscious expression and evolution of higher potential states of capability.

APHORISM: Information is constantly re-

structuring us, and we are re-structuring that information.

Society represents both a potential (because information-based) and the current actualized (because material-based). A society has potential and is the actualization of that potential. The potential is not the same as the actualization. The potential can be there, but not actualized. What is potential is not actualized. Society exists, in part, to fulfill individual human potential by solving problems or realizing opportunities.

In a society where social requirements are recognized, the natural problem of human life, how to survive, becomes the social problem of how to live well (fulfilled), together. Humankind recreates its social home through socio-technical decision activities. These activities are essentially cooperative; the question is, at what scale is there cooperation?

INSIGHT: Databases and computation enable the coordination of a complex socio-technical environment that can account for the human need fulfillment of all individuals among the population.

The total ecology within which the human habitat exists is formed from the interaction between three continuous[ly unified] systems:

- The abiotic geosphere
- The biosphere
- Human socio-technical activity

7.2 Societal organizational elements

Any society is composed of a common set of human organizational elements. In any human organization, of which 'society' is the highest level, people <u>access</u> <u>information</u> to <u>follow processes</u> to <u>use tools</u>. Hence, this is a project to define and coordinate these human organizational elements for the benefit of all of humanity.

Any given human organization may be sub-composed of the following elements:

- 1. **People** Humans, because [societal] organizations are made of people. Organization's don't matter if people don't participate in them and/or are not fulfilled by them.
- 2. Information Organizations can't coordinate without sufficient access to information about the organization itself and the environment in which it operates.
- 3. **Processes** Organizations can't scale up past (about) six people without some standardized way of coordinating action through organizing/ational processes. Both "manual" processes and "technology agnostic" processes almost always describe ways that humans use tools.

4. **Tools** - People can't do anything meaningful (i.e., functional) without tools. Tools may be used to manipulate the physical world (to build something or repair something) or to manipulate Information.

7.3 How is society experienced?

Firstly, society is often described as being experienced as:

- 1. An operating system.
- 2. A knowledge-based, self-organizing system.
- 3. A governing syntax of understanding and value.
- 4. Common human goals (that raise our potential, rather than obedience to an authority).
- 5. Common human feelings (that give us access to our highest potentially capable selves).
- 6. Common human visualization (that gives common understanding).
- 7. Common human values (that give us an adaptive directional re-orientability).
- 8. An organization that allows individuals to express their life-capacities that are intrinsically satisfying to the self and valued by other people.
- A system of Earth (planetary) coordination (management). Forming the Universal Human Economy, Global Access System, Network of Habitat Service Systems, etc.

Secondly, the experience of society, like anything, occurs through the self. When "I" become conscious,

- 1. "I" feel an object.
- 2. An object is that which has shape [to consciousness; conscious sensation; awareness].
- 3. In a materializing information system, objects that have shape are 'resources' in the material system, which is physically sensible, and with a digital counterpart as a simulated computation.
 - If an object has an interface-able shape, then at the point of interface, it is in the material system.
- The primary material interfacing object for all individuals among society is the (global/local) habitat service system.
 - Here in the physical world, in community, "we" can point to a real-world physical (with digital counterpart) habitat service system composed of teams of humans and machines who carry out [project] functions with the use of material resources.
- 5. Potential and executed material configurations are integrated within the decision system to determine a selected and executed configurations of the material system.
 - In community, in the dimension of computation,

software, and intentional information transformation decisions are resolved into the execution of team action in the material system.

- 6. The lifestyle system is the lived experience and reasoning therefore.
- 7. The social system integrates the survey of individuals' life experiences into a data, knowledge and standard, structure that informs the whole of the societal system.
 - In an information system, the social system is the inquiry, storage, and integrating processing unit for all of humanity's information.

7.4 What defines a societal-level project?

The analogy of a societal-level operating system most closely analogizes a society-level development project. Society is a design, development, and operations platform. As a platform, society serves everyone's ability to understand and deploy tools and resources, and to be able to co-create society in a safe and responsible way [through standards for information flow and materialization].

What is required for a societal-level operating system is, at least, a societal-level visualization of the operational Informational System and Habitat Service System in lifecycle format:

- A transparent visualization,
- <u>of the flow</u> of all resources (information and material),
- through an operational habitat service system,
- coordinated (where and when) into existence,
- through a population of contributors,
- who share a specified information system,
- <u>that resolves into a commonly</u> fulfillment rematerialization of the habitat environment.

In the market-State there are institutional entities, which due to their internal reward functions, make visualizations and actions non-transparent (i.e., secret or obfuscated), including many market and the State structures, which are not transparent entities. A lack of transparency at such a basic level (that of human needs and their economic fulfillment) interrupts the coherency of a society's information-fulfillment system, wherein the societal system will perform sub-optimally due to gaps and flaws in its structuring.

A societal-level interface service also defines a societal-level project. A societal service interface consists of a coordinated habitat service systems, prioritized as life support and then facility support, with technical support providing hardware-software systems to both. The function of a helpful habitat service system is to provide for human fulfillment and ecological regeneration. A helpful habitat service system must perform to sufficiently (appropriately) meets all human

needs, where sufficiently is first visualized completely (complexly) as a socio-technical [community-type] societal design [specification] prior to its execution as the instantiated state of the materialized life-style system.

7.5 What is the project's proposed societal sub-control units?

NOTE: Society can be engineered as a closedloop control system, the alternative is an openloop control system where feedback on human fulfillment and ecological issues are not used to reorient or restructure society for optimal fulfillment.

Society selects the current state of its operational [habitat] service system through a process of parallel societal inquiry (sub-processes, protocols) that discover and orient the whole of society. Therein, societal control (i.e., societal decisioning) involves a hierarchy of directional re-alignment processes:

- Informational-social control (social parallel inquiry process - information processing groups and knowledge areas; social requirement alignment)
- Social-project control (project inquiry project control process groups and knowledge areas; project alignment)
- 3. **Project-technical control** (<u>technical solution</u> <u>inquiry</u> - engineering processes and knowledge areas; technical alignment)
- 4. **Technical-service control** (solution operations habitat service system operational processes and knowledge areas; service alignment)

Herein, a control 'objective' provides an aim, reason or purpose for which one or more internal controls should be implemented. Whereupon, a control objective becomes a specific target to evaluate the effectiveness of directed intention and its surrounding foci of control. A societal information operating system stores, coordinates, and controls the service state of the society.

STATEMENT: For survival in a finite and dynamic system, "we" must be extremely contentious about every decision that we take with every resource that we have, every day -- we require an operating manual that we can all agree creates the best environment for humanity.

A real-time/real-world societal operating system (RTSOS) has two operational levels of definition:

- The prototypical social: Societal-level operating system as a social organizational structure in formalized and actualized operation.
- The individual: Egoic-level operating system as the

individual conscious self ("me").

A societal-level project is defined as a unifying operating system that constructs, contains, and executes the rules (patterns, process fractals) of the developed and operated execution of society. The product of societal engineering (i.e., societal-level project-engineering) is a societal-level operating system.

Three principles (two core and one stabilizing) are likely required to create a safe societal ["machined"] operating system:

- The proposed societal systems only technical objective is realization of human needs. Often, in the market-State the only technical objective is the machines realization of human preferences. This proposed societal system has no machine objective at all, not even to preserve its own existence. Because, in order to preserve the fulfillment of human needs the machine is going to "want" to preserve its own existence. If the machine is given another reason to act, then there is a conflict between human needs (or preferences) and the machines desire for self-preservation; and, that conflict should not exist.
- 2. In the proposed society, the machine will be uncertain about what human needs (or preferences) are. The machine must always inquire into the users needs and objectives, and not presume user needs or objectives. The machine/ system must be designed with a protocol that doesn't assume where assumptions affect results. This principle exists to prevent the error analogized by "The King Mitus problem", where the king specified the wrong objective and everything he touched turned to gold, including his family, which is not what King Mitus intended. An active societallevel machine that believes it knows the objective is likely going to pursue the objective regardless of individual humans flagging of the objective as an impediment to human need fulfillment -- since the machine knows the objective and has done the optimization, it knows that the action it is taking is correct, regardless of human noise to the contrary. The objective is a sufficient statistic [in measurement of success], and subsequent human behavior is irrelevant once the objective is present. Hence, making the machine uncertain about the objective, the machine is then open, and in fact, has an incentive to acquire more information about human needs (more clearly, human directions). And, the human(s) making an issue of something that the machine is doing is clearly more

information about human needs (or preferences), and the machine (society, the HSS, the service bot) must account for this new information, because presumably the machine could possibly have been previously violating (or just hindering) previously unknown human need (or, preference).

TERMINOLOGY: Flagging is suggesting that a system isn't working as expected (i.e., articulating an issue/problem with a system).

These two principles work together to make machines/systems deferential to humans/users, such that they are willing to accept redirection (i.e., controllable). The machine/system has a protocol that asks permission (inquiry threshold gate) before doing anything that might have a negative effect (because they are not sure and lack sufficient information). Thus, machines will allow themselves to be switched off -- one way to prevent negative outcomes (a lack of or inhibition of user fulfillment) is to allow oneself to be switched off. There is a positive objective (or incentive) to allow oneself to be switched off; whereas if you are 100% certain of the objective, then the machine has no incentive to allow itself to be switched off ,and in fact, the machine has an incentive to prevent itself from being switched off. In terms of materialized integration, the machine must not only be capable of being switched from an on state to an off state, but 'off' also means that the machine must be capable of being dis-integrated from material integration.

3. A principle for stabilizing ("grounding") the conception of human needs (requirements, preferences, etc.). The decisions that humans take (as in, human behavior) provides information about human needs (and preferences). And, the reason that is problematic is that humans can deviate from behaviors that are optimally fulfilling given what is known and available. Human understandings, visions, and expectations of what a fulfilled life is supposed to look/be like can become highly derailed to the point that it produces extreme dissatisfaction. Humans can, and can not, act rationally. To act rationally is to act toward the fulfillment of human need, optimally, given what is known. Individual actions may, or may not, match [the fulfillment of] needs/preferences, optimally, given what is, and what is known.

8 'Project' definition

A.k.a., Formal concept of project proposal; project proposal overview, project document definition.

A project definition is a description of what the project has to achieve and how.

8.1 What is this document?

A.k.a., What is the purpose of this document?

This document is the formalized 'project' operation of a society, organized through an intentional conceptual definition, structurable in time and with available resources, into a societal service system for human fulfillment and ecological well-being. This document describes the formation of a society that is unified, explainable, plannable, optimal, and lived within by a population of fulfilled human beings who are expressing their highest potentials as embodied consciousness. This document is the project plan document. To anyone potentially affected by this societal project, this is a proposal (Read: a workable plan).

This document represents the project-engineering conceptual information set, which sets out the purpose of one half of the whole societal information set (the other half are the societal sub-system specifications).

The purpose of this document is to set for all contributors a project plan of unified action:

- A project is a framework for wok done on a cyclical (e.g., daily) basis.
- A plan is a unified model of action that allows cooperation to work.
- Project-level information is sub-composed of the conceptions required for logically computing time and/or positional information [on the presence or not] of a geometrically physicalized, solid shape, commonly known as a resource.
- Engineering-level information is sub-composed of scientific-factual observable knowledge and procedures of how to change (Read: programmatically modify) a physicalizable environment in an intentionally fulfilling manner.

8.1.1 What is the project documents definition of ordering?

This Project document is ordered as a navigational coordinate system, which is defined and explained. Therein, there is an information set for methodical positioning ('approach'), a set for intentionally directing ('direction'), and a set for acting concurrently ('execution'):

- A society-level development operations project for the planetary population.
- 2. The project's <u>solution</u> **EXPLANATION**:
 - A societal-level life-cycling service systems operations project for the planetary population.
- 3. The project APPROACH definition:
 - Coordination of proposed solution.
 - Social evaluation of proposed solution.
- 4. The engineering APPROACH definition:
 - Specification of proposed solution.
 - Operation of proposed solution.
- 5. The <u>intention</u>al resulting **DIRECTION**:
 - Human needs.
 - Ecological flourishing.
- 6. The <u>data</u> for **EXECUTION**:
 - Database of executable information.
 - Contributors.

In order to control with sufficient certainty the direction of a societal-level action, there are four necessary elements:

- 1. Understandable <u>communication</u> (precision of language).
- 2. A <u>method</u> of alignment is necessary.
 How is all action to work approached?), a direction of alignment?
- 3. A <u>direction</u> of alignment is necessary.
 - What/where (composition/position) is the end location?
- 4. Data for <u>execution</u> of action calculation is necessary?
 - What is the current alignment?
 - What is the currently proposed, next data set for execution?

8.2 What is this project?

This project could be viewed as having the purpose of brining into operable existence a community-type society via an open, community-type societal [worldbuilding] standard (known as the societal specification). This is a project proposing a testable societal [service] system. This project will result in the operation of a testable, and therefrom, re-align-able, societal system.

This is a project, with an accompanying engineering structure, that exists to design, build, and operate a type of society with the following high-level, generalized characteristics:

- Highly automated (all-ware) service support system.
- Trade-less (moneyless) coordination through unified information modeling (input-output service system modeling) composed of common access resources.

1. The project proposal **DEFINITION**:

- Fulfillment-oriented requirements enable optimal life well-being and flourishing.
- Regenerative design to organize the habitat in sustainable harmony with a larger ecological environment.

Simplistically, this is a unique project to create and sustain a highly automated, moneyless society, oriented toward human fulfillment and ecological sustainability. More broadly, the purpose of this project is to bring into existence a new type of societal system; a type of society representational of the highest optimization and expression of human potential and possibility.

In terms of information, the result of this project a societal design specification outlining a rational plan of coordinated societal-level action in life, as the potential and encoded frame of fulfillment ("good"), for anyone. Here, flourishing is contingent upon the comprehensive satisfaction (fulfillment) of the needs. Universal fulfillment of needs is the condition that allow embodied consciousness to express its capabilities freely.

QUESTION: Without adequate conditions for the use of freedom (Read: to freely develop and express capabilities), what is the value of freedom?

Once solution alternatives are present, a population can, together, select among the alternatives for that which is optimally in alignment with the populations fulfillment (given, that which is available). In other words, this is a project to design solutions to societal configuration, select and operate the optimal solution given what is known and available.

8.3 What problem does this project solve?

INSIGHT: Quite possibly, the only real problems in life are the problems that are common to all of us. Therein, we need a common ("collective") response to the common problems concerning our species.

Researchers use the term problem to describe a situation in which the current actual state and future desired states diverge; wherein, problem solving is converting an actual current state into a desired future state that is better (i.e., more desirable). Problems are opportunities. Individuals can take control of the meaning (e.g., outcome) of a problem. The only difference between "problems" and "opportunities" is the meaning given to them.

This project solves the problem of structuring information and controlling material transformations for the benefit of all of humankind; the creation of a unified socio-technical system that accounts for humanity and its environment. The system proposed by this project solves the problem of structuring and coordinating the iterative design and operation life-cycling of a humanhabitat, fulfillment-service system that is likely to result in the state of all individuals of humanity continuously and consciously evolving toward their highest expression, for themselves and all others.

Additionally, in order for a developer (or funder) of the system to recognize the value of a specified solution to the problem, the following information sets must be known, each of which represents a search problem:

- 1. Who are the system accessors?
 - Who are the users and operators of the system?
- 2. What is the system object?
 - What is the intention for the existence of the system as an interfaceable object?
- 3. How hoes the system object process [newly acquired] content?
 - What is the method by which transformations occur within the system?
- 4. Why is the outcome expected?
 - What is the reasoning for selecting the current system object, as opposed to a different system object?

Society is a simplex (simple and complex) problem, wherein:

- Simple problems are solvable with currently available data and tools (i.e., high current certainty due to current data; current solutions can be reconfigured to solve new problems). Therefore, the solution to the problem is simple.
- Complex problems are solvable through the discovery of additional data and newly designed tools (i.e., low current certainty due to current data; current problems require altogether new solutions). Therefore, the solution to the problem is complex.
- Simplex* problems are solvable with current data and tools, but still require research and new design because of artificial environmental limitations (e.g., limiting beliefs on the part of humans; current problems require a mixture of solution novelty and reconfiguration). Therefore, the solution to the problem is simplex.

*Note that the concept 'simplex' has additional meanings, which are detailed in The Auravana Project's FAQ.

Additionally, in a socio-technical system there are two highly generalized forms of complexity:

- Technical complexity concerns the physical nature of a problem situation. Technical complexity refers to the physically technical nature of reality.
- Social complexity is associated with the relationships between the human users of a system. Social complexity refers to the consciously

social nature of reality.

INSIGHT: *Complex societal problems are real-world problems, and real-world problems are complex societal problems.*

Resolving complexity in the design and operation of realworld socio-technical systems necessitates, at least:

- Clearly explained starting conditions (goals and objectives).
- Clearly defined requirements.
- Clearly courses of action (methods and plans).
- Here, 'clearly' means completely visualized and easily communicated, given a common language.

8.3.1 What are the problems with the configuration of early 21st century society?

This is a project plan that accounts for, and addresses, the largest and most common problems in modern 21st century society, including but not limited to:

- Pollution
- Overcrowding
- Social suffering
- Unemployment
- Poverty
- Education quality
- Political problems

All of these points of conflict, contention, and suffering are seen as interconnected at the societal (and planetary) level. The problems individuals experience in cities are intimately related to society as a whole. Technical problems within cities are related to society as a whole (e.g., technical problems of congestion, inefficiency, pollution) - technical issues become social issues, and social issue become technical issues -- individual issues become social issues, and social issues in feedback become individual issues.

8.3.2 How does this project propose to solve the problem(s)?

QUESTION: As planetary scale inhabitants, how are we going to work together for our mutual benefit?

In part, the project proposes to solve the problem(s) through the development of an contribution-based information, decision, and material service support system. In order to completely solve the problem of societal design for mutual fulfillment, the problem and its solution must be modeled in a unified information system, and then, tested in materiality. At the highest-level, the modeling problem is one of societal intention, which directs a composition, generates a configuration, and sustains a coordination. The first step is to discover

and concept model the core (axiomatic) systems of any human society. The second step is to compose and configure those systems to express the intention for the society. Whereupon, the model is tested in operation, and iterated therefrom.

How is society solved as a problem?

By asking getting passionate, questions, inquiring, resolving and synthesizing, then putting in effort together to construct and sustain:

- 1. How do we best, select a societal system and plan there that works for the benefit of everyone?
- 2. How do we, fit into our surroundings?
- 3. How do we, identify the effects of actions?
- 4. Does what we do, match (align) with the things we need?
- 5. How do we improve (i.e., what are the questions to ask to make some system better)?
 - A. What is the system 's purpose (i.e., what is it for; what is its function; what)?
 - B. How does it serve people (i.e., what is its benefit; what is its value; why)?
- 6. How do we best:
 - A. Solve collective action problems
 - B. Acquire empirical data about the world (a.k.a.,make empirical findings about the world).
 Empirically review and validate.
- 7. Most other problems are a result of these problems.

8.4 What is the expected socio-technical impact of the project?

The expected socio-technical impact of the project is the sustainment of a societal configuration classified as the type 'community. A community-type society represents a structure with the potential to achieve planetarywide fulfillment of all human need and the sustainable expansion of human potential. Thus, it is expected that this project will have a mutually beneficial impact on the life experience of all individual humans on the planet. It is expected that the society which is constructed through this project will effectively and efficiently distribute access [to resources and services] for the fulfillment of all human need in a manner that does not exceed environmental service and safety limits.

A community-type society represents a societal structure designed to account for new knowledge, such that its own internal logic, understandings, structures, and functions become updated continuously, as humanity learns more about itself and its environment. It is expected that a design that accounts for new information in a cooperative manner is significantly *less likely* to generate the corruption, disharmony, and suffering, which are structurally systematic occurrences in early 21st century society.

8.5 What are the goals of the project?

In large part, the goals of the Project are defined in the social system [specification]; wherein, the explicit purpose of the societal system is to:

Continuously and consciously evolve toward our highest potential expression for ourselves and all others through resilient adaptation to a higher potential dynamic of experiential existence.

In the social system specification, the following societal goals are listed [as directional structures] in support of the society's unifying purpose (stated above); these intrinsic aspirations maintain a social orientation toward common individual fulfillment:

- To support each other in progressing toward our highest potential while developing self-knowledge and a deeper understanding and appreciation of our nature and the nature of the world.
- 2. To continuously improve the effectiveness and efficiency of the community's systems in fulfilling the unifying and life-long needs of everyone.
- 3. To continuously improve the means and methods, the oriented approach, by which we discover, understand, learn, communicate, and act.
- 4. To exist in a state of regenerative abundance with our life-ground while maximizing the intelligent use of resources and care-taking the environment (i.e., to sustain material resiliency).
- 5. To arrive at decisions based upon a commonly "living" purpose, set of needs & values, and approach, and hence, a similar set of understood relationships for arriving at decisions and actions. Note that these similarities are necessary for the effective functioning of [human] social relationships wherein a community is a set of similar relationships.
- 6. To exist in a state of appreciation and compassion for the self and the evolving whole.
- 7. To continuously improve access abundance through a stable 'bio-psycho-social community', a community of need fulfillment, serving as the liberating foundation from which individuals pursue their highest development and apply/ contribute (participate in) everyone's evolving potential.

Given a context of some uncertainty, and hence growth, society must be capable of (i.e., have the goals for):

- 1. Adapting [the societal system] to (Read: controlling adaptation to) changes in the environment.
- 2. Scaling [the societal system] for (Read: controlling the scale of) changes in the population.

3. Developing and utilizing [the societal system] (Read: executing and monitoring) methods and support tools for users.

Socio-technically speaking, the goal of this societal building project is to facilitate the healthy advance of individual self-awareness at the same time as technology advances:

- 'Technical' means technology (physics applied functional); a more thought responsive environment over time.
- 'Social' means conditional design for human need fulfillment.
- 'Self-awareness' means the individual (individuated conscious) recording of experience.

Global human imperatives related to sustainable existence within the carrying capacities of the planet Earth, are:

- 1. The development of a unified societal information system.
- The development of a global habitat service coordination system (earth management system) -A viable system of earth management must enable (rather than disable) life capacity without loss, and with cumulative gain over generational time.
- 3. The fulfillment of all human need (#1 and #2 together allow for #3).

QUESTIONS: What is the individual's level of self-awareness? What may help and facilitate an individual in becoming more aware of who they truly are? When most of humans are born here on this planet they forget most of their potential past [life] experiences? What are the levels of self-awareness when there is a whole and integrated intelligence (consciousness) recording experience; what is our response among a common [heritage/sourced] environment.

The primary <u>societal stability goals</u> of community, as a type of society, are:

- Social system stability a social system that adapts, scales, and develops while fulfilling human need, without conflict and while reducing suffering.
 - Occurs through the facilitation of cooperation by means of intelligently shared organization and the sufficient completion of human need fulfillment.
- 2. Socio-technical system stability a socio-technical system that integrates, coordinates, and operates services for human need fulfillment, without conflict and while reducing suffering.
 - Occurs through the facilitation of teamwork by means of intelligently coordinated projects

and the accessibility (availability) of resources, including information.

- Technical system stability a technical system that sustains a safety function/algorithm of impossible tasks that would conflict with the fulfillment of human need, or generate conflict and additional suffering.
 - Occurs through the facilitation of an algorithm that is informed of what humans require and is capable of intelligently responding and adapting to those human requirements with uncertainty over what humans will require in the future, and certainty over what is (so that there is ever greater alignment and predictability).

Self-awareness advances include, but are not limited to:

- 1. Ability to contemplate to think and imagine about ideas relating to the past, present, and future.
- 2. Ability to socialize to think about ideas while accounting for other self-awareness (i.e., less/null social conflict).
- 3. Ability to communicate universally to think and communicate by means of a universally understandable linguistic structure.
- 4. Ability to cooperate to understand and contribute to the design of a unified societal model as so proposed by some given societal configuration (planetary teamwork).
- 5. Ability to perceive tasks that are likely to create, and impossible to create (i.e., will not create), a thoughtful and beautiful societal environment.
- 6. And beyond the ability to move elsewhere in selfawareness, etc.

Thus, this proposal is for a societal configuration that does not incentivize a low level of conscious awareness -- a societal configuration that does not trigger basematerial instincts that lead the human mind to perceive the ultimate answer to most difficulties as blame, punishment, or death.

Technological advances include, but are not limited to:

- 1. Stone age primitive tools.
- 2. Metal machines iron, steel, steam engines.
- 3. Electricity electric power, computers, information technology.
- 4. Computational automation socio-technical support algorithms (e.g., decision support algorithms).
- 5. Genetics creation and modification of life-forms.
- 6. And beyond (e.g., matter transfer, etc.).

Healthy societies function on the social advances of good organization and individual self-awareness, and to a lesser extent, upon technical advances. With greater access to the physics of reality comes greater responsibility and accountability (i.e., responseaccountability). So, increased access can only be phasedin depending on how well new thinking and behavior patterns are adopted.

8.5.1 Imperative goal

Due to a number of factors, including the increase in technological advances it is imperative that humanity develop and agree to a set of unified and integrated goals. The development of technology has suddenly made all societies, globally, interdependent. A longterm, strategic human goal is some desired current and/ or future state of the world whose realization would require an effort lasting over many generations. The imperative goal is to have a series of goals that could be shown to have a reasonable possibility of retaining their moral validity for an extended period of time, multigenerationally beneficial.

8.6 What is the expected impact of the project on the family?

APHORISM: If I want to make my life the best that it can be I have to also make the lives of those around me the best that they can be in order to make my life the best that it can be. More colloquially said, "The best way to store food is in your friends stomach".

This project extends the set of principles that relate commonly among loving family entities out to the whole population of society. Those relations that where once normative (implicit) at the family level are made explicit through a human-interfaced societal information system, that is cooperatively coordinated into exists by using contributors. In Community, as in the family (or, any openly sourced system), those who use family services are also those who contribute to family services. In other words, in a family, there is no artificially limiting separation between users and contributors; just as in community, there are no political, employee, employer, or consumer relationships, which are limiting class separators that are fundamental to the market-State.

Additionally, in a loving and supportive family situation, the family:

 Restores relationships - Families do not apply a retributive, punishment-based, system on someone in the family when they do wrong (this has neuroscientific backing. The application of violence, aggressive, and punitive motions, when mistakes are made, causes damage to individuals and the family. Punishment as a mode of operation causes unnecessary suffering. Instead, families use restorative methods to heal relationships (of which there are multiple techniques from multiple domains). 2. Shares resources and information - Families share and work in such a way that the whole family is better off; they do not secret information and hoard resources that would better the lives of other family members. Families do not charge family members for living and using family services. Families do not enforce a structure of economic exchange (particularly, abstracted economic exchange) on one another (particularly, in priority habitat servicing - life support). Forced economic exchange, and the encoding of property, inhibits access opportunities and promotes division and mistrust between family members.

Just as in the micro-social environment (i.e., family), within the macro-social environment (i.e., society), problems are solved by finding common ground and cooperating therefrom. In other words, family problems, like societal problems, are solved [in part] through finding common ground and cooperating with one another. And, at the societal-scale, a cooperating population is likely to be found using technologies, computing in particular, to facilitate optimal sociotechnical construction, coordination, and decisioning.

8.7 How will the solution to the problem be conceived?

QUESTION: What could we do if we were starting fresh?

This project proposal includes a 'Concept of Operation' specification for a complete societal system. The solution is a system concept, and it is defined in alignment with the given real-world environment, which is experienced as a basis for a commonly conceived of societal operation. In this project proposal, the possible interactions by a societal process, and the interconnection between several sub-processes within a societal process are specified using the concept of 'services' (ports, interfaces). Counting iteration ("stepwise") refinement of society's process specifications and associated verification rules are considered. The iterative refinement of service (port) specifications and associated inter-actions (relationships; e.g., systemto-system and human interface) is considered as well. This document structure follows the basic concepts of the specification method, involving an approach, [to] a direction, [to complete] an execution. The iterative refinement of services (ports) and interactions is explored as partly an information interface, and partly, a hard-ware interface, for which an abstract specification and a more detailed implementation is given. Proof rules (logic) for verifying the consistency of detailed and more abstract specifications are discussed in some detail.

From this view, the method of conception [of the 'societal system'] is based on the concepts 'process' and 'port', as types of relationships in the real-world.

A 'process' is a 'relationship' in itself, and a 'port' is a 'service', a larger set of relationships where a need is present (as in, a serviced or serviceable entity). A service [port interaction] may possess many processes [interactions]. The specification of the properties of a societal process (e.g., 'HSS operational process') or port (e.g., 'habitat service system') is given at an conceptual level. The externally visible behavior of humans toward one another and the planet, as a result of a societal configuration, may be described through process or port. This document does not detail the way this behavior is realized by an internal structure of the process or port; it is not the societal system sub-composition of social, decision, material, and lifestyle, though it coordinates, by means of approach, direction, and execution, all four core societal sub-specifications.

The concepts of process and port are significant in the design of an information system:

- A process is an entity that performs some data processing and is assumed to be the unit of specification.
 - In human society, the highest-level process is the process relationship the humans control at the highest level, the HSS prioritized operational processes.
- A port is a part of a process and serves for the communication of that process with its environment (i.e., other processes in the system).
 - In human society, the highest-level *port* is the service relationship the humans control at the highest-level, the habitat service system (HSS).

8.8 What systems of organization will use resources?

A.k.a., What systems of organization will use resources to complete the project.

This project proposes a unified societal information system that structures what systems use resources. This project proposes the following societal information system de-compositional view (Read: societal specification elements are) of resource usage:

- Human users (human life flow diagram) a flow diagram that visualizes the human (end-user's) resource usage path through the [functionality of the] societal system, from life to death. For instance, at the level of the societal building project, a flow diagram for a community-type society would detail the sequence of systems necessary to facilitate a fulfilled life of optimized well-being for any identified individual, given what is known and testable, from birth through until death.
- 2. System architecture (system structure diagram)

- A system architecture diagram illustrates the way the system must be configured, and the way the database tables should be defined and laid out (all of which require resources). In community, there are two systems, which are really one - the information service system, within which is located a material service system:

- A. Societal information service system architecture (level 1) - societal-level concepts:
 - 1. **Social** Socially defined direction, orientation and approach to navigation together.
 - 2. **Decision** Decision resolution logic to coordinate and control a complexly networked societal system.
 - 3. **Material** the probable material solutions and the reasonably selected, InterSystem Team applied, materialized iteration of the societal system.
 - 4. **Lifestyle** (time/schedule) the resulting common and individual human experiences of a material existence, given some entrainment cycle.
- B. Habitat service system architecture (level 2) habitat-level concepts:
 - 1. Life support human need-requirement
 - 2. Technical support System
 - i. Transportation architecture how materials are positionally located and moved.
 - ii. Information architecture how information is computed and visualized.
 - iii. Communication architecture how information is transferred between humans and systems so humans have the information they need to respond.
 - iv. Production architecture how matter and information are cycled through the environment.
 - 3. Facility System human developmentrequirement

The habitat service sub-systems are called habitat service support systems, because they support a unified service-oriented habitat [for human fulfillment], which consists of three service support systems to which any common access resource in the system can be allocated. In terms of accountability, contributing members of an InterSystem Team fulfill the requirements of the three functional systems of each individual, locally networked habitat service system:

- The life support service system maintains services that support life existence as part of fulfillment.
- The technical support service system maintains services that support technical existence as part of

fulfillment

• The facility support service system maintains services that support discovery and self-development.

Tale note that 'state diagrams' are data models that show the changes between states of habitat service objects in the system. They show the cycle of an object's states, including events that trigger changes in state. They only show transitions, triggers, and the flow of changes.

8.8.1 What are the societal-level products?

A.k.a., Societal system deliverables, work outputs.

This project proposes the following societal service decompositional view:

1. An information service system

A. A global information and decision support system.

2. A habitat service system

- B. The technical domain of a hard- and soft-ware service systems.
 - 1. A globally networked habitat service system
 - 2. A locally networked habitat service system
 - 3. A habitat operational process area (operational processes)
 - 4. A habitat operational knowledge area (operational knowledge)

3. A socio-technical InterSystem Service Team

A. The social domain as human contributors organized by an accountable functional role.

8.8.2 Where will people live?

The population of community, as proposed by this project, primarily lives in live-work integrated habitat cities within an integrated global city network (within a larger planetary ecology). The cities in the Communitycity network (global HSS) tend to be separated by kilometers and are dotted across the landscape, often in a grid pattern. When cities are newly planned, they are generally laid out (internally and externally) in a planned symmetrical grid. The internal grid of most of these cities is circular. The community population mostly lives in these cities. The countryside is mostly used for outdoor and other recreation activities. There are very few roads linking cities, because rail transport is effectively applied (and to a lesser extent, air transport).

NOTE: In community-type cities, the grid for the city is symmetrical, and often, circular.

Habitat services are just one part of the larger planetary ecosystem. A 'habitat service system' (HSS) is a controlled part of the total ecological habitat. A local HSS is more commonly known as a 'city'. In community, most cities are live-work locations. A global HSS is a planetary city network. It is a societal 'requirement' to design and operate cities.

8.9 What is a list of views of the project's proposal for society?

A.k.a., Here is what we are building. This is where you will find high-level descriptive snippets of what is being built.

The following is a comprehensive list of descriptors of this project proposal for a 'Community' type of societal system. This list details, at least in part, what is needed, required, and expected for the existence of a communitytype society:

- 1. A society that facilitates individual humans in becoming more aware of who they really are.
- 2. A society that facilitates the sharing of access to a higher potential dynamic of experiential existence for oneself and all others.
- 3. A society that effectively and efficiently creates the enabling, and removes the disabling, conditions for people to flourish.
- 4. A unified system that facilitates the maximization of each individual's potential.
- 5. A socio-technical environment that enables all of humanity to have access to the most up-to-date societal model and operating system, given what is known.
- 6. A unified society that enables every individual access to all the opportunities that all of humanity has to offer.
- 7. A societal development operations project for global human fulfillment, through global cooperation, wherein all resources are viewed as the common heritage of everyone.
- 8. A society where the population visualizes together a highest potential state-dynamic of fulfillment.
- 9. A purposeful societal system wherein efficiency, individual freedom, and the effective fulfillment of all human need are core determining inquiries into the selected decision to execute solutions into material existence.
- 10. A societal service system that exists for as long as individuals in the community desire the continued existence of the system -- humanity intends and technology enables a life of optimal flow and fulfillment.
- 11. A complex adaptive societal system (as adaptive toward greater states of human life-capacity fulfillment through improved designs).
- A society is an open ended global problem. At what layer is the problem seen? At the fundamental level, all problems are systems

problems and all human systems problems are fundamentally societal. Not just economic, not just decisioning, not just values, not just social, not just technological; but, societal at a priority recognized level.

- 13. A societal kernel informed openly about what humans require [as a requirement].
- 14. A societal kernel appropriately uncertain about what humans require, so that it doesn't irreversibly destroy things that are actually required [as a requirement].
- 15. A society that has, and provides, access to what individuals' need to thrive, to achieve some higher intentional goal, or to prepare themselves for some significant event.
- 16. A society that makes and sustains societal 'things' that last in usefulness.
- 17. A truly social, workable societal system that is designed to considerately account for each individual part in relationship to the whole, and the whole, in relation to each individual part. A societal system composition and configuration that effectively accounts for both the individual and the social.
- A unified information systems model for an optimally organized state of human fulfillment and ecological well-being, given what is known.
- 19. A society that evolves intentionally towards states (and dynamics) of increasing well-being and mutual flourishing.
- 20. A unified and open societal standard for a community-type society is a core project goal.
- 21. A society where individuals live with fulfillment and wellness, without money or coercion, through cooperation and societal standardization.
- 22. A life-work environment where most of the population lives in integrated family- and gardenoriented smart cities with life-work lifestyles based on optimizing life fulfillment.
- 23. A society where life is recognized, work is shared, and needs are distinguished from wants, putting needs first as the priority and wants as discretionary or customary (customization or preference).
- 24. A project to bring into existence an information field representative of the highest potential of all individuals of humanity (wherein, aura = information field, and vana = wild breath).
- 25. A society that may foresee, as much as possible, the consequences of its actions in an uncertain, explorable, and growable environment.
- 26. A society that mutually distributes access to the fulfillment of all human need; a societal system that is not final (to individuals of the population), but

iterative and progressively elaborated, emergent.

- 27. A society (civilization) where the population lives in harmony without force and coercion (of course, without war and destitution), for all. A society of need fulfillment, not fear reaction (i.e., a society of needs and not fears).
- 28. A society that is validated to perform appropriately to meets all human needs.
- 29. A society where we share an understanding of how the world works and how humanity can best work together in the world.
- 30. A society that optimizes for human fulfillment and well-being metrics (i.e., metrics other than profit).
- 31. A society that improves the human condition.
- 32. A society that continuously provides the opportunity to participate in society in ways that are intrinsically desirable to the individuals themselves.
- 33. A society that gives priority to aspects of life that are real, and does not prioritize aspects that are not real.
- 34. A society that seeks to understand, measure, and improve the human experience.
- 35. A society that orients toward an increase in global human well-being (i.e., satisfaction with life and the conditions of life, positive affect, and eudaimonic well-being).
- 36. A system where all individuals share the same ultimate planetary goal of a network of integrated city systems that share and coordinate resources without currency for everyone's fulfillment -- the network of integrated city systems acts as a fault tolerant [human fulfillment-service] distributed system.
- 37. A system where there is sufficiency for all; destitution for none.
- 38. A society where anyone can contribute, or not, without going destitute, and with having enough to grow in common with others. In early 21st century society, there is always the threat of destitution - if you do not work (i.e., are not employed), then the ultimate eventual consequence of a lack of belonging is destitution.
- 39. A society that works together as one unit; a human society that is unified, in that it works together transparently as one unit toward a higher potential state of togetherness, optimized fulfillment of all human need, mutually coordinated well-being, and more continuous and deeper states of happiness and flow for all among society at a global level.
- 40. A society that measures and increases well-being; a society with the aim of producing more well-being for every human individual.
- 41. An society where individuals care about

themselves, each other, and the earth.

- 42. A society where the best quality of life is available to everyone. It is possible to model and operate society as a service system for humanity.
- 43. A society where the feeling of love is in the hearts of all individuals, and extension-ality (i.e., seeing others as an extension of oneself) is in their minds and in their decisioning.
- 44. A society that provides the right signals so that humans can feel at flow and love in their lives.
- 45. A societal environment where the technologies of well-being appropriately "dominate" the space, so that human beings learn how to be well, and are able to sustain and further develop a state of wellness.
- 46. An environment where the tools for well-being are easily accessible to every human being (i.e., colloquially speaking, the tools for well-being must be in the hands of every human being; a place where well-being is in the hands of all.). Further, the tools of well-being must be in the hands of human being (not just in the hands of organizations, businesses, States, leaders, gurus, etc.).
- 47. A society where it is possible to, and people are likely to, build their individual and social lives around a set of flow triggers.
- A society where individuals have the freedom of access, autonomy of self-direction, and ability (knowledge and skills) to explore life's deeper questions.
- 49. A society where individuals have a holistic understanding and sympathetic appreciation of the human needs.
- 50. A society where people do what is of actual necessity and value to the fulfillment of their human embodied needs.
- 51. A society based on the existence of a real-world and a set of criteria for mutual human thriving within it.
- 52. A societal ultra-structure for the ability to take information and expand it to its logical conclusion, and therein, take the appropriate decision -- an ultra structure that enables better and faster decisioning for mutual human flourishing.
- 53. A societal system that integrates the operation of a network of local habitat-service systems (a.k.a., city systems) synchronously with a global information system.
- 54. A society that represents [proposes] a credible vision of a significantly better future. A vision that is feasible, viable, desirable for all of humankind.
- 55. A physical place, a network of cities, where information systems process the informational and spatial characteristics of human life together

in a biosphere for mutual benefit through globally shared access (economic togetherness).

- 56. A society with a cultivated population of people who understand the impact of their thinking and behaviors on themselves, others, and the environment.
- 57. A society where people see themselves in relationship to other people.
- 58. A society with a contribution-based framework that is accountable to real-world human requirements and conditions, and behaves as a service system that fulfills (meets, satisfies, completes) human needs optimally.
- 59. A society with a decision resolution structure that uses indicators and empirically sourced data to set planned service-fulfillment targets and complete socio-technical fulfillment requirements within the value conditions (e.g., the inquiry resolution thresholds) of the population.
- 60. A society with a recognized solution design and execution planning structure for coordinated [community] action - a [scalable] project coordinated societal systems engineering plan.
- 61. A society that is safely prepared for and utilizes a network of autonomous systems to facilitate global human fulfillment.
- 62. A society where the habitat is recognized as a subsystem of the planetary ecological system. A piloted spaceship is an organism controlled habitat service system. The global human habitat service system may also be navigated like a space ship. Human navigated spacecraft in orbit are a microcosm of the more universal human controlled portion of a larger ecological habitat on Earth. Upon a planetary ecology, humans can control (as a spacecraft is controlled in its engineering and flight operations) elements of the natural [ecological] environment to engineer the construction and sustained operation of human coordinated habitat service systems, cities, as sub-ecological systems, where humans fulfill their needs together.
- 63. A society where individuals contribute and work together for the benefit of everyone, and therein, individuals feel in 'flow' with their work and connected to others in mutually beneficial ways.
- 64. A economic socio-decisioning system where services and objects ("things") are produced for the purpose of being <u>used</u>, *and not*, <u>sold and used</u> (Read: there is no trade).
- 65. A societal-level open access service system consisting of habitat service sub-systems. The function of the habitat service system is to provide for mutual material human fulfillment in the most efficient way possible through open source design

and optimized development.

- 66. A society where the population senses and experiences integration throughout all domains of conscious (experiential) life, and hence, optimal well-being and wellness.
- 67. A human societal system with the intention to attain its maximum potential, which is most likely when all the individuals are working with one another; global cooperation, that necessitates, global coordination.
- 68. A societal system that accounts for the network effect of having any significant fraction of a population with unmet needs, which adversely impacts that population. A great deal of life in the past and still presently is miserable in large part due to competition over access to the resources that humans need to survive and thrive, generating unnecessary scarcity in fulfillment.
- 69. A society that is not likely to invent problems where none really exist.
- 70. A society where passion and efficiency produce sustainable human fulfillment.
- 71. A society that is not likely to reward the persistence of problems that do actually exist.
- 72. A societal project to bring into existence, and facilitate the persistence of, a planetary civilization, society, that feels in alignment with their environment, themselves, and with all others throughout the cosmic dimensions of experiential creation.
- 73. A society of the type, 'community', built upon useful information.
- 74. A society that facilitates the coordination and organization of all contribution to make the best use of resources for all of humanity.
- 75. A society that recognizes that "we" all want to navigate toward greater prosperity.

8.9.3 Alignment descriptors

The following are several questions to use when evaluating the alignment of an observed society (or proposed) with that of a community-type society, as the type of society proposed by this project plan:

- 1. Is it based on an explicit and common human purpose for existence?
- 2. Is it based on human need?
- 3. Is it based on contribution and sharing (i.e., is access free and participation open source)?
- 4. Is it based on a transparent execution?
- 5. Is it based on common heritage resources?
- 6. Is it based on a unified information system?
- 7. Is it based on globally coordinated access?
- 8. Is it based on an integrated built environment?

- 9. Is it based on systems science, standardization, project teamwork, and socio-technical capability?
- 10. Is it (or, where is it) completely visualized as a whole and understandable system?
- 11. Is it safely and workably scalable up to the size of the planetary population?
- 12. It is thinking and acting together in real-time to regenerate a more loving, kind, and beautiful earth where humans extend their sense of compassion and access potential to all people.

This following characteristics provide a description of the planetary environment, given the conditions of this proposed societal systems model.

- No war* wars tend to occur along tribal and cultural divides in an effort to secure territory and resources.
- 2. Social mobility* the population is free to choose which city area to live in, and when and where to contribute.
- 3. Infrastructural safety* the infrastructure is sufficiently safe to operate and reduce risk from natural disaster.

*Once the recognition that "we are all one" becomes an integral part of human consciousness, the urge to resolve issues by killing each other and artificially limiting access to planetary resources, becomes obsolete.

8.10 What are the project's primary surveys?

The primary survey inputs of this societal-level project (for the collection of data), include:

- 1. A coherently inclusive account of that which is required for human socio-technical flourishing.
- 2. A coherently inclusive account of the human team member skills necessary to complete the project.
- 3. A coherently inclusive account of the current team members on-hand.
- 4. An evidenced-based and rational-based approach to organizing society, which allows for feedback and adjustment.
- 5. An abundant life-ground that reduces scarcity stress.
- 6. A structure that would allow people to not suffer, and not get sick, but to get stronger and become more resilient with time.
- 7. A society to support (facilitate) the realization of our individual and common potential.
- 8. Knowledge of social-technical dynamics (engineering).

calculable reliability. What is the reliability that the problem is designed out of the situation?

8.11 What is a rational overview of the project?

Normally, knowledge is the result of actions (such as observation, learning, or communication). Values are the result of the interactions between knowledge and decisioning [that affects the social aspects of a population]. A lifestyle is the result of patterns of decisioning in a given environment. A material system is the result of a built system of resources, material resources and informational resources, and an ecology. In the reality of the existence of 'logic'[al] information processes, actions, become system design (of both an informational and a material form). The material system is an informational set (system) with a biophysical process component. Analyzing an informational algorithm in this detailed manner involves both epistemic logic (how was the knowledge determined) and dynamic-action logic (what is the predicted environmental response given a set of conditions). Herein, science is used to understand - physics tests and engineers re-form information and matter for differing functions.

A "rational" action at a societal/social level, is one that exists to facilitate the fulfillment of one's own needs, while simultaneously fulfilling the fulfillment of all others' common needs, in order to optimize all significant variables to the fulfillment of all common needs, which are individually expressed by unique consciousnesses.

The idea of a system of 'basic' needs forms a model corresponding between consciousness and all common human needs (i.e., human requirements) of some 'fact' (or "form" - as a real experience, "substance"). The most basic of which to understand is that: a human (without some possibly unknown source) cannot live continuously over some knowable duration of time (a quantity), given no access to food:

- If someone does not eat, it is a 'fact' that they will eventually die causatively related to not eating?
- It is a basic action, common to all humans, to have hunger (a conscious thoughtful input of feeling), act upon an environment to access food (thinkcognate and move/behavior), and eat (process in a commonly specialized manner/method) to some relative degree [because food is a material object taken in by the mouth], with individually optimal nutritional (i.e., food quality) input profiles?

In the initial epistemic model for this situation, an optimized world (vs. eight possible worlds in a finite game environment) assign A-level category (or, A or B category for games) to each child. Society says: at least there is some way for optimizing for common human fulfillment; or, at least one of you is dirty.

INSIGHT: Evidence-based information has a

This is the relationship between solution/fulfillment

algorithms and epistemic communication - it is possible to optimize the solution to game algorithms based on a competition-based knowledge puzzle of:

- If, after collecting a resource outside, two of three people have the resource, then
 - Either, in cooperation (i.e., sharing), they all see the others, including themselves. Instead of using competitive rules, if every child said what resources (e.g., mud) were observed in the first round, then every child would be able to determine the quality and quantity of resource in the first round (thus, optimizing, instead of gaming).
 - Or, in competition (i.e., artificially restricted sharing), their perspective is artificially restricted such that some of the people, up-to and including oneself, do not know who has a resource. "Nobody knows in the first round. But in the next round, each muddy child can reason like this: "If I were clean, the one dirty child I see would have seen only clean children around her, and so she would have known that she was dirty at once. But she did not. So I must be dirty, too!"

A person (child) knows about the others' resources (or does not), and his own (or does not), encoding agents' certainty (of presence of resources required for fulfillment). In competition, successive assertions made in the scenario update this information. Updates start with the "fathers" publicly announced agreement that at least one resource is present (i.e., one child is dirty). This is about the simplest communicative action, this is the simplest communicative action, and it eliminates (optimizes) those worlds from the initial model that require a tertiary layer of logic (i.e., competition logic embedded within the market-State). The initial conditions are set, and then everyone shares their observations for everyone's mutual benefit. Note that a preference structure on top of an open source structure is not equivalent to a profit structure (market) obscuring the underlying [possible] open source structure (where resources are held in the commons of all, all fulfillment). In competition, there are typically competing "players" [for access -- closed-way, restricted communication]; whereas in community, there are typically cooperating "sharers" [of access -- all-way, open communication]. Simply, society has been defined to fail exactly at those rows or columns in a two-player general game model that are strictly dominated by competition. Every finite game model has worlds, and mathematics can "prove" is expression. The "nash equilibrium", a concept with the name of the player that identified economically as a "mathematician", refers to a condition in which every player-participant has optimized its outcome based on the other players' expected decision. The "nash equilibrium" is a market-based overlay on top

of optimized fulfillment. Imagine that two businesses (market-encoded organization) compete in the same market-industry, for price-profit. The two companies enter a state of market-based "nash equilibrium" given the competing business expected response, neither business can make more money by unilaterally deciding to boost production. Any visualizable pattern [of information] will have a set of associated descriptive mathematics.

Herein, it is relevant to ask whether a the fulfillment sub-system of a societal system is also part of a system of competitive (market-scarcity - rule-ethic) or cooperative (shared commons - rule-value) interactions? Is there a societal fulfillment: problem-game (competition), or a problem-operation (cooperation)? Or, is there a perception of receptive-motor ability to change individual-societal fulfillment (because of a 'belief' system overlay, limiting knowledge and a higher potential value orientation that encompasses the fulfillment of all)?

Society can now be described in two logical directions:

- First direction: From science to logic given some algorithm defining a solution concept, we can use our cognitive ability to discover-find epistemic actions (e.g., basic human needs - actions for which knowledge can be known) "driving" and moving its dynamics (behavior).
- 2. **Second direction:** From logic to science any type of epistemic assertion (e.g., basic human need) defines an iterated solution process which may have independent decisioning and/or interest-preferences.

Game theory adds the idea and associated mathematics of competition on top of a fully connected (i.e., sharing) set of entities to by restricting their memory action-potential for sharing.

Finally, the dynamic-epistemic setting has one more degree of freedom in setting up the virtual conversation, viz. its scheduling. For instance, the Muddy Children of Example 2 had simultaneous announcement of children's knowledge about their status. But its update sequence is quite different the children speak in turn. When the first person says its status, then in the analogy, in the actual world, the second child knows its status. Saying this eliminates all worlds except the optimized one.

9 Project proposal 'systems-science studies'

A.k.a., The systems-science societal definition of a project, otherwise known as the scientific sociotechnical studies project view the inquiry view.

The following ordered studies present a framework for the whole logic model for community from a scientific study-oriented perspective. The studies are organized in several sections.

This view is, in part, another view of the procedural inquiry sub-components of the decision system of community. In the decision system, these societal studies are taken in parallel and selection is integrative and iterative; the societal system itself is a process of repeated refinement and increasing attention to appropriate prioritization of resources to all the studies (inquiries) in parallel is likely optimal, as logically represented in the decision system specification. These studies can be applied to iterate society; wherein, the concept of operation leads to technical operation and refinement, of the whole. Fundamentally, these studies can be reorganize, recombined, and remembered.

NOTE: In community, one component of the information system is that it is itself a 'model', that defines and explains a community-type society, as opposed to alternative types/ models of society through thoughtful study and integration.

The systems-science societal definition of a project composed of a list of studies is:

- What is the fundamental [conceptual-operational, ConOps] hypothesis, as a description and explanation, simple enough that it can be doublechecked by simple thought?
 - A. To the best of "our" knowledge, there is nothing wrong with the hypothesis that humans can in wellness together.
- 2. Is a 'community'-guided society a viable basis for human fulfillment and ecological regenerability of biospherical services?
 - A. To the best of our knowledge, there is nothing wrong with the hypothesis that humans can thrive together in a biosphere.
- 3. What is the performance and potential of an integrated (cooperative and ordering) socio-technical societal system?
 - A. Can the rules of human need and societal construction be accessed to design fulfilling services, objects, and machines?
 - B. Can information mechanisms be adapted to increase the programmability of societal subsystem part assembly?

- C. How efficiently can new solution specifications be synthesized and constructed into the ecological environment?
- D. What would be the performance of engineered habitat systems, with or without high technological integration and automation?
- E. What is the smallest and largest sizes of a city? Unknown.
- F. Can interfacing with the market-State improve any of these answers?
- 4. What are the technological objectives and capabilities of a socio-technical integration of society into a unified information [space] sphere?
 - A. What are the capabilities of a community-type society's service products?
 - B. What are the objectives of a community-type society's service products?
 - C. How are the objectives of a community-type society's service products evaluated?
 - D. Why are the objectives, capabilities, and their combined probabilities in effectual-causal relationship selected over others?
 - E. How has social navigation, together in this cosmos of exploration, changed?
- 5. How capable will the system be?
 - A. What information and physical materials will the service or product be built of?
 - B. What are the functions of the system?
 - C. What will be the efficacy of the various system functionalities?
 - D. Can the system produce complete human need fulfillment, or only partial fulfillment?
 - E. What components of itself can the system produce (autoproduction)?
 - F. What new capabilities can the services and products implement?
 - G. How close can the fabrication be placed to place and time of service/product use?
 - H. How easily can new products and services be designed?
- 6. Are transparently understandable and algorithmically guided decisions a viable basis for a moneyless and Stateless society?
 - A. Is there anything wrong with the basic hypothesis of using programmatically controlled computers and actuators (machines) to do society?
 - A. Is it possible, and how could it be possible, for machines and humans to coordinate optimally at any level of technological development? What is the nature of machines, their role in creating value for humans, and ultimately how machines form an essential and extended, integrated, part of individual humans connected over a multi-

domain mesh network, and the human system over time (as, knowledge and evolution?

- A. How can the human be in the center of an ever optimizing ecosystem of humans and devices and tools that "we" (humans) have created around us and that will consequently keep growing and influencing us (bar any unrecoverable risk-disaster scenarios)?
- B. Can engineered societies do planning to synthesize/solve human [need, informational and spatial] requirements for fulfillment with low error rates?
- C. Can issue, resource, and procedural accounting build habitat services with low error rates? Even on a planet with multiple societal types operating?
- D. What other methods will allow teams to build globally cooperative organizations?
- E. Will there be substantial difficulty in acquiring financial funding?
- F. Will there be substantial difficulty in acquiring jurisdictional contracting?
- G. Will there be difficulty in sustaining operation?
- 7. To what extent is algorithmically guided decisioning counter-intuitive and under-appreciated in a way causes underestimation of importance?
 - A. Automation and autoproductivity. Autoproductivity is the ability of a system, under external control, to automatically produce an identical copy of itself.
 - B. Societal complexity and functionality is not limited by decision system complexity - will projections from inquiry processes overestimate service or product development difficulty?
 - C. Community-type societal engineering may be overshadowed by superficially similar organizations— is there a risk that people will think they're studying community when they're actually studying something else?
 - D. Community is opposed by special interests is study of it likely to be stunted by business and political maneuvering?
 - E. Human benefits of an planned and integrated humane societal organization are not widely known - would better knowledge increase research and development?
 - F. The operations of programmable, automated service may be easier at the societal [macro] scale - will projections from conventional engineering under or over-estimate difficulty?
 - G. Economics has been the domain of market economists. Control and coordination has been the domain of politicians. Engineers have a much faster approach to development. How will

this affect progress.

- 8. What procedural inquiry resolutions toward decision control does all this suggest?
 - A. Approach to control
 - 1. Total control: (with 10% deviation) through transparent algorithm of all that relates to development or use of society?
 - 2. No control: let the solution emerge?
 - 3. Local control: sub-systems find their own solutions?
 - 4. Security control: preserve against destructive change?
 - B. Approach to resources
 - 1. Efficiency control: optimize use of scarce resources?
 - 2. Effectiveness control: maximize availability of non-scarce resources?
 - 3. Acquisitions control: collect resources?
 - C. Approach to access
 - 1. Personal access: oneself use?
 - 2. Commons access: time scheduled common use?
 - 3. System access: operations use?
- 9. What applicable sensing, deciding, and manufacturing tools exist?
 - A. What modalities exist or can be developed?
 - B. What open source technologies exist or can be developed?
 - C. What combination of sensing, deciding, and manufacturing can be integrated?
 - D. What communications technologies exist or can be developed?
 - E. What design collaboration technologies exist or can be developed?
 - F. What coordination technologies exist or can be developed?
 - G. What fabrication technologies exist or can be developed?
 - H. Which of these technologies is compatible with automation and/or high throughput?
 - I. What are compatible combinations of societal technologies?
 - J. What handling procedures and technologies exist for moving information or matter between different societies and/or locations efficiently?
- 10. How rapidly could systems be designed and services become operative?
 - A. To what extent can components be re-used between services (or products)?
 - B. To what extent can low-level design be automated?
 - C. How directly applicable are current engineering methods?
 - D. What new engineering methods need to be

invented to use this technology?

- E. How quickly can prototypes be built?
- F. How rapidly could the system match the current market-State access of a middle-to-upper income family?
- G. How can proliferation and access of community services and products be expanded?
- How could an effective development program (Read: construction of the first "discoveryoriented", "resource-accountability", experimentalaccountability" city system) be structured?
 - A. How can coordinators, scientists, and engineers be engaged in the project?
 - B. How can mentorship be engaged in the project?
 - C. How could the project be funded?
 - D. How could bureaucratic friction be minimized?
 - E. How could passion and flow be maximized?
 - F. How should the overall project be structured?
 - G. Under what psychological environment (culture) could an effective program take place?
 - H. Under what sharing environment (legal) could an effective program take place?
 - I. How can development time be minimized?
 - J. What cost and time overruns should be expected?
 - K. How can everyone collaborate?
- 12. What will be required to develop a global habitat access service and its products?
 - A. How much computer time, human creativity, and power would it take to design, then simulate, and verify the operation of a community-type society?
 - B. What will be involved in developing an information support system that can carry out the required processing and decisioning to build the first iteration of the societal system?
 - C. How reliably can the operation of a communitytype society and its parts be simulated? What would the cost and development time of a CAD/simulation system capable of acquiring understanding from socio-technical dynamics simulation of such parts?
 - D. How many parts and surfaces would be needed to constitute a complete set of lowlevel structural and functional components? How much human effort would be required to develop them?
 - E. What would be the cost of developing a design for the first societal city and accompanying societal information system.
 - F. How many of these steps could be accomplished concurrently in a rapid work program? All of these steps could be started concurrently, with successive refinement.

- G. How precisely can costs and schedules be estimated?
- H. By what methodical approach will development, occur, of the first self-contained city manufacturing system (which has the requirement to be able to produce duplicates at an exponential rate), and does its description and explanation integrate/complete all spatial and temporal elements?
- I. To what extent is there a (time / resource) schedule consideration, conflict, and priority?
- J. How reliably is the schedule adhered to; the core metric of 'team' operation (indicated as "showing up", occupying, or otherwise acting with a purpose to complete some preplanned task in some para-procedural-metric way?
- 13. What beneficial or desirable effects could this have?
 - A. How much could the societal system reduce in suffering, illness, and disability?
 - B. To what extent could the societal system alleviate underdevelopment?
 - C. Could this help with food and water shortages?
 - D. Could this help with climactic changes?
 - E. How much and in what ways could it alleviate ecological-environmental problems?
 - F. How much and in what ways could it alleviate socio-structural problems.
 - G. Which natural disasters could it prevent or alleviate?
 - H. How much could these benefits reduce social unrest?
 - I. How much financial, commercial, governmental, and human incentive is suggested by these questions?
 - J. What new services, products, or value conditions will the system make accessible?
- 14. What technical restrictions may make society safer?
 - A. Because unleashed access to technology is so dangerous, the best solution appears to be careful decisioning on technology, including some mandatory restrictions to access and materialization. Fortunately, the same features that make technology dangerous also allow the implementation of several kinds of technological restriction that may form useful components of an overall coordination-automation program. Products that might be adapted for secret production of certain materials and technologies pose a serious threat to humanity and the biosphere. Other products pose other kinds of threats, and additional restriction will probably be desirable. Still, many products, once

approved, can be built freely—and for some classes of products, approval can be a rapid and automated process.

- 15. What raises serious questions about societal interfacing?
 - A. How is what is raised as serious, as an 'issue', prioritized (i.e., how are serious 'issues' prioritized)?
 - B. What other societal organizations and options should be studied?
 - C. What other societies may be suitable for automatically precise re-programmable assembly?
 - D. What are the consequences of experiencing a societal system that recognizes consciousness as a fundamental component of the exploratory system?
 - What are the consequences of a societal system that is recognizable as collaborative and explorative; thus, has probably uncertain itself through time, though is certainly interconnected in the now [space], and thus by consequence, may be planned in its now [integration] into the conceptualspatial (integrated physical-embodied, consciousness-material) environment?
 - E. What effect will the system have on military and government?
 - 1. What effect will this have on governmental rights and liberties?
 - 2. What effect will new information access (and consequently, surveillance) capabilities have on privacy and social engineering?
 - 3. What effects will new information access (and consequently, surveillance)capabilities have on governments and other coercive power wielders?
 - 4. To what extent will new capabilities increase demand for community?
 - 5. To what extent can conceptual and spatial breakthroughs alleviate poverty and misery?
 - F. What effect will this have on migration?
 - 1. What effect will free information and access opportunities have on the movement and relocation of people?
 - 2. What effect will the movement and relocation of people have on the operation of a community-type society?
 - G. What effect will the system have on market-State?
 - 1. What effect will the system have on macroand micro-economics, on production and distribution?
 - 2. What effect will this have on geopolitics?

- 3. What would be the effects on international relations of reduced international trade?
- 4. What would be the effects of global community-based societal access on lifestyle decisions and personal access? How quickly could those effects happen?
- 5. What barriers to cooperation could make these problems more difficult to solve?
- 16. What are the disaster/disruption scenarios?
 - A. War; social unrest; market unrest; dangerous technologies; socio-moral corruption? Bio-solar spheric changes; ecological collapses?
 - B. Social; technical; biospherical?

10 Project proposal 'definition of solution'

A.k.a., The solutions view.

A system could be considered the solution to a problem. Problems are solved, and the answers to problems are solutions, which are systems. Systems are holistic by nature, and solutions are the holistic result of integrating everything available into a synthesized and directional) information set. Simplistically, a solution is to provide a proposal, an answer, for achieving desired goals. In an engineering solution, the desired goals sub-compose into requirements, which involve sub-problems (often logical and mathematical), and inevitably, materialized solutions that are operative in society that resolve exact[ly defined and projected] problems, which may be real or imagined. A solution is a probable or final synthesis. For example, the simulation of the habitat service system is a synthesis, and the construction of a societal system model is a synthesis.

"A problem well stated is a problem half-solved." - Charles Kettering

A solution is a resolution to some issue or event. A solution arises from a need [on the part of consciousness]. A source of need (i.e., consciousness) has the possibility for taking an active role in completing its need by determining the problem(s) the need presents, resolving solutions, and then executing the one solution that most optimally completes the need. In other words, solutions resolve the needs of conscious entities. Sometimes, those solutions are called 'answers' (in math and logic), in engineering they are most often called 'models', 'specifications', and 'operations', and in project coordination they are most often called 'proposals' and 'plans'.

A problem is the cause of a solution. A solution is that which can be logically evaluated to solve (-pre) or have solved (-post) a problem. Society is an organization with a requirement for a common problem solving methodology in order to resolve a commonly optimal societal solution. Socially organized populations have a necessity for problem-solving (or otherwise, course correcting), which results in the execution upon information to change the state of materialization for the benefit of the whole social population.

To resolve a problem set into a solution set, a problem is broken into discrete parts. Those discrete parts are subproblems. Sub-problems may be solvable concurrently with the help of parallel processing. Each sub-problem may be further broken down into a series of instructions, so that the an information processor can access and resolve each one. In a parallel processing situation, instructions from each part execute simultaneously on different processing units. In quantum ("astral") processing, instructions execute more immediately in time. **APHORISM:** Socio-economic problem-solving requires societal [re-]design.

In the context of development,

- 1. A proposal or plan is a form of a solution.
- 2. A solution is a model (or specification) that can be executed, or model (or specification) that is being executed. There may be a set of solution models from which to select one to execute. The next solution is another model (i.e., post execution of the initial solution, the next solution is another model).
- 3. An operational system is the ongoing execution of a solution.

The concept of a 'solution' could be sub-classified in the following ways (i.e., a solution is):

- A documented (specific) way of satisfying (fulfilling) a need (requirement) in a context (environment).
 - Documented in memory.
- A solution is sub-composed of [conceptual and/ or physical] descriptions defining (and possibly, explaining) the solution.
 - A commonly useful description (and explanation) of some thing.
- That which is represented as the predicted state to resolve an issue, or other problem.
 - A prediction, proposal or plan for doing.
- An appropriate, correct, or just (as in, justice) selected answer (i.e., response) to a problem or decision space (i.e., "gap"). Note that a decision space may have more than one possible solution (wherein, all the solutions together, or just the selected solution, describe a solution space).
 - A correct selection.
- A solutions is a set of changes to the current state of an organization that are taken as actions to enable the organization to meet or better meet a requirement, solve a problem, or take advantage of an opportunity, all of which mean the same thing.
 A set of changes.

CLARIFICATION: A 'change solution' is a specification for the controlled transformation of an organization into that solution. In this sense, solutions are change requests (or the changes themselves) to an environment.

A 'design' (specification or model) is a usable representation of a solution. A design is a reference point for cooperation (common action). A specification is anything that describes (and/or explains) what an actual instance [of a solution] looks like. In this sense, a solution is (or becomes) an action that is described (and/or explained); it is something that represents a commonly understandable action with the potential to resolve a problem or decision.

NOTE: To get an accurate understanding of a problem or solution often requires several views with some type of formal description of the relationship between the views.

More completely, any given solution is likely to hold at least one of the following characteristics, such that a solution is also:

- A recognition of the problem, which opens a space for its resolution through a 'solution'. See the issue as a problem, inquire sufficiently to design the solution, now apply it, and evaluate. Recognition of cause and effect (cause and effect thinking) allows for the identification of gaps in inputs, processes, and outputs (i.e., problems).
- A holistic, integrative approach to the persistence of an intentionally existent system, such as one that fulfills human life requirements, while satisfying a set of cooperative societal constraints.
- Unifying systems of understanding and action; a unified approach to planning (deciding and coordinating) the total effort required to transform a set of imperatives into a solution. In other words, a unified approach is required to optimally plan, coordinate, and execute the total technical and informational effort required to transform a set of imperatives into a realized (materialized) solution.
- An internal coherence (informational and material) grounded in reality or the real world versus a set of logic and internal coherence not grounded in 'life' and a recognition of its cycles.

More simply,

• A solution is a [designed] response to a problem event. Where an event + response equate to an opportunity [for greater or lesser fulfillment in the world].

E + R = O

• The event exists in an environment. The response requires motion in the environment.

A solution is a desired result, an outcome:

- 1. What is the outcome?
 - What are the <u>resources</u>?
- 2. What is the mechanism to generate the outcome?
 - What is the <u>resourcefulness</u>?

The three common solution abstraction levels are:

1. Conceptual level - elaborated without any

organizational or technical consideration. It is the steadiest (most permanent level, which leads to understanding of the purpose and activities of a [societal] system.

- 2. *Structure level* integrates an organizational order; assignment of resources to activities through a parallel inquiry process.
- 3. *Realization level* integrates technical requirements and social constraints in the selection and execution of a design specification.

Socially coordinated solutions must coordinate between several information sets, including:

- Performance focused objective improvement
- **Design structured** activities controlled through planning.
- **Data based** informed with useful information and knowledge.
- Reasoned processed logically (logic are a universal standard for reasoning). All rational actions require the prior foundation of logical absolutes.
- User-centered links a user to a problem and its possible solution(s).

NOTE: Critical to the success of any problemsolution coordination is involvement of users (of the solution, and other stakeholders) throughout the project engineering process.

This is a project to develop an operate a societal-level solution system. In part, a mutually beneficial societal-level solution involves, at least:

- The commonly sensible experience of designing, building, operating, and cycling information and materiality in order to solve for problems (gaps) in human fulfillment and ecological stability.
- The individual human users of the societal service system, who has needs, and may or may not have an issue with the active service solution.
- The individual human contributors who completing need(s) by resolving (through analysis and synthesis) a societal [systems] problem, providing a life-oriented population the likely possibility (opportunity) to flourish together (Read: to have all their real world needs met together).
- An economic efficiency approach that ensures the optimal usage of resources.
- A set of technologies that ensure the ensure the optimal usage of human time and energy.

For the continuation and optimization of "our" human lives, individual issues with need fulfillment are understood to have societal-level consequence, and therefore, societal-level relevance. "We" can regularly solve [all societal] problems by considering the whole of individuals among a [societal] population. Life (and living a desirable life direction) has requirements, for which solutions can be held to account for how greatly or poorly they align with a traceable life direction.

The societal solution proposed by this project could be thought of as a convergent design solution that is highly likely to mutually benefit all of humanity. A helpful analogy is how manufacturers of different phones or automobiles often end-up with similar looking products. Not because they have the same designer, but because their design fulfills a common need given the information and resources available. This is a project to design and implement an up-to-date society (Read: to create a completely up-to-date society given what is known and available).

INSIGHT: Society may be viewed as a system of solvable problems. In other words, society is a system of problems; or, society is a system of solutions. The problems that compose society may be re-solved together through cooperation and sharing. The problems that compose society may be resolved through other value orientations (e.g., competition and ownership), but those orientations are likely to produce undesirable psycho-social and ecological results. The solutions that compose [the complex of] society may be designed to orient individuals in any number of potential directions. The solutions that compose society ought to orient humanity toward flourishing and individual well-being.

10.1 What is a solution cycle?

A.k.a., What is a simplified solution life-cycle to any problem?

A solution [life-] cycle is the spiral flow of information between problems (issues) that need solutions (answers), and the complete resolution of those issues.

There are a variety of ways of visualizing the [need] solution cycle, including:

- Need solution > plan solution > design solution > build solution > run solution > experience solution > need solution.
- Need > concept development > product design > manufacturing > distribution (with feedback to product design) > support maintenance (with incident response) > upgrades > retirement & disposal (with regeneration cycles) > need.
- Need > solution becoming current implementation > feedback on current implementation > need.

The prototypical solution resolution process is:

1. Observe an issue

- 2. Analyze the problem
- 3. Design possible 'solutions'
- 4. Select a 'solution'
- 5. Materialize the 'solution'
- 6. Use the 'solution'
- 7. Repeat the cycle

A simplified solution design life-cylce is:

- 1. **Plan**
- 2. Do (1st Act)
- 3. Check
- 4. Act (to correct)

In technical systems, methods are used (applied) to solve problems. The most common method for resolving solutions that require action can described as the problem-action model, involving the stages of:

- 1. **Planning** Actions are planned [in the form of documented 'procedures'].
- 2. **Designing** Problems are solved [through design 'specifications]'.
- 3. **Building** Designs are built into actual [datum] constructions [through humans, tools, techniques, and other inputs].
- 4. **Testing** Constructions are evaluated [through feedback].

NOTE: In community, when feedback is integrated, the societal system is re-oriented to remain (or, to more greatly) align with the intentional and explicit direction for the society. Therein, InterSystem Teams develop the new solution and coordinated the restructuring of the environment.

10.1.1 Solution [cycle] integrity

Within a solution cycle, information must maintain integrity if it is to be useful when the cycle repeats (i.e., usefulness requires memory). Information integrity has [at least] two complementary components:

- **Validity** that which "guarantees" (with some degree of certainty) that all false information is excluded from the information system.
- **Completeness** that which "guarantees" (with some degree of certainty) that all true information is included in the information system.

In the operations domain, system integrity means that the system must work [as expected], and must be tested to ensure that it keeps working [as expected]. For example, in an operating societal information system, optimally, the system must have some method to exclude false information [to ensure validity] and include true information [to ensure completeness]. **INSIGHT:** Everything meaningful is figureout-able through a cooperative structure. The harmony of life together can be optimized through a figured out plan, a solution system.

10.2 What is a 'real-world' solution?

There are two sub-characterizations of the term, 'real- world' (real world), which related to the common experience of physical matter reality by all individuals, and includes matter and information that is shared (or, shareable) by all individuals. Perception originates from each individual, and each individual exists in a commonly perceptible environment capable of individual expression.

Within the context of a real-world composed of consciousness, information, and matter, there are three sub-conceptions of that which is real:

- 1. **Objectively real:** existing without influence from personal feelings or opinions. That which is real to everyone regardless of mental constructions.
- 2. **Subjectively real:** existing based on or influenced by personal conscious memory expressed by thoughts, feelings, tastes, and opinions. That which is real to an individual because it is their mental construction.

There is a common objective reality within which exists this physical planetary, earthly, existence for human embodied consciousness. To remain in the body, certain material elements and social conditions must [objectively] cycle through and near an individual's body. Together, humanity can design this cycle cooperatively, and form a network of integrated city systems that follow the same unified [real world] societal model. A real world solution is a solution to overcome the subjective barriers of differently biased mental models within the next societal solution.

Humans exist within an ecological system, wherein human needs and societal solutions can't exist independent of that ecology (all services are subsystems of that larger ecology). Any real-world solution must account for the flow of resources and information throughout the whole ecological system. In a sense, needs and solutions are subjective, because humans are having a conscious subjective (individual) experience formed from their composition of life experiences. Therein, a societal-level value is a determination of the relative importance of something to everyone based on an objective occurrence of physical events and [information] fields in the real world.

What someone thinks problems are will determine how they are solved. What someone think problems are will drive what responses are viewed as solutions. Solutions only arise from within the framework of acceptable thought. If real solutions are a violation of jurisdictional law, then there are no solutions. **QUESTION:** One might ask, what is the system problem, the root problem (or unclarified project)?

10.2.1 A real-world solution accounts for sustainability

Sustainability is a condition where behavior is able to continue into the future without degenerative consequences. It is possible for the behaviors of a social population of individuals to be sustainable or unsustainable toward one another, and for a social population to have sustainable and unsustainable behaviors in affect to its ecological resource environment. The individual behaviors of people can lead to social network instability/stability and resource network instability/stability.

Some societal configurations are not only unsustainable ecologically, they are also unsustainable socially (culturally), because [in part] they reinforce a competitive over cooperative mindset (Read: a model of artificial limitation becomes reinforced).

10.2.2 A real-world solution accounts for networks

CLARIFICATION: In an information system, an 'object' is a self-contained package of information describing an 'entity'. A collection of similar objects is commonly called a 'class'.

A network consists of two or more systems that are linked in order to share resources. This project proposes a societal system composed on an information and material network of habitat service systems.

In a networked information system there are two axiomatic lines of visualization:

- 1. A line between the two interacting objects (point-topoint).
 - As in chemistry, or the cells as a network, the entities (e.g., the molecules) are capable of interacting, and would be considered the nodes in an information network. When they participate in an reaction together, in the model, they have a line between them. Any ecological system (e.g., an atmosphere) can be represented in this way; its just chemistry. It has the same kind of mathematical representation.
- 2. A line connecting all objects at once (interconnected points as a coordinate system).
 - As in principles in physics and operations in mathematics, the entities (e.g., atoms) are all connected at one and the same time through a dimension. For example, when everything about human fulfillment is understood as connected together as one service platform, then all habitat

service systems can cycle-iterate together.

Take, for example, a satellite view of the communitycity network (global HSS). Each of the cities seen in a satellite view of the city network is a highly integrated city. Each city represents a locally integrated habitat service system for human need fulfillment. When viewing the cities from an satellite view the cities are connected at the physical level via a geometrically efficient network of city nodes, and they are connected at the informationlevel via a unified information system [network]. Notice the two types of "lines". In the physical network, there are real physical lines (transportation lines, conduits for the movement of physical materials) between the cities (nodes) in the network. However, the information system for the whole societal system, which is physically composed into a network of physical city systems, is a unified information system (the second type of line that connects all things at once). The statement just prior uses the concept "composed into", because any society may be seen, first and foremost, as an information system. When that information system is unified, it is a sign that the societal population is cooperative, and when it is disunified, then it is a sign that the societal population is competitive.

NOTE: It is important to note here that each of the cities in the actualized community-city network will likely not look the same from a satellite view; the current images you see of the city network by the Project are rendered depictions of what the network could look like, and for many of the graphics, the same city image was used for each node.

10.2.3 A real-world solution accounts for its unified composition

A.k.a., Societal unification; unified societal information system; the concept of 'unification' as applied to a society.

At a simplistic level, to "be unified" means, "works together as a single unit". Thus, the real world solution that accounts for unification of the whole information system within which the spatial system fundamentally exists. In community, the whole societal system, foremost the [transparency of] the information system works together as one unit to facilitate human fulfillment, wellbeing, and ecological sustainability. In an action sense, to unify is to act commonly (to have common action, to cooperate).

In terms of systems, unified has the following submeanings, which are all relevant and required to fully understand the complexity of the concept in its application to a societal system. A unified system is, to start, a system that is observable and explainable as a single, coherent unit. A system where all information in the system can be followed and traced and understood, throughout the system. In computing, the word unified is

used to describe two or more processes (methods, etc.) that have been consolidated into one (or a streamlined, most efficient) process. A unified programmable system is programmed together as one unit; there is not patchwork, which is what a lot of people are trying to do with the market-State. If there is a systemic issue, the programmer(s) of the unified system look at the system and resolve(s) a new iteration; they don't place patches over the issues and then just carry on as if there was no error or issue to begin with. The programmers look at root causes, not just symptoms. A unified system is a system where all information within the system can be meaningfully accounted for. It is a system that isn't contradictory, internally (i.e., is not irrational, which early 21st century society is...is irrational, both in language and practice). It is a system where the parts relate to one another in a complementary way to fulfill a common, unifying purpose (for all individuals participating in the system). It is a system with a unifying purpose; and for a humane societal system, that should be to facilitate human well-being, human fulfillment (and ecological sustainability), and should not be anything else (like profit or power over others). It is a system with subparts that have been brought together to form a single coherent model/system that is reworked as required, and not, a system with many competing parts or incoherent models, or worse, a patchwork of models. It is a united and synthesized system that works for everyone. The market-State, as a societal system, is not a unified system.

The societal system proposed by the documentation is unified, and is logically sub-divided by the four core (axiomatic) systems that makeup every type of society. If these aren't in-mind then one won't even have an idea of what a society actually is, or what I am even talking about at a fundamental level. Remember I am talking about a societal model that could be named community, and not some community model. A unified societal system must appropriately account for these four fundamental systems, and their interrelationship, and may be logically sub-divided and explicated in these terms.

Unified means unified and complete, given what is currently known, and not dis-unified or incomplete, given what is currently known. The current societal system is dis-unified and incomplete given what is known and available now.

INSIGHT: When "you" take the widest frame of reference "you" are more likely to end up with the "correct" worldview for that reference (i.e., a world view that can correct a problematic situation).

Incomplete models raise uncertainty, and uncertainty in our socio-economic survival is unhelpful at least and socio-psychologically destabilizing at worst.

The decision system specification clearly states that even in a community-type society there will still exist uncertainties as decisions that need arrival at with incomplete information and highly limited time. Different

THE PROJECT PLAN OVERVIEW

societies handle such situations differently due to how their structure's process information. Some uncertainties in a market-State society are highly less likely to be as uncertain when community exists at the societal level. In a community-type society, uncertainty is reduced (over market-State conditions) and not eliminated (as a utopian system may claim). Why are conditions today so unpredictable? It is unpredictable for multiple reasons, some of which humans cannot control for, and others of which humans can control for, but are not being controlled for (or less likely to be controlled for) because of market-State conditions around the world.

Under market-State conditions and beliefs, the word 'unified' is ambiguous, and ambiguously applied, in part, because that type of societal system, and it's language, is not unified. That said, unified is actually a fairly common and well understood term in engineering and communications, and can be highly simplified and de-contextualized to mean - understood, designed, and operated as a single entity.

Unified may also be viewed as a convergence of realization and understanding, through to an integration point arrived at via a self-social team that accepts the new article, standard, protocol, modification, etc.

When accounting for the real-world in the construction of a society, there may be 'commodification' as the dichotomy of unification at the economic level. Commodified means to sell access to, or to do something on commanded commission.

10.2.4 A real-world solution accounts for material control

The material system of any society, reflects or is computed (and otherwise decided) on the basis of some combination of the following input elements:

- Data
- Knowledge
- Values
- Location
- Resource

In community, a 'life' is lived in a materially expressed system, where individuals share access through a [common and explicit] rule set. Some of that materiality can be controlled so as to have it more greatly align with some objective(s) on the part of humans, as is the case with the [controlled] habitat city system network within which humans live, primarily. Outside of the habitat city network is the larger natural ecology that humanity controls to a certain [lesser] extent, although a more accurately verb might be 'to caretake'. In other words, humanity caretakes the larger planetary ecology to facilitate its health and regenerative capabilities, while it highly coordinates and controls object constructions of resources ["harnessed" from planetary ecological services] in specific spatial areas of that total planetary material environment. The specific spatial 'areas' in which humanity primarily lives, or more precisely, 'area' (because it is unified), is the global network of integrated city systems. In other words, the global habitat service system is a specific spatial area out of the total planetary spatial ecology where humans highly coordinate and control the flow of resources into access-service systems for human fulfillment.

In materiality, in order to have control, there must be reproducibility of information about materiality; otherwise, there is no ability to align [new] materializations to a common objective. In order to have reproducibility of information among a population, there must be a shared method. Without a shared method, data cannot be compared and actions between individuals cannot be coordinated.

A method is a documented tool, process, set of practices, techniques, procedures or rules, instructions intended to be used repeatedly and consistently to coordinate certain types of work/action. In application, a method prescribes an ordered approach to tasks and activities.

10.2.4.1 The complete dataset component of a material solution

To have a complete [solution] dataset with which to work, it is necessary to determine all possible solutions, and then, synthesize or select the best solution (i.e., select the one optimal, given what is known and available). Most exact solution determination procedures obtain only one optimal solution. However, in some cases, a satisfactory outcome (or best outcome) can be achieved by more than one possible solution; for example, in community, there are customizable cities and personal dwellings (homes).

10.2.4.2 The scheduling component of a material solution

Materiality is experienced in time, where events associated with a common time source are executed together coherently and completely, through 'scheduling'. Scheduling involves constructing a detailed positional model of the operation of the economy (the material system) in order to plan the next iterative state of the integrated societal system, a component of which involves is societal cycle-production planning.

10.2.4.3 What is a thought-responsive environment?

The concept of a 'thought responsive' (a.k.a., thoughtresponsive) type of environment is significant to a complete understanding of any 'real world' solution [to common human problems], because the realworld environment is thought responsive by its "very" [physical/consciousness-interfaceable] nature. A thought responsive environment is an environment that responds to thought expressed by consciousness through its environmental interfacing vehicle (e.g., the human body). In a more thought-responsive environment, thought can materialize more rapidly, because the technical environment is more advanced in technology. For consciousness, there is thought, and then there is execution of action after/upon thought as a conscious pressure upon, and control over, the environment. What a human being thinks [on this dimension] does not have an immediate impact on its surroundings.

In a low technological environment (Read: low thought responsive environment), the vehicle for consciousness must move physical organs (e.g., musculoskeletal system) in order for any thought to be expressed in the environment. For example, if a human mind thinks, "I want a glass of water", the glass of water does not immediately appear out of nothing -- in order to get one litre of water there must be intentional effort expressed physically through the vehicle (Read: the human body) to acquire the water. Similarly, starting a fire with dried twigs and twine is a low-level technological [thought responsive] type of environment. Today, the environment is more thought responsive than in the past. Today, someone can walk into a room and physically touch a panel on the wall to adjust the temperature, or in some cases, the room can be programmed to adjust to a specific temperature by just walking into it. The progression from (a) starting a fire with twigs, to (b) adjusting temperature by a hand rotated thermostat, to (c) pre-programmed smart rooms to (d) extra smart rooms that can accept purely mental commands (i.e., "you" walk into a room and change the temperature with a mental thought, because the room can read human thought), represents an easily observed increase in the thought responsiveness of the environment, due entirely to scientific and technological development, in conjunction with the ability of the human to control and coordinate its own thought [in order to use more technically complex tools, more precisely].

It is essential to realize that as humanity develops its technological abilities, humanity is likely to develop its environment(s), to even more rapidly, respond to all manner of human intention (Read: human thought).

QUESTIONS: How do we live together in a highly thought responsive environment? Would a sociological orientation (a social direction) of competition, and power over others, really work out in the long run?

10.2.4.4 What can humanity do in a more thought responsive environment?

Through embodiment in a bounded system ("vehicle") of matter (e.g., the human body), conscious expresses itself and modifies its environment to more greatly respond to intentions on the part of the consciousness itself. The real-world has material affect on individual vehicles of consciousness, and consciousness experiencing individuality has material affect on a real, commonly experienced world. A material (spatial) environment is the environment through which consciousness is currently experiencing a vehicle for interface (e.g., a human body). If all is information, as this project proposes, then the material (Read: spatial) environment may be referred to as spatial information.

APHORISM: When experienced together, a more thought responsive environment means we must be more carefully coordinated in our thoughts.

Values are that which most closely allow for consciousness to account for intentional coordination and alignment in a commonly experienced thought responsive environment. In other words, values may be used to control ("gate") decisioning about how to modify the material environment together. Together, humanity can use values to resolve decisions into state changes to the materially thought responsive world to generate ever greater states of conscious flow, human fulfillment, and ecological regeneration. The thought responsive directions of flow, fulfillment and regeneration fit within the societal subsystem specifications as:

- Flow = Lifestyle specification;
- Fulfillment = Social specification;
- Regeneration = Material specification;
- Whereas, the logic that integrates values, issues, and knowledge into decided solutions that are executed in the material domain = Decision specification.

Above, "=" means "within".

In a more thought responsive environment human can, together, express more of its highest potential lifefulfilling capabilities.

10.2.4.5 What methods are useful for designing thought-responsive material environments?

Useful methods for designing thought-responsive material environments are (the methods of linguistic/ meaning visualization):

- MODELING: Models are formed via methods, and the selection of a method(s) is described by a set of logic. The mind builds a model out of perceptions.
- SIMULATING: Simulation involves constructing a detailed model of the operation of the economy (materialized system) in order to predict how much of each intermediate input will be required to produce the final combination of outputs.

With advances in the technical environment come technologies of potential benefit to all of humanity and technologies for the potential elimination of all of humanity. Any advance in the physical understanding of the nature of the universe may be applied for any purpose. The ever progressing tools of Al (as decision support or social controller), nanotechnology, human computation interfaces, and other powerful technologies reveal that humanity's technological tools are moving the population into an ever increasing thought responsive environment. In order to do so safely, humanity must update its societal direction, models, and modeling approach. Humanity must begin to plan its coordinated life together on a finite planet. Many of the tools present in a highly thought responsive can do major harm rapidly if mis-configured or mishandled. The safest way of entering such an environment is through cooperation, for from competition will inevitably come the re-configuration of otherwise beneficial technologies toward weaponry type-technologies to be used against the competition. It is one thing for "immature" people to run around with sticks and stone, or even knives, or even guns, but it is another thing entirely when some people have the capacity for extremely destructive power at their fingertips, with the same competition/violenceoriented state of mind.

NOTE: *In the physical, a thought has to be translated into physical action to influence the environment.*

It is significant to recognize that there are different levels of thought responsiveness to an physical environmental existence. Competition among humans with nuclear, AI, and other weapons is not equivalent (i.e., same level of environmental thought responsiveness) to that level where competition exists among organisms living in a natural ecology with natural ecological predators and prey. In other words, the interfaceable environment where wild species exist in living predation and scarcity, and thus, competition, is not equivalent to a socio-technically controlled habitat environment where there is sufficient knowledge and materials to build nuclear weapons, AI, and other such technologies.

In community, the problems of need scarcity are solved, not through material abundance (although, there is some of that), but mostly through computational coordination. So much of what is thought of as scarcity in the market is that in order to have a drill, someone must go and buy or rent a minimum viable drill from a hardware store. And so now there is a double problem, you have sunk your capital into a drill, absorbed some of your available space to house the drill, mental space to remember where it is, and under conditions of computational coordination, the drill migrates to your hand the minute you need it, and it's the greatest drill available, and it gathering telemetry on its use, and at its duty cycle it "gracefully" decomposes back into the material stream and is replaced by a drill that embodies all of the new knowledge that can be derived from the telemetry of the last drill.

The reason humans have a pre-frontal cortex is to understand and construct complex linguistic thought [creations]. The human body, as a vehicle of consciousness, has a higher-level of constructive/ destructive potential than that of the other organismal vehicles in "the wild" (living openly on the planet). The rest of the ecological kingdom of organisms can't create technical devices that can destroy themselves and the planet. The competitive ethic (Read: the declaration/ rewarding of winners and looser) is a contrived antagonism that is continually reinforced through the encoding of competitive socio-decisioning structures and social [media] programs. Competitive thinking creates hierarchy through superiority/inferiority thinking from which human violence comes not only predictably, but inevitably [from that though structure].

10.3 What is a 'documented' solution?

A.k.a., The documentation component of a solution.

A document (file) is an accessible information record. A solution is an accessibly documented information record traceable to a problem. This Project Plan document is a proposal for an open, transparently up-to-date reconfigurable society. In terms of coordination, this document defines global cooperation for those entities in coordination.

MAXIM: Show me the documentation, or there is no solution.

10.3.1 Formal documentation

A.k.a., A formalization, a record, a log, official information, standardized information, selected information, an understandable communication model.

In the context of a formal document, 'formal' is an attribute of information identifying that it is stored in memory (has a documented state), such that the information can be recalled and acted upon at a later time. A formally documented solution that has influenced results in the real world, can have its results assessed (evaluated) at a later date, or even, in-between documented actions (or changes) to the environment.

NOTE: A formalized structure gives people a method and location from which to work together.

The concept 'formal' applies to any of the following expressions as a testable information records:

- Mathematical (equated) can be described using shape.
 - *The representation of* real objects.
- **Procedural (techniqued)** can be described using a finite number of steps.
 - The representation of procedural objects.
- **Documented (digitized)** can be described using observation, modeling, shared storage, and information processing applications.

• *Representation as a digital file.*

• Simulated (visualized) - can be described using

shared visual computation of shape in motion.

• *Representation as* a conscious experience.

CLARIFICATION: Whereas, 'math' is description via [numeric] pattern; 'science' is explanation (conscious understanding). A 'mechanism' visualizes phenomenological and engineered observations of the motion of physical shapes. To 'understand' a mechanism means that its functioning can be explained and visualized. If a mechanism cannot be visualized, then it has not been explained. A mechanism may be described informally with natural language, or formally with math.

A formally documented visualization can be expressed in any of the following, and any combination thereof:

- Written (text) Linguistic directions with an accompanying set of understandings to ensure comprehension.
- **Diagrams (graphic)** A diagram is commonly understood as a means to convey information through symbol and figure, and as such, it is used to synthetically represent concept and form.
 - **Drawings** diagrams with spatial information.
- Simulations and Computer Aided Designs (computation) - computing spatially dynamic information over processing cycle-time.

There are three modeling language types:

- 1. Informal (e.g., human natural language)
- 2. **Semi-formal** (e.g., graphical languages such as flow charts)
- 3. Formal (e.g., mathematics)

10.3.2 Organizational documentation coherency

INSIGHT: *Documentation is recursive - it involves documenting the documentation.*

The following questions facilitate the resolution of a determination of the completeness and coherency of a documentation system:

- 1. Are all documents, standards, models and frameworks formally categorized?
- 2. Are all documents, standards, models and frameworks formally planned, developed, and maintained?
- 3. Are the users aware of their existence and have access to them?
- 4. Do all part of the organization follow the same standards, models and frameworks?
- 5. Do all parts of the organization operate in a coordinated manner?
- 6. Are all the parts of the organization linked together?

10.4 What is a 'technically standardized' solution?

A.k.a., What is a 'technical standard'?

In the context of formalization (documentation), there the presence of standards and guides. Standards and guides are essential to the project approach in order to maintain appropriated levels of performance and safety. It facilitates communication between all individuals involved, by providing a common working language. The systems, services and products produced through their use are safe, reliable and of good quality if they have been developed by an organization following the standard.

A global reference standard [solution] is an optimally solved for outcome (or, state-result), given what is known. Standards are developed through the iterative process of building an increasingly lower entropic [information] system. A standard is an optimal functionbased and/or condition-based solution information set with use for creation at some social scale. Standards are developed, adapted, updated, modified, changed, and otherwise, replaced over time, as more information becomes known.

All useful standards describe the importance of understanding the scope of the work at hand, how to plan for critical activities, how to manage efforts while reducing risk, and how to successfully resolve the problem space.

 A standard is a document that provides requirements, specifications or guidelines to ensure that products, processes and services fit their purpose (ISO/IEC 2008).

There are many sub-types of standards:

- Design standards the societal design specifications are design standards.
- Requirements standards
- Operations standards
- Etc.

A technical [reference] standard is a formal information set (document) that establishes uniform technical (or engineering) criteria, methods, processes, and practices. Standards are developed and applied to make uniform (or standard) some [existent or possibly existent] object or relationship.

CLARIFICATION: When a technical standard is applied to operations (to be executed at some time), then it is generally called a 'protocol' or 'procedure'.

By implementing standards (including standardized procedures) for development and operations, a life-cycle process allows for the optimization of efficiency in the

following ways:

- Allows for an assessment of alignment.
- Minimizes interruptions
- Increases visibility
- Reduces risk of loss
- Optimizes lifespan
- Mitigates security and performance issues

The order of conceptual formalization for the composition of a reference standard is:

Concepts > principles > processes > standards

In early 21st century society, the term 'standard' is applied to more than just the technical context. Thus, technical standards exist in contrast to:

- **De facto standards** a custom or convention or technical standard that has achieved a dominant position by public acceptance or market forces.
- **Policies** the decisions of subjective authority, as opposed to algorithmic decisioning.
- **Conventions (customs)** locally evolved signs and semantics (as in, semiotics), as opposed to globally unified signs.
- **Business standards** subjective decisioning by market-structured "board" authority, versus objective human-oriented decisioning.
- **Political standards** subjective decisioning by government-structured "committee" or "chair" authority, versus objective ecologically-oriented decisioning. Note here that the term, "chair" literally comes from royal, monarchic chair.

NOTE: In common parlance, SAS stands for "standards aligned systems" (as in, systems that are developed and/or operate in alignment with some standard).

10.4.1 Global reference standards

A.k.a., Global standards.

Standards types with high-level relevance to global human society are:

- Human standards [resolution inquiry process]
- Societal standards [bodies]
- Project standards [bodies]
- Technology standards [bodies]

Because society is, at least, a unified [information] system, community is not a multi-standard initiative (i.e., note a many parallel standard environment). There is one unified standard, accounting for everything, within which flexibility exists. The societal information system structured flow of information could be considered the

unified standard flow of information; and, in a feedbackintegration system, that flow of information evolves (lowers the entropy of) that information system (given, an alignment motive and correction tools). There are of course, many sub-standards, or standard packages and sub-packages of this type of information.

10.4.2 Currently applicable global standards organizations

A.k.a., Standards bodies.

In early 21st century society, the significant, globally recognized standards organizations are (versus community, where there is one unified and optimized standard):

- Electronic Industries Alliance (EIA)
 - Multiple standards
- (International Organization for Standardization (IEEE)
 - Multiple standards
- Council on System Engineering (INCOSE)
 - Multiple standards
- Institute of Electrical and Electronics Engineers (IEEE)
 - Multiple standards
- International Electrotechnical Commission (IEC)
 - Multiple standards
- International Standards Organization (ISO)
 Multiple standards
- Project Management Institute (PMI)
 - One standard
- National Institute for Standards and Technology (NIST)
 - Multiple standards
- American National Standards Institute (ANSI)
 - Multiple standards

10.5 What is a solution 'specification'?

A.k.a., What is the 'specification' of a solution?

A specification is produced in advance of the systems construction, implementation, and/or operation. It is good practice to separating the [design] specification from the specification for physical implementation and operation of the product system. As a coder (designer and developer), a specification is required to know when a process (task or project) is completely done. Without a specification, there is no ability to recognize how many sub-deliverables (subtasks and milestones) there are to get to this "thing".

Design specifications are an attempt to imagine the thing "we" are trying to build. "We" are trying to build an image of the thing "we" are representing. "We" build the model, and then, "we" build the thing in[to] materiality. Which feeds-back onto our own experience of existence (through a set of pre-defining rules). Wherein, there are more than could be seen as here should be all around.

CLARIFICATION: *Design the system by developing the specification. Then develop the system by constructing the specification.*

In systems assembly modeling,

- A specification is anything that describes what an actual instance [of the system] looks like.
- A description is a kind of specification that contains the actual description of the instance in place.
- An explanation is a kind of specification that contains the actual reasoning of the instance in place.
- A declaration is a place-holder for an instance.
- A definition is the assignation of an actual instance to a declared place-holder. A definition, thus associates a specification to a declaration.
- A reference is a kind of "specification" whose value is provided by a "declaration" it references.

In engineering, a [construction] specification is the fully conceived vision; the fully visualized input for execution. In other words, a specification is a specific visualization of information useful to state change execution in the material, real-world environment. The system or product, as specified in the specification, is constructed from this process, formed from its set of [specified] requirements. Specifications exist in many information medium formats, including the most common of: *linguistic* text, *graphic* drawings and computronic *simulations*. Note here that the suffix "-tronic" means a device or tool; hence, computronic means computational tool).

NOTE: A constructor (the entity building/ constructing something) gets all the information that is necessary to build the structure from the specification (a.k.a., the blueprint).

Visualized requirements will contain a level of accuracy and complexity. Below is the reasoning for requirement level selection:

- <u>As a means of facilitating discussion</u> about an existing or proposed system.
 - Incomplete and incorrect models are OK as their role is to support discussion.
- As a way of documenting an existing system.
 - Models should be accurate representations of the system, but need not be complete.
- <u>As a detailed system description</u> that can be used to generate a system implementation.
 - Models have to be both correct and complete.

A specification is the discussion of a specific point or issue; it's hard in this instance to avoid the circular reference. A specifications consist of the body of

information that is informed by and guides project designers, developers, engineers, and operators through the work of creating and operating the system. A specification document describes how something is supposed to be done (i.e., it describes a process of creation), including a rationale (i.e., it describes the reason for creation, or for a specific creation). This document may be very detailed, defining the minutia of the implementation; for example, a specifications document may list out all of the possible error states for a certain form, along with all of the error messages that should be displayed to the user. The specifications may describe the steps of any functional interaction, and the order in which they should be followed by the user. A specification meets a set of requirements by expressing information via the conceptual, logical, and visual domains of expression. Hence, specifications may take multiple forms. Specifications can be composed of a straightforward listing of functional attributes, they can be diagrams or schematics of functional relationships, flow logic, or they can occupy some middle ground. Specifications can also be in the form of prototypes, mockups, and models.

Specifications may take many forms. They can be a straightforward listing of functional attributes, they can be diagrams or schematics of functional relationships or flow logic, and they can form of language and math compositions, prototypes, mockups, models, simulations, and some combination thereof. Every rule and functional relationship provides a test point. Adherence to specification is not a perfect measure, however.

A specification necessitates the following synchronous, hierarchically ordered information processing components:

- 1. A "specification" is anything that describes what an actual instance of the [designed] system looks like.
- 2. A "description" is a kind of "specification" that contains the actual description of the instance in place.
- 3. A "declaration" is a placeholder for an instance.
- 4. A "definition" is the assignation of an actual instance to a declared placeholder. A "definition" thus associates a "specification" to a "declaration".

Engineering documents describe the product[ively materialized system] in different ways from different perspectives, for different purposes, and at different levels of detail or approximation or abstraction. The most abstract documents are the overall system specifications, answering the question 'what does it do?' in terms of the properties of the product that are of interest to its users. Other more detailed design documents, plans, models, blueprints, etc. summarize an answer the question 'How does it work?'. Specifications also exist so that past and future states can be cross-referenced.

The process of engineering design and development is

to construct specifications. The engineering specification (or product design/requirements specification, often "spec") is a critical document in the creation of any system. The engineering specification document is one of the best indications of a well-engineered product. The engineering specification (or product design/ requirements specification, often "spec") is a critical document in the creation of every hardware product.

- Ideal specification (ideal specification) This documentation is the most detailed and unified specification possible. Even though this is necessary for a societal-level system, this requires a lot of overhead and is usually ignored by most market-base organization (because of its heavy intellectual overhead, reasoning). This spec is necessary if something is to safely engineered into a complex and dynamic human social experience.
- Working specification (working specification)

 This is usually a shared outline broken down by requirement groups, and is used for easy referencing during development.
- **Prototyping** Once there is information documented in the specification, each requirement is traced with a solution. This culminates in a prototype that often looks quite different from the final product, but reliably functions and meets each requirement of the specification. The workslike prototype is built to answer a large number of questions uncovered by developing the engineering requirements: core function, component selection, mechanics, feel, and assembly.

There are many types of specifications, the primary types include, but not necessarily limited to:

- Requirements specification
- Design specification
- Testing specification
- Operating (and maintenance) specification

Specifications, like any formal documentation, can take different information-compositional forms, the two most common are:

- Mathematics (patterning logic) is [in part] the representation of real objects using numerical conception and equational logic.
 - Mathematics are descriptions of material attributes of the system.
- Visualization (graphic logic) is [in part] the representation of real objects using spatial (-illumination) conception and discrete mathematics (Read: graphs).
 - Visualizations are explanations, wherein a mechanism can be understood by looking at

a spatial visualization (or simulation) of the behavior of the system.

For societal systems, there are two sets of specification information:

- **Core functions** of system functional interface; a description to use.
 - What does the system do for its user?
- **Compositional conditions** of system infrastructural interface; an explanation to understand.
 - How does the system do what it does for its user?

Describing and explaining is accomplished through:

- Quantitative (numerical and mathematical [materialized as operational] logic), and
- Qualitative (linguistic-conceptual, simulation and visual-spatial [information system] logic.

Together, a unified information system integrates an all-ways view of the total information in its organization. 'Qualitative' and 'quantitative' methods (logic[al methods of processing]) are applied to resolve the society's functionally operative system(s). Each new set of resulting information, modifies the present information set of 'fact' (i.e., labeled as). A 'fact ' can be a category label for an instruction that will execute an operation automatically in the environment. For example, it is a fact that that which can be commonly labeled as a "Universal serial bus, USB input male "will fit" into a USB input female, to complete a function; or, that there exists a spatial information sub-set of plant molecules, only presently known as "alkaloids") The presence of that category 'fact' conveys the meaning of another choice, an opportunity. Each new idea building a stronger, more cohesively integrated system through increasing factual understanding, building a factually unified information system for a socio-technically optimum solution.

It is sometimes said that 'community' is the natural outcome of a sufficient amount of experience and processing of life information. For it is the natural resulting understanding of what must essentially occur, or change, to orient all individual humans together toward flourishing for all affected.

There are a variety of types of specifications, for instance, there is a:

• Building specification - a set of instructions on how to build the system per the specification.

A complete specification is representational of a unified view of a system:

• It is a reduction (reducible) - the view of the system as a whole is broken down into a listing of separate,

discrete statements.

- The process of reduction accounts for a system by reducing the system to its constituent components. These are sufficiently subdivided so that each individual component behaves as if it were a simple system displaying only a few variables, all of which lend themselves to common analytical treatment. The sum of the behavior of the individual components is assumed to provide the system properties. The partitioning of the system into analytically tractable components. System analysis is, by definition, a reduction.
- It is an integration the information represents a complete visualization of what the system will be like when it is complete.

The communications properties (communications plan attributes) of a specification (model) include:

- Annotated
- Appropriate (relevant)
- Complete
- Conceptually clean (clear definitions and relationships)
- Consistent
- Constructible
- Correct
- Executable
- Formal
- Minimal
- Modifiable
- Non-redundant
- Precise
- Reasoned
- Testable
- Traceable
- Unambiguous
- Understandable / readable
- Verifiable

10.5.1 What is a specified systems definition?

The first form of a communication of (about) a system is the communication of its systems definition, of which there are two types:

• A construct-able definition of the system: take the definition of the system, and the system's design specification, and show that the system design specification meets, or does not meet, the system's [objective] definition. Here, definitions can be reduced to mathematical terms as objectives flow into conceptual requirements and then quantity requirements in the form of a specification to be constructed, and then a measurement of the constructed system itself and its impact on the environment. The system's design specification (and eventually, its materialization and affect) is demonstrated/proven mathematically that the systems design satisfies its definition.

- Take the definition and work to develop (or, discover) system designs that optimally satisfy.
- A discover-able definition of the system: if it is not possible, given the information available (Read: the theory), to match the system's behavior (as a design specification) to its definition (Read: its model). Here, there is scientific inquiry -- all that can be done is to do an experiment to see if the system observably behaves like the model (Read: the definition).
 - Take the system and work to discover (or, develop) system definitions that optimally satisfy.

10.5.2 What is the purpose of 'specification design'?

Specification design involves the integration of multiple perceptual information sets into the resolved determination of single design represented in the form of an object called a [design] specification, which is a synthesis.

The purpose of design when creating a 'specification' object is to complete the following objectives:

- Define what is to be built, decide how it behaves, select how it is composed.
- Communicate enough detail for construction, operation, and optimization.
- Act as an object reference for all deliverables/ milestones.
- State what the system component is, not just its functionality.
- Every statement logical and/or verifiable, and ready for integration tests with attributes to track states and methods of verification.

CLARIFICATION: Engineering development, unlike engineering operations, is largely concerned with design. Engineering operations is largely concerned with the actual operation of some system that was previously designed.

10.5.2.1 What is design?

Design is understood as purposeful and deliberate activity (intervention) that succeeds in establishing new structures and processes, or rearranging existing ones, thereby achieving intended outcomes and improvements. The result of design is a synthesis, known as a 'specification', that can be constructed in the realworld. Design represents the building of a relationship between us and our world. The purpose of a design is to serve as a [meaningful and visual] representation of the goals it represents. If a purpose is a reason for being, then all designs are purposeful (i.e., all designs have a purpose). In this sense, design is simply the purposeful arrangement of parts. In practice, design is purposeful planning. Fundamentally, engineering design is a purposeful activity directed toward the goal of fulfilling human needs. Design is the purposeful building of a product and experience that solves the problem. A design process is a purposeful method of planning practical solutions to problems.

Design is not speculation, but knowledge and the competence to use the knowledge to resolve a problem as expected. Design is not planning. Planning moves out from the existing state, producing (in a time-frame) a step-by-step progression of what to do. Design identifies the here and now, in order to create and model a new human solution system. Design is not "improvement of the existing system". A design "is the new system". In this sense, humankind is not designing for the future, humankind is designing the future.

In design, setting goals and specifications emerges in the course of the design inquiry as a result of constant integration and the encoding of value-based inquiry selections. Values orient decisioning so that decisions satisfy their intentional decider's needed conditions [for development and operation, together].

In practice, the concept of design (Read: concept in operation) has, at least, the following sub-composition:

- Design as a noun the system ("thing") designed.
- Design as a verb the activity of designing.
- Designer the [intelligent] entity taking design decisions.
- User the entity using, operating, or otherwise applying the design.

NOTE: Specific societal questions can be answered through scientific inquiry and/or technological design.

Every design activity that finally leads to a physical system of the designer's conception must necessarily apply technical factors (i.e., to materialize anything, technical materialization factors must be applied). Among society, every design activity that leads to a physical designer's conception must necessarily apply socially conditional factors expressed within a [coordinated] decision system.

10.5.2.2 The design process

A.k.a., The design life-cycle.

All design is an action, a process. Processes may be broken down into steps. The design process is characterized by:

1. Starting from some initiating information (often,

but by no means exclusively, an understanding of intended effect), the mutual resolution of the three models (or composites of models).

- For each part of the resulting form model, if the decision to conferring responsibility to other parties is not satisfied, then a new information related to effect, function and form detail is explored and resolved.
- Repeat 2 'until you are satisfied' (i.e. the decision confers responsibility to another party through an agreement based on the models defined (now seen as requirements) — in this manner all system elements are determined and appear as another party's system-of-interest).
- 4. Repeat 2 and 3 until descriptions are reduced to being a description of a technology fabrication process.

This sequence forms a hierarchy of correlated transformations of systems descriptions over multiple levels of structural resolution (scale).

Design decisions derive from:

- Information precedence what has and has not worked before; styles.
- Information patterns recognizable functional or material structure seen to work in different situations and having an equivalent architectural form in a different circumstance.
- Information equivalence known, technological realisable characteristics and interactions that are aspects of the outcome sought.
- Incremental variation empirical deviations that explore successive solution directions.

Design mechanisms in the [design] process include, but are not limited to:

 Thinking ("Hello. Is anyone thinking there?"); systems thinking; boundary building; model visualization; abstraction leveling; information transformation, interpolation; dialectics; scaling; pattern recognition; pattern matching; extrapolation; and, interpolation.

10.5.2.3 Design analysis produces factual 'certainty' representations

Design analysis is concerned with decomposition and reduction, as [well as] equally concerned with design synthesis, composition and holism (through motion in time). When the design process has been navigated to a satisfactory resolution, then commensurate contributions of effort and creativity will have been expended from both analysis and synthesis.

10.5.2.4 Design modeling produces an synthetic

likeness of the real world

In the broadest sense, a model is the use of something in place of something else for some cognitive purpose. A model represents reality for the given purpose; the model is an abstraction of reality.

Model types:

- Structure 1D, 2D, 3D models, systems, subsystems, components, modules, classes and interfaces (inputs and outputs).
- Behavior (functionality)
- Timing (concurrency, interaction)
- Resources (environment)
- Metamodels (models about models)

10.5.2.5 Design breakdown ensure completeness

A unified design can be separated into parts. The two material design process sub-parts are:

- The <u>Functional Architecture</u> identifies and structures the allocated functional and performance requirements. An input and output interface representation.
- The <u>Physical Architecture</u> depicts the system broken down into subsystems and elements. A structurally composition representation.

10.5.2.6 Interface (visualization) design resolving

The most important interface design [operationalconditional] principle is: usability. The interface is being designed to literally 'interface' with another system, and so, it must do this effectively for both systems. Humans and other necessary systems can interact with the target system in a way that allows them to achieve their purposes in an efficient and effective manner.

10.5.2.7 Material system design resolving

In any materialized system there are material objects [and physics relationships], and then, within the human context, there are also relationships between those material objects. Hence, when a material system exists, there are objects (a.k.a., resources) and their associated material-physics location, which is understood by humans through a conceptual coordinate system. More simple, material design must account for objects, their relationships [to humans], and a coordinate system relating the objects to one another.

10.5.2.8 The design-model process

A 'design' can be defined as a 'model' of an 'entity' to be 'realised', as an instruction for the next step in the creation process. An entity model can be an object or a process. The model can take various forms, like a drawing or a set of drawings, but can also have various other forms, such as a text, a flowchart, a scale model, a computer 3D-representation, and so on.

In the life-cycle of creation, a design is not an end in itself, but an input for the next step, which can consist of further updating the design in the immaterial domain (i.e., the information domain of creation) or of the actual realisation of the entity in the material domain (i.e., the materialized domain of creation).

A model is an abstraction of reality. Usually, a model is an abstraction of an already existing reality, but in the case of a design, it is a model of a possible future reality.

This design, the model of the entity to be realized, should satisfy the so-called principle of minimal specification. It should give all the information the makers (i.e., creators, designers, developers, constructors) of the entity need to realize this entity as intended by the designer. A design is not only necessary to realize the entity, it should also be sufficient.

The object (or process) to be designed has to fulfil a certain function for the user. Designing can simply be defined as making a design, but a more specific definition is: Designing is the process of determining the required function of an object to be designed, combined with making a model of it. Designing is the development of a functional specification of the object to be designed, combined with making a technical specification of it; specifying the object in such a way that the makers of the object will have sufficient information to produce it.

A design process should produce an object design and, if needed, a realization design. A professional design process itself should be executed on the basis of an explicit process design. That process design specifies in principle the undisturbed process.

10.5.2.9 A 'specification' is 'the model' of a solution

NOTE: A model of a system should contain all elements that are relevant to the functioning of the system. A specification is a visualization of information (linguistic and/or spatial, etc.).

Models, as the result of modeling, are prime instruments of individual reasoning and explicit enabling mechanisms of social reasoning. Everything in physics, in engineering, is a model. A model is a set if conceptions (meanings) about the ways some thing (a system) works. A model explains the facts, conveying the experience of meaning to subjective consciousness. Models are judged solely by what they deliver once acted upon. Models inherently have uncertainty given a dynamic.

NOTE: In some cases, the word 'knowledge' is just another word for 'model', and 'model' is another word for "method of determining".

Data models are representations of human understanding Data models are representations of data structures used by information systems Data models (and conceptual models) are representations of human understanding or knowledge; semantics is a purely human phenomena and data models can be used as a representation of domain semantics. Therefore, any evaluations of data model quality must ultimately appeal to the perceptions of the people that use the model.

NOTE: *Minds are, in part, [analyzing] modeling machines, and modeling (which comes from perception, which comes from information received) can go "wrong". Computers are, in part, [synthesized] modeling machines outside of minds, and thus, useful tools for modeling together.*

Models are (or, may be) information about the world that allows us to "do things", extends and generates capabilities (-abilities, functions), that allow designing users ("us") to generate structures that wouldn't be possible without knowledge. In this sense, intelligence refers to systems that have knowledge (or information) that allows them to generate structures that wouldn't be possible without having knowledge. There is no possibility that there would be peaceful, compassionate, technological civilization unless we had a population with intelligence (and knowledge) about the principles of physics and of human life.

The shape-based layered [data] design model:

- 1. 1D model is concept.
 - For example, 'water'.
- 2. **2D modeling** a geometric [graphic, spatial] model of an object as a two-dimensional "figure", usually on the euclidean or Cartesian plane.
 - For example, an area (or surface) of 'water'.
- 3D solid modeling the process of developing a mathematical representation of any threedimensional surface of an object (either inanimate or living) via specialized software.
 - For example, a simulation of the motion of a volume of water through some duration of time.
 - **3D solid model** the product of 3D solid modeling.

NOTE: 1D, 2D & 3D models have simulation and analysis capabilities (mostly physics-based) are common in practice.

Technical model descriptions include:

- Object description description of shape of something.
 - **Object identification** description of shape in relation to other shapes.
- **Operational definition** (a.k.a., functional definition, technical description) description of what something is observed to do.
- System explanation (a.k.a., visualized definition) visual reasoning (simulation to the level of technical capability possible) for how and why to build something to be observed to do something.

An operational definition allows for measurement of the variable of interest.

Models are created for a variety of purposes:

- Analytical Inquiry understanding the components and workings of an observed phenomena.
- Behavior Analysis and Prediction (descriptive) - understanding the possible behaviors and predicting the behavior of a phenomena.
- Conveyance of knowledge (descriptive) the transmission of the understanding of a phenomena from one person to another.
- Specification and control (prescriptive) the declaration of what and how a phenomena is to be realized or manifested by human agents.
- Representation and display (representative)
 a simulation or copy of phenomena for entertainment or guidance.

NOTE: Modeling and simulation tools are required for systems engineering. Modeling and simulation are used to analyze the system processes before finalizing all of the details of the process; the very essences of models provide the ability to simulate the steps through design, production, and operation; this creates new ways to increase the assurance that the designed system is producible and effective.

10.5.2.10 The constrained structure of a solution

INSIGHT: Constraints can be (i.e., can create) opportunities.

Project planning decision constraints as requirements:

- Scope constraints objective to social, user, engineering requirements
- Time constraints schedule requirements
- Resource constraints resource requirements

Constraints are limitations and/or boundaries, often environmentally and/or pre-set. Constraints are conditions that exist because of limitations imposed by external elements, including interfaces, support, technology, resources, etc. Constraints bound the development teams' design.

For any project there are two core types of constraints:

- 1. <u>Limitations on the solution</u> itself (i.e., on the system).
- 2. <u>Limitations on how</u> the project (to develop/operate the system) is run.

For example,

• ID: CNST-001; Constraint - all building permits must

be obtained 1 week before the work can start; Constraint type (physical, legal, regulatory-policy): Legal

10.5.2.11 What is a critical success factor

A critical solution success factor is a testable criteria representational of a minimal measure of project success or failure.

For example,

• ID: CSF-001; Critical success factor: The kitchen remodeled must be finished by November 15, so we can use the kitchen for...

10.5.2.12 What is a critical assumption factor

A critical assumption factor is an integration that affects decisioning, but can't be known (or, isn't fully known to) at the time of decisioning. Assumptions are sought minimization to increase the certainty of every decision. Assumptions may be decisions outside the project team's control that influences actions/inactions on the project.

In a unified societal system, many of the assumptions present in the market are not present. For example, which may not be knowable in the market, and hence would be an assumption, is knowable in a unified societal system,

- ID: A-001; Assumption: The pending wood and labor shortage will not impact the availability for wood for kitchen cabinets or pool decking surfaces.
- ID: A-002; Assumption: The kitchen window view of the pool will not be blocked as a result of either the landscape update or pool upgrade.

10.6 What is a solution life-cycle?

INSIGHT: When society "changes", a shift (change or modification) is made from one sociotechnical system to another.

Most design or change processes have a cyclic, iterative process consisting of four steps or phases representation of a system's 'life', the life-cycle of any solution to any problem:

- 1. Reflection value determination
- 2. Analysis objectives
- 3. Synthesis new solution
- 4. Experience properties of current/new situation

NOTE: These phases can be recognized in many creation lifecycles that use similar phases, though they may use different names.

More completely, the starting point for a design or

problem solving process is based on a:

- 1. **Discovery** that a system, issue, problem, opportunity or other contemplative situation exists.
- 2. **Reflection** regarding the current situation. This can also be described as a 'problem' or a (negative) value judgement regarding a specific, existing situation. Another starting point could be the identification of an 'opportunity', which can be considered as a (positive) value judgement of a potential future situation. The positive or negative value judgement is the result of a reflection regarding an existing situation. This phase could also be called the discovery phase, after which a decision has to be made regarding the current situation. If the value judgement regarding the existing situation turns out to be positive, no change is needed and the design process can stop. If the judgement turns out to be negative, change is needed and the design process can continue.
- 3. **Analysis** phase where the problem is interpreted and a new desired situation is envisioned and defined in an abstract manner. This is called the analysis phase, where it is determined what the requirements of a new situation would be, though the new situation is not yet concretized in the form of a specific solution idea or concept. These requirements can be considered as an abstract description of a new desired situation, while not describing the concrete details of this new situation.
- 4. Synthesis phase, focussing on concrete idea generation and development. During this step, new creative directions are being explored, resulting in a description of a new possible solution. This phase is often considered as the 'real' design phase, as new concepts and solutions are being generated, created, described and visualized. In product design, this is often done by means of drawing and sketching. In product-service design various other tools are available like the creation of solution maps, future scenario's and storyboards \
- 5. The new concept or solution is simulated or realized in real life, a new situation with new characteristics can be experienced. This experience phase could be based on a model, a prototype, a simulation or on the final product or solution. Based on this, an evaluation can be made that can form the basis of a judgement regarding the value of the new solution, which brings us back to the reflection phase (1) again. If the value judgement turns out to be positive, the design is finished and the process stops. If it is unsatisfactory, a new design loop could be started again. Together this

creates the cyclic iterative process as visualized.

10.6.1 What is a system's life-cycle?

A.K.A., What is a system's cyclical process, period, phase, stage, gate, life cycle, lifecycle.

In order to understand any system, it must be understood that every [existent] system has a life-cycle (i.e., is associated with a life-cycle).

The existence through to non-existence life-cycle is:

- A system
- has the state non-existence,
- · has the state existence,
- then has the state non-existence,
- given an environment.

Every system has a life-cycle and it progresses through its life-cycle as the result of actions, performed and coordinated by people in an organization, using processes for execution of these actions.

10.6.2 What are some basic examples of lifecycles

The basic example of a life-cycle to fulfill through the operation of a service:

- 1. Order inquiry
- 2. Confirm order
- 3. Plan service
- 4. Fill/assemble order
- 5. Deliver order
- 6. Verify order
- 7. Operate order
- 8. Recycle order

The basic example of a life-cycle to develop an operational service:

- 1. Describe situational context and issue
- 2. Define system requirements
- 3. Select technology modules
- 4. Assemble system
- 5. Validate system
- 6. Operation and iteration system

The basic example of a life-cycle to utilize an operational service:

- 1. Exploratory research
- 2. Concept
- 3. Development
- 4. Production
- 5. Utilization
- 6. Support
- 7. De-cycling/retirement

The basic example of a life-cycle to discover a new technical function:

- 1. Exploratory *discovery*
- 2. Controllable observational study
- 3. Re-visualization of understanding
- 4. Re-production and re-test with new discovery

The basic example of a unified access [control] protocol that functions to sustain the necessary abilities to coordinate optimality by means of the following control process (a critical method type):

- **User** [information interface] sign-in function
- Issuance of
 - Authentication
 - Revocation of authentication
 - Transfer of authentication
- Verified individual
 - Establish existence (by sensation)
 - Resolve identity (resolution)
 - Validate identity (Validation)
 - Verify identity (Verification)
- **Authorization** individual (accountable to change of system)
 - Open access [to resources]
 - Authorization sub-types of changes to access, such as read and edit)
 - Observation log (monitoring)
 - InterSystem team role (enrolment; tasking, accountability, and resource assignment)
- Digital and physical identity (file specification)
 - User experience is the interface intuitive?
 - User notification is there a need for notifying?
 - User access to what location and resource is a user to access.
 - i. User personal access (personal space)
 - ii. User community access (common space)
 - iii. User InterSystem access (engineering space)
 - iv. User restricted access (emergency space)

Here, existence is (refers to) identity -- can the system (solution) be identified (or, differentiated)? If it can, then it exists, and if it cannot, then it does not exist, given a temporal environment. In logic this conceptual formulation is sometimes called, "the law of identity".

Note that to fully understand that every system has a life-cycle, three logic-based sub-conceptions are required:

- **Pattern** replication and definition [of something identical with itself].
- Identity existence and association [of something identical with itself])
- Recognition computation for integration [of

something identical with itself].

Logic allows for determination (decisioning). There are three "laws" [of thought] that form the basis of all logic[al thought]: "law of non-contradiction", and "the law of excluded middle", the "law of identity" (these are elaborated upon in the social system). A society may apply these three principles ("laws") to their [constructed] information system to more accurately (thoughtfully) model and decide a given optimal direction (such as, human fulfillment and ecological sustainability).

10.6.3 In application in a real world system, what is a system's life cycle?

Specifically, in the real-world context of systems engineering, there is are two axiomatic, logical information sets:

- 1. The engineering development process, wherein a system is designed and developed [through a life-cycle, which includes information and material and energy flows in time].
 - For example, the development of a societal system, including a unified information system and a the habitat service system.
- 2. The engineering operations process, wherein a system is operated and maintained [through a life-cycle, which includes information and material and energy flows in time].
 - For example, the operation of an information system, and a habitat service system; of which, the habitat service system consists of a network of integrated city systems that originate from and operate through a unified information system.
- 3. The habitat service systems process(es), wherein a materially interface-able system coordinates and outputs a current state[-dynamic] of fulfillment.
 - For example, the life-support power sub-system that uses material resources and provides power to the residential sector of the local habitat service system.

Using the systems science approach a real world system's life-cycle may be decomposed into 'development' and 'operations' activities (recursively, 'development' is itself an 'operation'):

- In concern to system development, a set of system [development] life cycle processes (information phase sets; solution inquiry processes) must be capable of:
 - A. Information modeling.
 - B. Acting upon an intentionally constructive set of information (a problem-solution), material, and energy flows to bring a specified system into existence, developing a systems next iteration.

- 2. In concern to **system operation**, a set of system [operation] life cycle processes (information phase sets; habitat operational processes) must be capable of:
 - A. Information modeling (modeling a set of information, material, and energy flows that enables actions, transformations, and outcomes as intended throughout the system's life span.
 - B. Acting upon a temporally associated information set using materials and energy to operate a specified system, sustaining an existent system's persistence.

A discrete life-cycle is subject to the constraining dynamics through which it operates:

- 1. A set of starting or input conditions that arise from circumstances and environment.
- 2. An initiating concept and input of resources to create a system.
- 3. A transformation whose outcome is a service intervention that affects the conditions in its surroundings.
- 4. A termination or restoration state of the environment, typically at system disposal or renewal.
- 5. Start and finish times of this lifetime of events.
- 6. Responsibility/accountability and resources for its execution.

In a community-type society where the real world is effectively accounted for, every stage in the life-cycle of a system under [societal] development and operation is considered simultaneously, when planning and executing the system life-cycle.

INSIGHT: Holistic approaches invariably bring in the need for some type of system life-cycle, project coordination so that every piece of data/ information is collected and traceable from design through manufacturing and possibly training.

Though used synonymously herein, the terms stage and phase do not trace to the same ontological origin. Stage connotes the image of renewal of allocated resources that enable a system to run its course, as in predetermined staging points to continue a journey. This metaphor conveys an essential linear path of engineering and coordination without stopping points for decisions that lead to the decision to allocate new resources. Phase represents a distinguishable aspect or sector of a repetitively changing situation, as in the recurrence of phases of the moon. It is a feature of cyclic model forms, and as a metaphor, suggests reiteration of identical or similar situations.

10.6.4 Why does the project define a system's life-cycle?

The purpose in defining the system life cycle is to establish a framework for meeting the stakeholders' needs in an orderly and efficient manner. This is usually done by defining life cycle stages and using decision gates to determine readiness to move from one stage to the next. Life cycle phases provide organizations with a framework from which a coordinator (management) has high-level visibility and control of both the project and system. The system life-cycle is seen as an intersection of project management (the business case and funding) and the technical aspects, the product or suite of products crafted into a system. Life cycles vary according to the nature, purpose, use and prevailing circumstances of the system. Each stage has a distinct purpose and contribution to the whole life cycle and is conserved when planning and executing the system life cycle.

CLARIFICATION: Each state or threshold in the life of a system or project is defined by a checklist. A checklist to confirm whether or not the system is ready for integration; such a type of checklist is known as an, 'Acceptance criteria'.

In application, there are many types of [project] life-cycle, the most popular ones are: phase to phase relationships, predictive life cycles, iterative and incremental life cycles and the adaptive life cycles. In other words, How are the following activities for engineering a system into existence being expressed (requirements : design : Implementation : Test : Close)? And, how are these activity sets expressed:

- in *Parallel* (simple sequential "phase-to-phase relationships)
- in Series (simple overlapping relationships)
- in Incremental life cycle loops (an adaptive life cycle)

CLARIFICATION: Product life-cycle and project life-cycle appear similar, but are different from each other in meaning. Project life cycle is the series of phases that a project passes through from its initiation to its closure. Service lifecycle are the series of phases that represent the evolution of a service, from concept through delivery, growth, maturity and to retirement Some services have products. Product lifecycle are the series of phases that represent the evolution of a product, from concept through delivery, growth, maturity and to retirement (PMI 2013).

In every project there are layers of lifecycles:

 Product life cycle – "A collection of generally sequential, non-overlapping product phases whose name and number are determined by the manufacturing and control needs of the organization. The last product life cycle phase for a product is generally the product's retirement. Generally, a project life-cycle is contained within one or more product life cycles" (ANSI and PMI 2008, 18).

- Engineering activities necessary to guide product development while ensuring that the product is properly designed to make it affordable to produce, own, operate, maintain, and eventually to dispose of, without undue risk to health or the environment" (IEEE Std 1220 2005). The cycle might include beginning, e.g. elicitation of stakeholder needs; middle, e.g. design or integration of components, and end, e.g. deployment or maintenance phases or stages.
- 2. **Project life cycle** "A collection of generally sequential project phases whose name and number are determined by the control needs of the organization or organizations involved in the project" (ANSI and PMI 2008, 15).
 - A project [life] cycle is the series of phases (a.k.a. process groups that a project passes through from its initiation to its closure.
- System life cycle "The evolution with time of a system-of-interest from conception through to retirement" (Haskins 2010).
 - The system life cycle is composed of a set of interacting system elements, each of which can be implemented to fulfill its respective specified requirements. A system progresses through its life cycle as the result of actions, performed and managed by people in organizations, using processes for execution of these actions" (ISO/IEC/IEEE 15288 - Systems and Software Engineering: System Life Cycle Processes). The system of interest is composed of multiple products.

NOTE: There is generally recognition that at least two information lifecycles exist for social creation: one for the social organizational level (values) and one for the technical organizational level (sciences).

10.7 Unified life-cycle simulation

NOTE: Like all living things, operable systems [with which humans interact] go through a life cycle. To understand the development of a habitat service system, and its place within the organization of society, knowledge of the life cycle of systems is necessary.

A unified life-cycle simulation of the total information environment is possible when a system's life cycle is accounted for.

10.7.1 How do project life-cycles coordinate the progress of our lives?

A.k.a., Life-cycle standard selection criteria.

Life-cycle phases are used to plan and coordinate all project progress. Everything that should be done to accomplish a project is divided into distinct phases, separated by control gates. Phase boundaries are defined at natural points for project progress assessment and *go/no go* decisions (i.e., should the project continue to the next phase, or not)?. Decomposition of a project into life cycle phases organizes the development process into smaller, more ordered ("manageable") pieces ("chunks").

To coordinate effectively it is assumed, given what is known, that a standardized life-cycle must meet the following criteria (i.e., the selection criteria for a life-cycle standard):

- 1. The life-cycle must cover the entire system's life cycle, from conception to closure.
- 2. The process-/activity-level of detail must be appropriate. The level of detail of processes or activities affects the flexibility and expandability of the life-cycle as a reference standard; wherein, abstraction is inversely proportional to the flexibility and expandability of the reference.
- With increasing project complexity, validation and verification (V&V) becomes increasingly important; the standard should provide a detailed view of the V&V processes.
- 4. The life-cycle must appropriately facilitate the coordination of processes and simulation of project progress; as a result, the relationships between processes are key points for the comparison of standards.

11 Project proposal 'definition of direction'

This project proposes 'access' as a definition of direction (i.e., 'access' is a definable direction). All individuals in the community desire access to the following interfaces, all of which can be measured and designed in common:

- 1. A high quality of life, given what is available.
- 2. A high-standard of living, given what is known.
- 3. A life where the human individual flourishes together.
- 4. An objective, accountable, and grounded lifecoherent service system that meets all human need.
- 5. A common life-ground of information and material that forms the structuring of our higher capacities (our higher potential selves).
- 6. Access to our own [self-integrating] source of power and creativity.
- 7. A society formulated in exact and understandable terms.

Access to genuinely understandable and testable fulfillment requires realization of the following values that are at the core of an adaptive and helpful orienting [navigational] system:

- 1. Access to <u>freedom</u> [to express capabilities].
 - What is freedom to the individual?
 - What is the likelihood of the fallibility of fulfillment?
- 2. Through <u>justice</u> [as universal need fulfillment, required by all human embodied consciousness].
 - What is freedom to those individuals who cannot make use of it?
- 3. By means of <u>efficiency</u> [in our common actions] within a common ecology.
 - How does optimization generate freedom (free time)?

Together, humanity visualizes a shared understanding of what makes life [most] meaningful. What is most mutually beneficial for all of our lives?

Together,

- Humanity will construct a shared vision, and the resulting societal solution will be tested to express these values (conditions of the vision).
- Humanity will not execute upon a societal solution until it visually expresses these values (conditions, principles, inquiries, etc.).

Social systems lower their entropy by cooperating and caring. Social systems raise their entropy and de-

evolve through fear. If there is fear, there is no trust, if there is no trust, there is a not a lot of cooperation. A societal system expression without the value conditions of 'cooperation' and 'caring' is likely to structure a suboptimal state of fulfillment. Humanity can come together to share a common purpose, our common interest, our need fulfillment and the care-taking of the ecology. Then, through greater information coordination there is the potential to safely access more extensive forms of technical function.

In application, value functions are qualified boundary constraints (encodings) that resolve an issued decision toward a particular direction of intention. A value is a specifically desired orientational state (or "preference") among all potential attributes, states, or preferences.

The two axiomatic boundary constraints are:

- 1. Specific limits that must be met.
 - For example, there are ten people in the population, and ten people must eat. This project proposes, in the Decision System, a set of social inquiries, social thresholds by which tasks (solutions) are decidedly assigned resources, and often, effort, on the part of the InterSystem Team.
- 2. Specific limits that cannot be exceeded.
 - For example, there are a countable number of fish in the sea, and a rate at which they repopulation; to ensure continued access to fish as a nutrient source, then there are only so many fish that can be taken out of the ocean during some given duration, least the fish population not be capable of recovering its population.

In order to effectively resolve these boundary conditions in the design and operation of any new system, decision analysis is required (i.e., a decision system is necessary). In the real world, it is assumed that there are potential impacts to others in an environment, given one's own decisioning. Decisioning in the real world necessitates a process [method] for identifying and prioritization a single selection (e.g., state or solution).

11.1 What defines the project's vision?

A vision is a picture of the future.

- The project envisions a network of walking community garden cities.
 - More completely, the project envisions an informational-spatial interface network of walking community garden of sub-global habitats.

More simply, the project envisions:

• A life-work environment where most of the

population lives in integrated family- and gardenoriented smart cities with life-work lifestyles based on optimizing life fulfillment.

- A population-wide access system with no trade, no market, no currency, no money, no finance, no economic exchange.
- A high-degree of technical automation with a concurrently high-degree of individual challenge to promote a lifestyle of optimal flow and well-being.

11.1.1 Vision statement?

A vision is a desired future state. A vision statement describes an organizations aspirations (i.e., why does the organization exists; what is it en-visioning?).

• Vision statement - describes the intentions, aspirations of the organization.

Among community, planetary resources are seen for what they are, as the common heritage of all the planet's people. These resources are the 'life' satisfiers of every human; the sustainers of human fulfillment, and a subelement of a larger total ecology that sustains (or, does not sustain) our individual well-being. Herein, fulfillment services are selected [as solutions] to sustain, (rather than predation upon) social and ecological [life-]supportsystems. Resources and societal-level requirements are seen as common in a community-type society.

QUESTIONS: How can any individual truly be fulfilled in life? How can we create lives that are truly worth living, given that these lives are knowably finite (i.e., come to an end)?

Herein, concept of fulfillment has, among others, the following sub-conceptions (the different sub-dimensions of fulfillment at the societal-level):

- 1. Human
 - Need (there exist conscious embodied entities) = fulfillment
- 2. Engineering
 - Requirement (the need is connected to the some direct output, via a process) = fulfillment
- 3. Social
 - Well-being (the requirement is connected to the individually common human experience of wellbeing) = fulfillment
- 4. Habitat
 - Service (the ecology is connected to as a service)
 = fulfillment
- 5. Planet
 - Ecology (the potential of human life is connected to as a planet) = fulfillment
- 6. Life

• Potential = fulfillment

11.2 What defines the project's mission?

A.k.a., What is the directive of this project?

A mission is, in part, why 'do' what is to be done (i.e., why do the project's work?), so that it can be done well. In application, the concept 'mission' means 'task' together with 'purpose', clearly indicates the action to be taken and the reason. In common usage, especially when applied to lower level organizations, an activity selected/ assigned to an individual or unit is a, 'task' (or, mission).

• <u>The project's mission</u> is a global network of operationally localized habitat service systems that construct, prioritize, and complete tasks based upon a conditional set of value decided inquires/ criteria and a unified information [construction] system.

11.2.1 Mission statement?

A mission statement describes an organizations purpose (i.e., why does the organization exists, re-directing it).

- <u>The project's mission statement</u> is to bring into "living" existence a global network of integrated city systems in which human individuals 'live' in fulfillment with one another and the larger ecosystem.
 - 'Living' is to continuously adapt.
 - 'Live' is to meet human need requirements.

11.3 What defines the project's expected outcome(s)?

An expected outcome is the intention[al criteria set before action that] results in a functional and/or conditional state of the environment. What results are expected?

It is expected that the project will result in:

- A societal system configuration that will verifiably be the best (optimal) for everyone, given the information and material availability.
- A societal system reduced in suffering, adaptive toward an optimal state of flow (of love) in each moment of our individual lives.

11.4 What are other common naming classifications of this type of society?

Egalitarian individualistic:

Respect for individual decisions and autonomy.

- Sharing access (to common resources) without wealth disparity.
- Systems in place to meet all needs.
- No motivation to accumulate excess (or "be greedy").
- There is not coercion.
- The hierarchy is not authoritarian, but one of choice, expertise, and accountability.
- Holistic in nature accounting for both the individual (me) and the group (we). In early 21st century society, people are taught to think its one or the other and there can't be both accounted for simultaneously.

11.5 What defines individual behavior in the project?

All 'behavior' is 'motion'. It is possible to model motion commonly (i.e., it is possible to model our common behaviors). In a human body, motion feeds-back to consciousness a spectrum of feelings.

As feeling entities, all human are individually (i.e., "we are all, individually) seeking fulfillment and relief from suffering. Notice the direction of flow that feelings represent -- into fulfillment and out of suffering. This is not to say that individuals want mere pleasure or the easiest possible life. Much of what growth to an individual consciousness entails feels like a struggle, as growth through challenge.

Optimal human behavioral development and societal advance occurs,

- By optimizing human service fulfillment, without which individuals suffer loss of life capacity by measurable degree of regression dis-allowance (dis-advantage).
- Through elimination of unnecessary suffering from life capacity reduction due to deprivation of life fulfillment (i.e., "life goods").

11.6 What defines a goal in the project?

A goal is, the intention of a 'user'. To an engineer, goals represent the intentions of the system's user. In concern to systems, a goal describes a relationship that a system desires to have with its environment. In general, goals are formulated based on a current situation and a measurement criteria. If consciousness has the intention for something to stay the same, or to change, then a goal is present. Optimal goal selection relies on understanding, and the coordinated layering of direction throughout the flow of a project.

In order to accomplish the Project's primary directive, the goal is to expressly materialize the following three

sub-systems:

- 1. [Conception/Design] A continuously updated specification of the whole societal system. A specification is anything that describes what an actual instance looks like.
 - We need a commonly shared design plan to iterate [the next state of evolution of] our society.
- 2. [Materialization/Action] The operation of a network of city systems based upon and expressed through the specification. A city system (or network of city systems).
 - We need a controlled habitat service system that operates in alignment with the design plan.
- 3. [Experience] The experience of optimized fulfillment and well-being for each and every individual human, based upon the given conditions.
 - We need a population of self-motivated, selfintegrating, and compassionate humans who understand and align with the design plan.

When these highest-level [project] goals/objectives are complete, then the Project, as specified in this Project Plan, is complete[ly delivered]. In this sense, objectives/ goals are the final outcome to the user.

In order to accomplish the Project's primary directive, the proposed societal system maintains the following four goals:

- 1. Quantitatively identify the different components of the human system, and understand how these components relate to each other.
- 2. Quantitatively fulfill the needs of individual humans in the human system, and understand how the needs are best fulfilled.
- 3. Quantitatively determine the habitability of an environment, and understand how different spaces have different habitability potentials. Access past and present habitability potential of location.
- 4. Sense the experience of a reliable and robust operational service system (intentionally developed).
- 5. Remain sufficiently uncertain about what humans require to maintain a set of value inquiry thresholds programmed into the decision system as the socio-economic decision inquiry process group and the solution inquiry process group.

In order to accomplish the Project's primary directive, there are coordinate system objectives. Societal coordination objectives are common to all projects.

The primary and secondary goals of the proposed coordinated societal system are to:

1. Ensure positional data of all resources.

- In application, the question becomes, are we using environmental resource survey data?
- 2. Ensure effective and efficient interaction and communication among project participants.
 - In application, the question becomes, are we using a unified information system?

The supportive sub-goals of the project coordinating system are to:

- Assure the highest quality technical, organizational, and contractual coordination at every level.
- Initiate and facilitate the resolution of decisioning at every level.
- Support active and beneficial collaboration among projects.

In order to accomplish these objectives, the following project coordination processes must be carried out:

- Scheduling work and access register tasks in time and space. Scheduling activities.
- Monitoring work and access track the operational work of the project. Monitor activities and results.
- **Reporting work and access** communicate an understanding of the projects progress and status. Reporting activities and results.

Each individual process expresses a unique level of resulting information motion:

- In concern to <u>scheduling</u>, when a selected (decided) change is to be executed (as an activity/task), an InterSystem Team role synchronously with a change control coordinator shall be assigned accountability [for the project]
- In concern to <u>monitoring</u>, when a change in a noted characteristic is deemed appropriate, notification of the change shall be sent to the appropriate review and change control coordinator [for the project].
- In concern to <u>reporting</u>, when an expected change is complete, an accountable event log shall be sent to the appropriate review and change control coordinator [for the project].

Each individual contributing to the optimization of a coordinated society maintains a set of life-orienting goal (more commonly called 'rules'):

- The design must account for life value regulators from start to finish.
- The production must have more life value capacity through generational time.
- The evaluation must compute a life value measure as a criteria to tell (determine) greater from lesser ('>' from '<') in any domain by knowledge of life

capacity loss or gain.

- Cumulative life gain is always the organising goal, the intended result.
- Coherently inclusive decision or action is enables life capacities, the better it always is for common life opportunity capacity.

11.7 What are the primary societal project tasks?

This project is sub-divided into a set of axiomatic tasks representing a parallel project-level life-cycle, which is, to design, develop, and live in an emergent, communitytype society in time with available resources, together.

• The first phase of project implementation initiates actions to measure the existing environment in order to identify the environmental situation in which the project exists.

The following are axiomatic task categories (informational phases) for this societal building project:

- 1. **Project coordination and planning**, including multiple sub-project and project plans.
 - THE PROJECT PLAN, which details the *how* and *when* of what is to be constructed into "our" lives.
- 2. Societal systems development engineering, including the design and development of the unified societal information system and internal habitat service systems (cities). This supra-process involves the Project's primary sub-processes of: requirements engineering (specifying and sequencing requirements), <u>designing</u> (preliminary to detailed and conceptual to technical), and prototyping through to fully developing.
 - THE UNIFIED SOCIETAL SYSTEM SPECIFICATION, which details the *why* and *what* and *how*.
- 3. Societal systems operations engineering, including operating and monitoring the existent unified societal information system and the material habitat service systems (network of cities) therein.
 - THE UNIFIED SOCIETAL SYSTEM SCHEDULED EXECUTION by the societal InterSystem Team, which details the *why*, *what*, *and when*.
- 4. Our individual experience in society.THE INDIVIDUAL'S LIFESTYLE.

Here, society could be viewed as an intentionally (specifically) planned and scheduled lifestyle.

The planning of configured access to the habitat defines societal-level planning. A control[lable] volume of ecology, known as a 'habitat', is identified, both informationally and positionally. Resource flows into the control volume [habitat service system] and output emissions from the control volume [habitat service system] are designed and measured. Data integration allows for the capability of a multi-city, habitat network operations service environment where all resources and access opportunities are shared in common.

NOTE: In networks, the size of a particular change does not necessarily indicate the scope of its effect, and care must be taken to avoid changes that maximize local benefits at the expense of global effects.

11.7.1 Society is a progressive emergence

At the societal level, emergence could be viewed as **progressive elaboration** - the system (e.g., society) is progressively elaborate as the project's information system develops, becoming increasingly well informed and unified as time and iteration occurs.

11.7.2 Societal-level planning

APHORISM: Those problems which are not acknowledged are generally repeated.

Together, a social population (a society) can plan their next action(s); the population can plan the next change to the [state of the] environment. At the "highest" conceptual-level, this plan is expressed as the unified 'societal information system'. At the material-level, this plan is expressed as the controlled 'habitat service system' (i.e., the city-system network existing within a larger wild and decidedly care-taken ecological system). A cooperative society plans their information system; and that unified plan is sub-composed of a materialized, environmental service system.

11.7.3 Society is a project task

This societal building project may be sub-organized into the following parallel task domains, where contribution is necessary:

- STEERING COMMITTEE SUB-PROJECT, because this proposed society will come into existence when the market-State is highly present on the planet.
 - Market and State Interface contractual and jurisdictional agreements.
- SOCIETAL ENGINEERING SUB-PROJECTS, because this proposed society will iterate through existence when usefully contributed work is done.
 - Societal system design (specifications)
 - Societal system implementation (operations)
 - Human system inclusion (population migrations into community-city network)
 - Habitat system operation (intersystem project teams complete service requirements to meet the needs of all human users)

11.7.4 Human life-cycle analysis

The purpose of life-cycle analysis is to acquire sufficient information to determine and select actions that will meet objectives of adapting and optimizing life over iteration, cycles of time in an uncertain environment. The output of a life-cycle analysis is a situational input into decisioning.

Human life-cycle analysis is a three-component process:

- **Inventory analysis** (needs, requirements) as the identification and quantification of environmental signals and human receptor for those signals.
 - Here, needs [inventory] are often seen as part of the problem domain, whereas requirements [inventory] are considered part of the solutions domain.
- **Impact analysis** as the technical qualitative and quantitative characterization and assessment of the consequences of resource use and environmental releases.
 - Here, issues are often seen as part of the problem domain, whereas objectives are considered part of the solutions domain.
- **Improvement analysis** as the evaluation and implementation of opportunities to reduce environmental burdens.
 - Here, values are often seen as part of the problem domain, whereas conditions are considered part of the solution domain.

11.7.5 What is a human quality standard?

A.k.a., What is the standard for human quality?

Progress is the development of factual quality standards for human society, as those standards that define and explain what humans require, and how to optimally coordinate the fulfillment of those requirements, given what was known available at the time the standard was synthesized. What is sought as a goal, as [mutual] progress, is the meaningful improvement of the wellbeing of each individual in the short and long-term. The quality that everyone deserves is the best that humanity has to offer as a planetary civilization.

11.8 What does humanity commonly desire out of an engineered societal system?

This project proposes engineering as the primary method of project operation. This method structures 'how is this project' to be carried out. This project is to be carried out in the most ordered, organized, and prices manner possible through systems science engineering. Herein, if a society were viewed as an engineering, safety, and provisioning service for the fulfilment all of humanity (i.e., for all planetary human users), then it would likely maintain the characteristics of:

- A planned societal system.
- A coordinated societal system.
- A cooperative, multi-user and decision-supported environment.
- A model of society most accurately aligned with human fulfillment (given what is known).
- A unified societal system with a set of local habitat service systems (i.e., cities) forming an [operational] global habitat service system network.
- A society oriented in its intended design toward [the felt experience of] optimum access to individual human fulfillment.

In order for a social population to function "well" (Read: cooperate toward common fulfillment), it needs to establish and maintain a common ground of shared meaning, including mutually shared data, knowledge, values, and vocabulary.

In early 21st century society, different "fields of expertise" may use different terms to mean the same thing. However, when [people from] different fields converge in a common setting (Read: into community), a common ground of meaning must be established. The necessity of common ground is important for at least two additional reasons for sharing the community's knowledge with others outside the community-type society, and "for developing a shared understanding of complex systems of ideas that the community develops.

11.9 What might an engineer ask first about this project?

An engineer who looks at the problem of society might ask, in concern to technology, "What does humanity need"? And, an engineer would likely respond, "Humanity needs a helpful socio-technical system, a unified information/ habitat service system". The engineer might think next of conditions. At a social level, "humans desire to be helpful to one another". Thus, a materialized (from planning) socio-technical system may (or may not) coordinate and facilitate human helpfulness. Helpfulness is a sign of togetherness, as is sharing; both of which represent caring, which occurs between others (at the highest population-level), among a unified group who share commonality.

QUESTION: How might one societal solution be capable of orienting toward greater (or lesser) states of fulfillment than another?

11.10 What is the 'socio-technical' view of society?

A.k.a., Ultra-large-scale (ULS) hybrid-cognitionintensive, cyber-human-hybrid-autonomous, cyber-socio-technical systems (HCI-STS/STR)

A socio-technical system is a social system with technical implications and in conjunction, the technical system has social implications. Technical systems with social implications and social systems with implications for technical systems. Implementation runs both ways. Every system humanity builds to interface with the embodied world of human materiality also reconfigures that embodied space, altering cognitive and social practices. This happens because implementation encodes a particular formulation of the desire for effectively computability. A desire that humans reciprocate when they engage with that system. A socio-technical view is a view where need is resolved through socio-technical [service] production.

All human organizations comprise of two interdependent systems, referred to together commonly as the 'socio-technical system':

- 1. A social system, due to the presence of a living organismal population (humankind).
- 2. A technical system, due to the conscious design and creation of material organizations that automate service fulfillment (i.e., tools of increasing cognitive information about an extant reality that allows for their construction, such as the creation of a hammer in history to the historical creation of the chain saw. A technical system produces technology for a social system; that technology is used to automate and ephemeralize required service fulfillment in order to produce a higher order stability in access, thus more free time to pursue higher capacities that humanity has the potential of expressing and otherwise actualizing.

In community, there is an integrated [human] sociotechnical system that can be understood and designed. It can be understood and designed in part, or in whole, and its actualization has real world consequence for conscious living beings (until it doesn't). Any ecological or human societal system could be considered a sociotechnical system because it combines social organisms (humans) with technology. Changes in one system affect the other system.

For example, the rethinking of 'dishwashing' as a system might make it more convenient to clean dishes (for everyone), as well as solving one of the basic survival problems (of everyone), water conservation and processing.

A socio-technical system necessarily has:

1. **Social interactions** can be thought of as interactions with people.

2. **Services** can be thought of as a parallel category of interaction between humans, [logical] process, and [material] objects [in common access]. Here, technology is a service.

Change coordination (change management) is a component of a quality assurance system that ensures all changes are accompanied by:

- 1. Support developers, organization, user.
- 2. **Control** specifications, documents, algorithms, and others.
- 3. Service to support people.

Societies socio-technical information flow, in the form of projects, involves the flow of different resource-types (which are common to all individuals):

- 1. **Information flows** (a.k.a., computation and visualization)
- 2. Material flows (a.k.a., material science and positional mechanics)
- 3. Time flows (a.k.a., coordination and scheduling)

11.10.1 Technology

Technology is the mechanical and informational processes by which things function. Technology is merely how things made and done. Technology reflects the engineers designers and programmers who make it. Made technology is a reflection of the makers knowledge. Technology extends human capability (i.e., machines extend human capability).

APHORISM: We can have the best possible 'how', but if we mess up our 'why' or 'what we might do more damage than good.

In this subject, Technology is the know-how and creative processes that may assist people to utilise tools, resources and systems to solve problems and to enhance control over the natural and made environment in an endeavour to improve the human condition.

Technology is the art of technical [systematic] servicing. Or, technology is the study of the potential of an object [in service]. The study of in-service objects. Other definitions for technology include:

- The purposeful application of knowledge, experience and resources to create products and processes that meet human needs.
- The study of systems of making or producing.
- Products, knowledge and skills working together to improve the human condition.

11.10.2 Socio-technical issue coordination

The common elements of a socio-technically coordinated

societal system include:

- Social information composition

 Issue situation
- 2. Technical decision planning
 - Issue planning
- 3. Technical decision identificationIssue identification
- 4. Technical decision analysis
 - Issue analysis
- 5. Technical decision solution
 - Issue solution
- 6. Technical solution executionSolution execution
- 7. Technical solution monitoring
 - Issue monitoring

11.10.3 Service and asset production

There are two primary types of service (in a total asset ecosystem); wherein, the asset types are:

- 1. **Process/activity/operation/concept** <u>Service is the</u> <u>product</u> (service is the asset).
- 2. **Object/product/resource/shape** <u>Service to</u> <u>support the product</u> (the shaped asset is an object; the asset is the service to support the object).

Simply, the common production types are:

- Mass production the 'batch' size is infinite.
- **Batch production** the 'batch' size covers a range characterized by a finite number.
- One-of-kind production the 'batch' size is one.

Simply, the common production scale types are:

- Production [selected 'solution batch'] for the <u>local</u> HSS (local city).
- Production [selected 'solution batch'] for the <u>global</u> HSS (city network).

11.10.4 Societal multi-level design modeling

A society's multi-level design could be modelled as a configuration of four levels:

1. **Product-technology systems (technological product systems)** - physical objects that originate from a human action or machine process and exist as part of a service system. As these objects are made up of technical components, the term 'product-technology system' is used. This refers to tangible, inextricably linked technical systems, physically present in place and time. With most of these artefacts, you could 'drop them on your toes'. Product-technology systems generally fulfil one or more clearly distinguishable functions. A system dysfunction occurs as soon as one or more technical components are missing.

- Service-product systems (Habitat service system)

 built of physical as well as organizational components, which form a united and cohesive whole that together fulfils a specific function, usually definable in time and place. The system fulfils one or more clearly defined functions that can no longer be performed if one of the technical or organizational components is missing.
- 3. Socio-technical systems (Societal Sub-Systems) - the combination of information systems that fulfill societal functioning. Changes that take place at this level are often referred to as a 'system innovation', which can be defined as 'a large-scale transformation in the way societal functions are fulfilled'.
- Societally experienced system(s) the population (community) of people living through a particular societal design, including the sharing of values and understandings.

11.10.4.1 Why is multi-level design modeling necessary?

Multi-level design modeling is necessary in a real world socio-technical systems for safety:

- Navigational framing (social system)
- Generative design (decision system)
- Constructed operation (material system)
- Expressed living (lifestyle system)

11.11 What is a real world, socio-technical systems engineering solution?

The real world community model is the society's highest level [real world] data [structuring] model, and it is detailed in the Decision System Specification (where resolutions are determined). The real world community model is a socio-technical systems engineering model. The socio-technical systems model that generates and records potential, and instantiated, societal solutions. Currently, the community specification (per the Decision System) has assigned the name 'real world community model' to that highest-level societal solution model that visualizes (represents) the system and sub-system conception of the unified societal system.

In societal engineering, everything is an understood, or an understandable, expression of the societal system, which requires of the observer the ability to think systematically and have systematic access to relevant information.

Socio-technical systems engineering refers to the design and deployment of a societal system. Socio-technical

Society does not only require technical-economic interventions, but social ones as well. The idea of sociotechnical systems engineering refers, in part, to the engineering of the interaction between conscious beings who persist together in a common material world. There is an interaction between consciousness and an environment, and because, there is intention to survive and thrive (i.e., enhance life capability), then there is also the cognitive presence of [material]'usability'. Technology is automated functioning usability. Technology is usable for various orientations: from generating fulfillment, and doing so more rapidly, to generating conditions of suffering, and doing so more rapidly.

Humans have something resembling 'needs' in society, of a social and technical nature. Project engineering may be applied to account for the completion of these needs. In a society structured through project-engineering, there is a requirement for a common decisioning procedure (a decision model, protocol, algorithm) to execute control, the 'controller' resolves decisions common to all individuals (Read: socio-parallel solution inquiry). In this proposal, there is a social control decisioning (projects) and a technical control decisioning (technical solutions). Engineering solution decisions (Read: technical solution inquiry) provides all potential workable solutions, ranked according to societal and organizational engineering objectives (a.k.a., conditions, constraints). The social organizational inquiry determines and selects for execution upon by InterSystem teams (into community existence) the optimal engineering solution, given that which is available. This social conditioning is affective at all levels, because it is the individual among the social where knowledge and access is shared (though sharing may be restricted and manipulated under some, less fulfilled, socio-technical contexts).

NOTE: *In the real world, a life-coherent organization is one in which the component parts are coordinated toward a common life objective (life fulfillment).*

A socio-technical service system is characterized as:

• A Hybrid of:

 A socio-technical system is a 'hybrid' type of system in the context that its components come from (at least) two different categories of things: some components are ordinary material, hardware, and/or software objects, whereas the other category is that of 'human' life-beings. Note that most socio-technical systems also contain elements from a third category, a category consisting of information (abstract entities).

In application the socio-technical system layers include:

1. Human and

• Socio-technical systems involve humans both in the role of operators and in the role of users.

Operators are sub-systems of the larger system in which humans contribute (perform) their operating work. Users benefit (or are expected to benefit) from the contribution of human operators. Humans are 'free' (type of access) to use the system as a service, in the case of a socio-technical engineering, to participate in its sustained creation.

2. Technology and

 A proper functioning socio-technical system requires the co-ordination of the actions of all systems involved (coordinators, developers, operators, and users). Technological development and application will usually be accomplished through procedures (protocols/ rules), and the design of such procedures (whether machine or human) is therefore an integral element of the task of designing a service system.

3. Information

• A human decision to follow a particular rule requires, first of all, an analysis that the situation is one where the rule applies. But even when an operator decides that a particular rule applies, he or she can also be expected to perform an analysis as to whether or not it is in the person's interest to follow the rule. Often, this process of analysis is known as interpretational freedom. The history of technology consists to a large extent in attempts to remove the 'friction' in the system that is caused by the (interpretational) freedom of operators, and many if not most of these attempts have been successful. Here, it important to consider both: (1) thinking better about the sort of instructions that operators receive, and (2) simply remove the [human] operators completely. Operators are everywhere and continuously being replaced by hardwaresoftware systems. This second option is of course no panacea: hardware-software systems can fail as well, even if differently.

A societal system represents a broad class of subsystems where operational [decision] protocols and team procedures form a unified operating [service] system of individual "stakeholders" who live together in a living system with knowledge of physical "natural law" processes.

A city is an engineered socio-technical system; a [globally and locally unified] human service fulfillment platform. A [community-type] habitat service system is an environment where access and services are available for free.

In general, complex machines work in the same way as organisms. In a complex machine, as in an organism, there is a sensory input, expression output boundary, with a processor inside. In organisms, the sensors measure life-relevant data (as in any system, sensors measure system-relevant data).

In order to effectively construct real-world sociotechnical systems, service systems require:

- Sensors
- Processor
- Expression interface

In community, the user places requests for service [output] on the unified information service system, and the habitat service system responds to the users demand.

'Negative' requirements are factors in a living organism's environment that prevent it from surviving there, or limit its highest potential development, there. Those factors are called 'limiting factors'. They include soils, temperature, water, sunlight and physical barriers. Physical barriers may include landforms and water bodies. They often prevent a living organism from moving to another place when conditions get bad in their regular habitat. Real world socio-technical systems must account for real world sources of information about the state of the dynamic ecological habitat, including but not limited to:

- Habitat temperature
- Habitat nutrient profile
- Habitat air
- Habitat water
- Habitat sunlight

11.12 What would a real-world, sociotechnical systems engineering solution visually look like?

At a high-level, a unified societal system solution may look like an information structure with the following data model:

- 1. Ecological life service support systems
 - A. Habitat service system
 - 1. Habitat life support service systems
 - 2. Habitat technology support service systems
 - 3. Habitat facility support service systems
- 2. Societal project information support [Plan] system
 - A. Social System
 - B. Decision System
 - 1. Life support service system priority
 - 2. Technical service system priority
 - 3. Facility service system priority
 - C. Lifestyle System
 - D. Material System
 - 1. Habitat service system network (global HSS)

- 2. Habitat "city" service system (local HSS)
- 3. Material system operational processes
- 4. Spatial interface constructions

Herein, for every complex service there is a network of sub-services, wherein and throughout there exists the condition of equal access to all that humanity has to offer the rest of humanity, by sharing without a trade- or coercionrelationship.

If a system comprises interrelated parts contained within a boundary serving one or more functions within an environment, then humans are both systems themselves, as well as parts of larger systems. Here, socially contributive interactions to the structure and usage of services primarily occurs as part of an InterSystem Teams (i.e., Accountable InterSystem Teams primarily do the work to develop and maintain services):

- Life support intersystem team
- Technology support intersystem team
- · Facility support intersystem team
- Facility system groups (note: these are communityuser groups that form around activities associated with the Facility services)

If society is a moving vehicle (an analogy), then toward what direction is the vehicle pointed and heading. It is essential to figure out which direction that vehicle is to be pointed. If it is pointed at fulfillment, then flourishing for humanity is likely. The appropriate power, steering, and destination are all important to building and maintaining fulfillment at the societal scale. A human transport vehicle is a micro socio-technical system. Societal engineering is clearly a socio-technical, and not simply a technical, or simply a social, problem.

In order to produce a socio-technical system,

- 1. Collect human requirement measurements (metrics & benchmarks).
- 2. Model the world and potential objects in the world.
- 3. Synthesize uniquely attributable habitat service system [world] designs.
- 4. Analyze habitat service system [world] designs.
- 5. Select optimal habitat service system [world] given an objectively measurable set, which is executed through a material operation (process).

What is an 'economy' within a unified societal system oriented toward human fulfillment and ecological wellbeing. An economy is a sub-set of nature, a habitat service system - a harnessing of human technology to the larger planetary and cosmic ecosystem to facilitate our own fulfillment. An economy could be said to be a system of resource flow and transformation that produces life services and life "goods" (life requirement results), and not life "bads" (e.g., externalities, unnecessary suffering and artificial limitation), over time.

• The physical environment where an organism lives is called a 'habitat'. A 'city' is a controlled 'habitat'. An 'economy' is the current (input-output) transport configuration of all resources in the 'habitat'.

The social meanings that people attach to environments through their interactions and ongoing socialization play an important role in determining human behavioral responses. This outlines the important role of the living area serving the functions of the human needs and actions.

The facility and life support service systems are support for human survival and flourishing, and that support is expressed through the operation of a set of [support] services. These services operate together, for the betterment of everyone, in order to provide a three point platform upon which a stable society may manifest and grow. Therein, each services operates through a set of common (to all appropriate systems) operational processes, that prioritize and triage resources and tasks.

Humans are a living system, and individual humans are a social organisms with complex communication and information processing capabilities who group together for mutual benefit (e.g., shared food, values, challenges). Such groups constitute social systems, and they become socio-technical systems naturally through technology.

INSIGHT: We are a part of the systems we build, and therein, they build us too.

11.12.1 Societal information system decomposition

Given the information available, any society may be informationally sub-composed from unification into four divisions of life-cycling experience, for any individual of the societal population:

- 1. Social
- 2. Decision
- 3. Material
- 4. Lifestyle

Although integration operations occur continuously in a unified information system, there are methods unique to each sub-structural system, that organize its composition.

- Social system core methods:
 - The core discovery method is that of science.
 - The core reasoning method is that of logic.
 - The core orienting method is that of value.
 - The core directing method is that of testable goal intentions.
 - The core life method of social memory is that of data storage and retrieval.

- Decision system core methods
 - The core decisioning method is that of integration (of sufficient information to resolve a specification, tested to solving a social issue that generated a requirement for the decision).
 - The core temporally coordinated execution method of projects.
 - The core positionally technical solution method of engineering.
- Material system core methods:
 - The core materializing method is that of material cycling (more commonly, production and recycling).
 - The core material method of access is that of a service interface operation.
 - The core material interface support [infrastructural] method is that of service operations.
- Lifestyle system core method:
 - The core life method is that of the 'flow' life-cycle.
 - The core life method is an entrainment alignment to natural cycles.

11.12.2 Simplified synthesis of a communitytype society

The societal informational sub-structural view includes (social, decision, material, and lifestyle):

- [Social] Data situational issue
- [Social] Knowledge socio-technical understand ability
 - Technical knowledge standards
 - Social knowledge values
- [Decision] Objective principles objectives and requirements
- [Decision] Algorithm/program software
- [Decision] Computation computing
- [Material] Construction materialization
- [Material] Materials resources
- [Material] Interface service
- [Lifestyle] Sensor survey
- [Lifestyle] Indicator indicate cycles and issues
- [Lifestyle] Evaluator evaluate service and experience

11.12.2.1 Briefly, how does design occur?

In community, design occurs via specific methods, given what is known:

• How does design occur (what is a social design,

social standard)?

- In community, social in the context of societal design means that the design considers the whole [societal] system of life support and socio-technical functioning, in terms of how the different machines and services interface with one another and humans (eventually forming the exploratory support service). Different machines can function as modules in a wide array of integrated systems.
- In community, design occurs through a unified, project-engineering integration method.
- How does [re-]alignment occur (what is technical design, technical standard)?
 - In community (or, any society), a decision system controls (planning and executing) the direction of alignment.
 - 1. Control direction.
 - 2. Planned direction alignment (selected solution).
 - 3. Executed action/task to direct alignment (accountable contribution).
 - 4. Surveyed resulting alignment (user-developer feedback).
 - 5. Evaluate alignment data (determine situation).
 - 6. Plan direction alignment (selecting solution).

11.12.2.2 Briefly, what is decision control?

A decision system controls (planning and executing) the direction of alignment:

- Control direction of materiality.
- Planned direction alignment (selected solution).
- Executed action/task to direct alignment (accountable contribution).
- Surveyed resulting alignment (user-developer feedback).
- Evaluate alignment data (determine situation).
- Plan direction alignment (selecting solution).

The decision [construction] system structural controls:

- 1. Is the control system transparent? If no, then the task is impossible.
- 2. Is the control system a digital algorithm? If no, then the task is not impossible.
 - A. Can consciousness among the population, who hold the intention, be brought up to the level of understanding of the computational intelligent system? If no, then the task is impossible.

Socio-technical planning decisions are informed, given:

• What resources (informational, human, material) are available?

- What is known possible (knowledge, standards) to do, accomplish, create, and sustain with those resources?
- And, dis-/mis-informed by, What is concealed?

Socio-technical operational decisions are informed, given:

- What are the actual, datum operations to be designed (task, solution)?
- When are the actual, datum operations to be executed (timing, access)?
- Where are the actual, datum operations to be executed (materiality, resources and logistics, teams)?
- With what, specifically are the actual datum operations to be executed (resources)?
- How are the actual datum operations to be transformed (method of operation)?

Coordination control decisions (a.k.a., project decisions; social inquiry decisions)

- What values (principles) are to be encoded into -ware through the software programming?
- What experience will be encoded for individuals, as sensory in their environment, through the -ware programming of those values (principles) into its designed operation?
- What is the optimal (most efficient and effective) timing logic for encoding those values?

There are [relatively] two types of [construction] decisions when it comes to the operation of a socio-technical environment:

- There are relatively social decisions -- the project approach to the habitat:
 - · Focuses on describing the world in terms of
 - Trajectories, directions, imperatives, objectives, time-frames, resources, and services
 - initial conditions,
 - given issue situation,
 - wherein, the dynamical rules become expressed as:
 - scheduling, coordination, controlling and monitoring
- There are relatively technical decisions the engineering approach to the habitat:
 - Focuses on the dynamical rules as
 - Which physical transformations are possible,
 - Which physical transformations are impossible, and Why (for all).

In general, a highly-populated community-environment appears as a walking life-space, with automated

transportation by rail and/or vehicle (depending on size):

- The unified information systems model is visualized in the decision system because that is where planning occurs?
- The unified information systems mode is visualized in the social system because that is where information integration occurs?
- The unified information system is visualized in the lifestyle system because that is where the experience of all systems occurs?
- The unified information systems model is visualized in the material system because that is where all encoding and user interface design (and development) occurs.
- The unified information systems model is visualized in the project plan because that is where all information sets are necessarily associated with resources and time; material coordination.

Societal information systems access:

A.k.a., Community societal support.

- Social data and data processing access (community information support) - social [information] construction support.
- Decisional task processing access (community decision support) - decision [solution] construction support.
- Material interface reconstruction processing access. (community technical support) material [operation] construction support.
- Life required service fulfillment access. (community life support) life [integration-cycle] construction support.

The societal navigating methodology:

- The approach methodology as the selection of methods associated with producing efficient and effective societal organization.
- The direction methodology as the selection of methods that produce efficient and effective access to life fulfillment opportunities.
- The working methodology as the selection of methods that are capable of systematically rematerializing a habitat, together in common.

The method of working together:

- The selection of a method of coordination; the project methodology; social decision inquiry.
- The selection of a method of materialization; the engineering methodology; technical decision inquiry.

- The selection of a method of contribution (information transparency and team accountability); freedom of contribution.
- The selection of a method of collection of usable information (standardization); service effectiveness in what fulfillment occurs.
- The selection of a procedure and accountability to action (decision and evaluation); service efficiency in how fulfillment occurs.
- The selection of a calibrated algorithm for computational materialization.
- The encoded realization of an intentional walking life-space.

11.12.2.3 Approach [to society]

The integration of all information necessary to resolve an intention.

- 1. The intentional approach (everyone)
- 2. The unified approach (planetary)
- 3. The information approach (society)
- 4. The integrated approach (habitat; life-cycle; standard)
- 5. The issue approach (service)
- 6. The operations approach (processes; integrated project-engineering)
- 7. The project approach (the project lists, teams, timelines; plans)
- 8. The engineering approach (design, development, and operation)
- 9. The decisioning approach (algorithm)
- 10. Control approach (planning, executing, monitoring)
- 11. Algorithmic approach (synthesis)
- 12. Indication approach (objectives)
- 13. Evaluation approach (criteria)
- 14. Re-alignment approach (analysis)
- 15. Computational approach (logic, gating, materials)

11.12.2.4 Direction [of society]

The fulfillment of all individual human need among a regenerative, real-world socio-technical environment.

- 1. The intentional direction (human fulfillment of everyone)
- 2. The unified direction (global habitat service system; needs)
- 3. The information direction (societal information system; surveys)
- 4. The integrated direction (local habitat service systems; services)
- 5. The issue direction (habitat service standards; functions)
- 6. The operations direction (operational process

protocols; resources and access; solution standards)

- 7. The project direction (solution social decision inquires)
- 8. The engineering direction (solution technical decision inquires)
- 9. The decisioning approach (algorithmic sociotechnical inquire; a unified and adaptive information decision system)
- 10. Control direction [of materialization] (decision system)
- 11. Algorithmic direction (decision system)
- 12. Indicate direction (social system)
- 13. Evaluation direction (social system)
- 14. Re-align direction (lifestyle system)
- 15. Computational direction (material system)

11.12.2.5 Execution [planned operating experience of society]

The computation of the project lists into a simulated and real-world environment.

- 1. The intentional execution ("I")
- 2. The unified execution (InterSystem Teams)
- The information execution (database and algorithm

 societal information system is stored on a database and runs an algorithm)
- 4. The integrated execution (local habitat service subsystem functions)
- 5. The issue execution (decision information flow standard)
- 6. The operations execution (access and usage protocols; accountability; work packages)
- 7. The project execution (project plans, project lists, schedule)
- 8. The engineering execution (system concepts, engineering lists, schedule)
- 9. The decisioning execution (algorithmic, conditionally programmed, information support system; software and interface)
- 10. Control execution [of materialization] (decision system specification)
- 11. Algorithmic execution (decision system specification)
- 12. Indicate execution (social system specification)
- 13. Evaluation execution (social system specification)
- 14. Re-align execution (lifestyle system specification)
- 15. Computational execution (material system specification; simulation; real-world)

11.12.3 Societal construction object

Society is a construction of tasks (specificationdeliverables). Following, the object elements of societal construction are defined relative to the societal subsystem:

What is an object? An object performs motion.

- In the social system, an object is that which is stored as data.
 - Data
 - Processing data
- In the decision system, an object is that which a task can be performed on (coordination).
 - Task
 - Performing tasks
- In the material system, an object is that which has shape (geometry).
 - Shape
 - Transforming shape
- In the lifestyle system, an object is a human life.
 - Lives (Note: Constructor theory of life)
 - Living life

In an uncertain (discoverable) system, there are two fundamental types of objects necessary to make predictions are:

- 1. Dynamical laws (Laws of motion)
- 2. Initial conditions
- 3. And, final states (as a meta-composition of both objects)

11.12.3.6 What is a constructor?

A constructor is an object that represents the limit of a series of objects (with sub-object scales), each of which can perform a [construction] task in question to a certain accuracy. And, if the task is possible, then there is no limit necessarily to how high the task accuracy can be in an ideal system.

NOTE: *The "primitive"* [constructor] experience of our lifestyle in the information construction hypothesis. This is an ontological primitive in the form of a hypothesis. An ontological primitive is a "thing" that simply exists; something that simply is discoverable. Different worldviews postulate different ontological primitives; this is how we know who we are in the world and it is the information field(s) by which we to reason our lifestyle. Our community facilitates our fulfillment and so we naturally desire to give of some of our experience to the persistence of this system of fulfillment. We apply our effort toward contributing to the community and to our own self-development through 'tasking'. A task is a process that leads to a novel structure, *a "construction". These structures facilitate the experienced fulfillment of real needs. There are many structures which have come before and* there are many which may come after, and we construct with regard to this 'iteration' of how we *might experience more fulfillment in the next [>]*

iteration.

An ideal constructor has particular properties; principally, that the constructor is the cause of any informational-material transformation, if it retains the capability of performing the transformation again. For example, a heat engine is an example of a constructor because it performs a certain task, and after that, in the ideal case, it is capable of performing it again, and again, etc. Alternatively, consider any room in a building as an example of a static constructor, because it perform the task of shelter repeatedly; although a room cannot construct motion, it was constructed by motion, and will destruct by motion, over time.

In the [information] constructor logic, what may be exact is the statement of whether a task is possible? A task is either possible, or not, given what is known available. In other words, a task involves a decision in regard to what is possible, and what is not possible.

In society, what is possible is a decision. Therein, what is possible is a decision system. What is possible is a unified information system within which a decision system exists to resolve possible and impossible tasks programmatically, algorithmically, socio-decisionally.

QUESTIONS: What is the societal solution? What is a societal-level information media? Can [service] objects approximate ever increasing alignment with real-world, planetary humanlife fulfillment? If there can exists a sequence of ever improving approximation to a [societal] constructor in its task [of societal construction], does that means that the task is possible?

Common [information constructor theory] 'information media' examples include:

- The transistor encodes a bit of information.
 - A transistor is an electrical switch that holds a system state [bit of information], and can be turned on or off by another circuit. Computers use transistors to perform computation.
 - The traffic light encodes information.
 - Transform: green to red; red to green.
 - Transform 2 lights: copy information from 1 light to the other light (green to green; and red to red).

Information media is information media because the following transformations (and tasks) can be performed on it:

- **Swapability** property of the states the interface states can be swapped.
 - For example, with one traffic light, the green can become red, and the red can become green.
- **Copyability** property the information can be copied from one to another. The copyability property allows information to be transformed

from one substrate to another. This copyability property is what the interpretability principle expresses - whenever there are two systems that separately quality as information media, if the composite system qualifies as information media, then that means that certain tasks can be performed on the whole that can be interpreted as copying information from one to the other.

 For example, with two traffic lights, the information on 1 can be copied onto another (red -> red; green -> green).

There are objects that have these properties of copyability and swapability, and they are called 'information media'.

NOTE: A 'program' is a repeated output.

In a societal system, what are the objects upon which transformations can be performed?

- Matter Spatial transformation, physical transformations, hardware transformations.
- **Data** Sensory transformation, mathematical transformations.
- **Concepts** Informational transformation, conceptual transformations, software transformation.
- **Program**s Computational transformations, statistical transformations.

Simply, constructors are possibly capable of doing what:

- 1. A constructor is capable of processing data.
- 2. A constructor is capable of performing a task.
- 3. A constructor is capable of transporting and reforming shape.
- 4. A constructor is capable of carrying consciousness.

The continuous, conscious societal construction experience:

- Community access ("we, of which there is me and we")
- Personal access
- Common access
- InterSystem Team Work Access ("we", for which there is accountability in contribution)
 - Work plan
 - Team tasking
 - Material service

A societal constructor will:

- The constructor (theory) will identify possible and impossible data, based on structure.
- The constructor (theory) will identify possible and

impossible tasks, based on principles.

- The constructor (theory) will identify possible and impossible materials, based on science.
- The constructor (theory) will identify possible and impossible lifestyles, based on solutions.

11.12.3.7 Complete constructor sub-object

INSIGHT: *In any informational or physical explanation there are some primitive elements.*

The sub-composition of an informational-spatial societal construction task:

- Task a specification of a physical transformation.
 Axiomatic task attribution, is:
 - Possible (therefore, constructor)
 - Impossible (does objective prevent a task from being performed?)
 - A constructor, which is a machine, exists to perform tasks (Read: bring about a task).
- 2. **Timing** a schedule (linearization) of a physical transformation
 - Axiomatic timing attribution, is:
 - Possible (therefore, coordinator)
 - Impossible (does timing prevent a task from being performed?)
 - A time, which is the common linear variable, exists to time tasks.
- 3. **Resource** a material composition of a physical transformation
 - Axiomatic resource attribution, is:
 - Possible (therefore, user)
 - Impossible (does resource prevent a task from being performed?)
 - A resource, which is a matter, exists to materialize tasks (Read: externalize a task).
- 4. **Team** a contribution of individual efforts to transform physicality.
 - Axiomatic team attribution, is:
 - Possible (therefore, accountability)
 - Impossible (does team prevent a task from being performed?)
 - A constructor, which is a machine, exists to perform tasks (Read: bring about a task).
 - A team, which is a social construction, exists to execute tasks (Read: to do a task).
- 5. **Quality** a condition of a physical transformation whose result is optimal.
 - Axiomatic quality attribution, is:
 - Possible (therefore, of value-validation).
 - Impossible (does quality prevent a task from being performed?)
 - A quality, which is an objective evaluation, exists to adapt tasks (Read: integrate feedback).
- 6. Service a pattern of useful physical

transformation.

- Axiomatic service attribution, is:
 - Possible (therefore, habitat technical support).
 - Impossible (does service prevent a task from being performed?)
- A service, which is an operation, exists to perform repeat tasks.
- 7. **Need** a signal, sign of life capacity fulfillment.
 - Axiomatic need attribution, is:
 - Possible (therefore, habitat life support).
 - Impossible (does need prevent a task from being performed?)
 - A need, which is an life requirement, exists to perform understandable tasks.
- 8. **Preference** a signal, sign of life opportunity fulfillment.
 - Axiomatic preference attribution, is:
 - Possible (therefore, habitat recreation support).
 - Impossible (does preference prevent a task from being performed?)
 - A preference, which is an life opportunity, exists to perform self-desired tasks.
- 9. **Decision** a point of potential change [in fulfillment].
 - Axiomatic decision attribution, is:
 - Possible (therefore, issue recognition).
 - Impossible (does decision prevent a task from being performed?)
 - A decision, which is a point of change, exists to perform solution planning tasks.
- 10. **Evaluation** an integration of the resulting alignment.
 - Axiomatic evaluation attribution, is:
 - Possible (therefore, control system).
 - Impossible (does evaluation prevent a task from being performed?)
 - An evaluation, which is a feedback opportunity, exists to perform corrective tasks.
- 11. Indication a signal, sign of life quality.
 - Axiomatic indication attribution, is:
 - Possible (therefore, sensation).
 - Impossible (does indication prevent a task from being performed?)
 - An indication, which is a quality or quantity , exists to perform self-check tasks.
- 12. **Construction** a duplicable building model.
 - Axiomatic construction attribution, is:
 - Possible (therefore, model, standard, simulation).
 - Impossible (does construction prevent a task from being performed?)
 - A construction, which is an information model materialized through a task, exists to perform useful tasks.

- 13. **Measurement** determination of observational or mathematical alignment.
 - Axiomatic measurement attribution, is:
 - Possible (therefore, location).
 - Impossible (does measurement prevent a task from being performed?)
 - A measurement, which is a determination of position, exists to perform informed tasks.
- 14. **Verification** a signal, sign of requirements completion.
 - Axiomatic verification attribution, is:
 - Possible (therefore, development).
 - Impossible (does verification prevent a task from being performed?)
 - A verification, which is a development phase, exists to perform requirements evaluation tasks (engineer oriented).
- 15. **Validation** a signal, sign of issue (design, solution) completion.
 - Axiomatic validation attribution, is:
 - Possible (therefore, design).
 - Impossible (does validation prevent a task from being performed?)
 - A validation, which is a development phase, exists to perform objectives evaluation tasks (user oriented).

11.12.3.8 Computational tasking

Today, the most "cutting-edge" form of computing is "quantum" computing, as a branch of fundamental physics. Regardless of the name, the idea comes from the idea is that computers are really physical objects, which means that what computational tasks they are capable of performing depends on the physics (realworld rules) that the elementary components carrying the information obey.

Currently, there are two known types of computational tasks:

- 1. **Classical turing machine** based on discretized version of classical physics (discrete mathematics).
- 2. Quantum mechanical (universal) computer that has access to ways of performing computational tasks that are wider than the ones that classical computers can access, which means it can be programmed to perform certain computational tasks in a more efficient and power way, and there are certain algorithms that can only run on the quantum computer and can't on the classical computer.

Potentially, a quantum computer can perform all computational tasks that are possible under the laws of physics. And therein, the question of what algorithms the system is to run [for humanity] becomes salient. A universal constructor is an object, just like a universal computer has the ability to perform all tasks that are physically possible. However, it may be the case that there are only specialized constructors for each one of the tasks, and it may be the case that they all cannot be integrated into one object, which is a universal constructor, that when programmed, in the requisite way, will be able to perform each of those tasks. The universal constructor generalizes to general constructions what the universal computer does in terms of computational tasks.

It is possible to formulate the whole of society (or, physics) in terms of possible and impossible tasks., not computation tasks, but all tasks. Computational tasks are transformations on information media. A generic task may, or may not, be an information media.

Constructor theory expresses all laws as statements about which transformations are possible, which are impossible, and why. A constructor, when presented with the substrate in its input states, is capable of sending that object to another state. In doing this, the constructor stays the same. Here, the cause is the constructor. Constructors are information that can cause transformations in the environment. Therein, knowledge is a particular type of information that is capable of performing certain tasks associated with instantiating that knowledge in a physical system. Knowledge instantiated into a physical system can cause transformations (without anyone knowing about it; for example, DNA was causing organic transformations before any human knew about its presence).

INSIGHT: *Ideally, a universal quantum computer can simulate the behavior of any other physical system with dramatic potentials and risks for social life together.*

For example, a refrigerator: within the refrigerator there is a glass of water; temperature; and a certain energy resource, the refrigerator can send the water and glass to a lower temperature. The refrigerator is capable of repeating this temperature cooling function on another glass of water.

If a task is not impossible (i.e. it is "ruled out"), because of a socio-technical effectiveness inquiry [decision], then it is possible, and possible with knowledge. Humanity can make use of knowledge to achieve transformations that verifiably improve its environment and the way in which individuals interact with it.

- Initial conditions
 - For a computer, the initial conditions are a 'program'.
- Laws of motion
 - For a computer, the elementary operations by which a computer works (e.g., transistor-decision-control gating).

11.12.3.9 Computational algorithms

A.k.a., Transformation automation ("quantum" represents the potential for informational and spatial transformation at the same time).

Through algorithms, principles are converted able (through en-coding) into algorithms, which allows for computation (via computers) and decision support, for a community of contributing users. Computational decisioning uses information and an objective function (technique, algorithm) to determine parameter values from operational data.

CLARIFICATION: Algorithms don't have to be designed with output inconsistency, like human biases.

Written principles (directional concepts) converted to algorithms (spatial logic), would allow a computer to take decisions for humanity and in parallel with humanity. Therein, humans are taking decisions, and the computer is taking decisions based upon a transparent criteria, and then, humans look at all the decisions, and compare and reconcile. If someone would do something different than the computer would do, then it is time to go back to the criteria that are built into the computer and check what/ who is right or wrong. Should something in the computer programming change, or is there an error in humanity's decisioning awareness (i.e., did the computer calculate something humans missed). This type of system allows humanity to be incredibly efficient and productive, and allows humanity to process vastly more information (than without InterSystem parallel computing). And that, as a result, allows for the sustainable creation of community at the planetary scale. A cooperative, coordinated sociotechnical societal sub-structure allows humanity access to more information, processed more quickly, and with less emotion. The unified processing of information, transparently, is required operate a cooperative society at the scale of the planet. Here, machines don't compete with humans.

NOTE: *A synthesis, upon comparison with another synthesis, may sometimes lead to reanalysis of what and how.*

When can you trust a machine (or machine learning), and when can't you trust machine learning. The machine can come up with algorithms, or humans can come up with algorithms. The algorithms that machines come up with are not readily understandable. Possibly, machine output algorithms may be trusted, with a sufficient sample size, in a closed system. However, when there is a situation where the future can be different from the past, and there isn't sufficient deep understanding to accompany a decision (I. E., an non transparent machine output algorithm), then that is an unsafe, dangerous and risky position to be in at any scale of human population size. When can humanity get away without operating with deep understanding? Possibly, when there is a human interfacing with the machine so that there is a continuous inquiry into whether there is a sufficiently deep understanding (a forum of effectiveness inquiry) - can the computer help the user learn and maintain a sufficiently deep understanding. The ideal condition is an environment where there is the parallel development of humanity and computation; while humans develop more capable computational technologies and techniques, computational systems build an optimized societal system through algorithms, which are developed by machines, and applied by humans, at a pace level with their sufficiently deep understanding.

NOTE: To have deep understanding, cause and effect relationships must be understood. To have cause and effect relationships understood, correct alignment of conception with the real world is necessary.

Can the computer help the human looking at it learn and have deep understanding of itself and the algorithm?

It is dangerous when there is not deep understanding and the future can be different than the past (i.e., when it is an open, and not closed, system).

11.12.3.10 Where does the algorithm come from?

Principles (values) for taking good, intentional, optimal decisions can be converted into code (encoded into software programming). In a community-type society, there is a unifying information system programmed in code, and with a software interface, and there is a decision system programmed in code, and with a software interface. Additionally, there is a material experimental system programmed by atomic materials (resources, architecture, technology), and with a physical [human] vehicle interface.

By ensuring algorithms are transparent and deeply understandable, then widespread, deep, and optimal learning becomes probable for the whole human population. The understandability of society and of algorithms is a tremendously useful and powerful information set for humanity.

NOTE: An example of the application of algorithms to automation is 'autopilot' - once instructed (programmed) the system will navigate the craft (vehicle or construction) toward the destination.

11.13 What does it mean for society to have an 'engineered' direction?

In an engineered system the concept [of a] direction is defined by a set of requirements, which are technical conditional statements of what the solution must contain to be a solution. Engineering is not just any form of creation; engineering is intentional creation. Societal engineering as a direction, is defined defining a set of [human] requirements. When a full direction can be visualized and agreeably shared, then decisioning therefrom becomes more relaxed. Societal engineering is about creating and sustaining access to objects and experiences that meet human requirements. Humans select the requirements. Engineering a situation where life persists and flourishes requires priorities. In society, together firstly, there is the necessity for having a basic life supported experience, which involves sociotechnological service relationships.

11.13.1 Cooperation principles

The following are a set principles and concepts that facilitate a cooperative, mutually aligned socio-technical design (co-design) methodology:

- The (engineering-based) system is an open system, in a theoretical sense, whereby interactions occur in a broader socio-technical context. Environmental factors exert a direct influence on the system, through the provision and exchange of information.
- 2. The socio-technical system in question is largely influenced by existing engineering design processes, which are often in progress when a co-design methodology of this nature is put into practice. Therefore, the appreciation and integration of existing engineering design frameworks is critical.
- 3. Engineering design processes operate within a wider development setting, characterized by distinct but interrelated phases; prior to development, development test, usage and feedback.
- 4. The socio-technical system, as made up of inextricably linked social and technical subsystems within a unique environmental context, must be considered at various levels throughout the design process.
- 5. Relevant stakeholders, notably end-users, should be actively involved during the engineering design process, and at each of the aforementioned levels of design.
- 6. Stakeholder engagement should not be restricted to end-user involvement, but should encourage and support the inclusion of additional stakeholder groups who may be influenced by the engineering design.
- For the co-design process to be morally aligned, a thorough understanding of the existing societal (information and spatial) environment is required to facilitate integration and understanding in the early stages of the engineering co-design process.
- 8. A standard risk assessment has inherent limitations that are particularly relevant to this application. Rather, underlying the co-design methodology is the analysis of "exposure" as a metric of system weaknesses that serves as feedback during the design process, through the provision of

contextually relevant measurements that embody risk in use.

The application of the aforementioned principles and concepts to the societal engineering , and specifically to human well-being, requires a number of assumptions be made:

- A societal system and the social, technical, and environmental contexts in which it exists, is an open unit that is directly influenced by, and is receptive to, changes in its surroundings. It does not, and should not, exist or be designed and developed in isolation.
- 2. The creation of a society requires awareness of typical engineering design (and to some degree, development) processes. Preliminary stages of such processes include some form of needs identification, background and literature study, requirements specification, the identification of the objectives of the design, and an ideation component. These preliminary phases are followed by prototyping with a focus on exhaustive analysis of multiple designs. Such analysis in turn informs the selection of a preferred prototype leading to a detailed design phase. The latter is concerned with the construction and exhaustive testing of the selected prototype, culminating in the production phase of engineering design.
- 3. The work setting for the cooperative design (i.e., codesign) of the societal system is comprised of the pre-planning, planning, and execution phases. The co-design of an intentional societal system should be considered at all levels.

11.13.2 What is societal planning?

Societal planning is a rational plan of life for living together on a finite planet. Societal planning occurs through projects, which represent work packages in time. Societal projects planning is, simply, societal coordination.

Any proposal for an societal-level organisational system must identify, determine, and explain the following:

- 1. How organisational processes are controlled?
- 2. How do feedback loops operate?
- 3. What constitutes the boundary of any sub- and supra-organisation?

Planning can coordinate the timing of all of these related inquiry events so that a single solution selection is possible for execution at the whole societal level of operation.

Here it is assumed that planning for human need

fulfillment at the societal level is likely to generate and sustain a socio-technical system of an efficient, effective, safe, and free condition. It is sensible, wise to pro-actively think about, shape, and schedule through iterative designtime. Here, design that facilitates the development a fulfilling (i.e., the 'right' type of) environment for humanity is selected for. The full development of human potential, which involves production, with human beings and the ecology at the center. Society enables human potential or human capacities (or it can disable them). Wherein, real wealth is the development of human capacities and the development of human potential.

Imagine engineering as a function of society. In this sense, engineering is a socio-decisioning function for intentionally engineering systems into and out of existence, for individual human need fulfillment. The individuals among community take on accountability as contributors to an intersystem team. And, therein, the 'social' domain is coordinated through a software based social decision support system to determine workable social solutions. Among the serviced community, the 'social' is the population of individuals sharing access to resources (and access opportunities). At the Intersystem domain, the social is no longer individually choosing users, but accountable contributors. Accountable contributors plan their actions, they coordinate.

In society, all personal and social goals are completed (worked on, achieved) on the basis of successfully planned social interaction (past and present), with others. In order to generate fulfillment, and not degrees of suffering and conflict, the earth's resources must be seen as the common heritage of all, and it is only therefrom that unified planning is possible. Every technical system is planned somewhere, somehow.

APHORISM: When there is ownership and secrecy, planning is difficult.

Participation in planning reflects the social "character" (or quality) of human action, of human interaction in any given society. It follows that participation in some form of societal life without serious systematic limitations is humankind's most basic common human interest. It is possible we see each other commonly, and therein, uplift everyone through coordinated design and planning for our commonly experienced, individual fulfillment.

The term social system is used, in general, to refer to lifeforms in definite relation to each other, which have enduring patterns of behaviour in that relationship. Having a populating data model for a social system is the first step in social societal planning.

There exist three core societal pre-conditions for human [social] survival and flourishing over long periods of time:

- 1. **Production** of access to needed satisfiers through extension of ecological life support services (into, and by means of, a habitat service system).
- 2. Reproduction of genetics.

3. Transmission (and processing) of information.

The output of each of these preconditions, as process categories, is more efficient and more effective through planning.

11.13.3 What is a humane societal information system?

NOTE: Society is response-able for human fulfillment (or suffering).

Understanding the societal system (e.g., life space) is the first prerequisite for understanding an individual's actions therein. Generally, the individual and life space are mutually interacting systems, both modifiable via the other. The life space, or society, is the environment as it exists commonly (for every individual).

The basic conception of a life-space sub-divides into:

- · An individual's biological foundations.
- The social system which contain the person.
- The person's interactions with the environment.

Society is a social life organization. As an real world organization, society can be designed and engineered, and its effects can be aligned with life flourishing (life capacity), or not. As an developed system, society can have goals (*direction*) and a set of values (*orientation*) that align the society with the stated target vision (reposition).

A human society is the aggregate of humans living together. Observably, human life is a matrix of activities over the measure of an individual life-time, and linked across generations in the temporal continuum of natural and social history. The range of activities that define any individual life is structured by the environmental (native and non-native) conditions upon which it is dependent and the social organizations within which it is lived in interdependence with others. Human society may be lived as a complex adaptive system.

There are more and less fulfilling ways of arranging socio-technical relations. A societal system that is responsive to the needs of human beings is likely desirable than one which is not responsive to human socio-technical needs/requirements. Every sentient organism needs constantly to re-assess its environment in order to adjust to any changes in it and to ascertain which aspects are, or become, salient for its current life purposes.

Societal systems engineering represents the unification of disciplines in the design and development of an iterative societal system. Society is a collaborative effort, which may be recognized by individuals and active structures therein, or not (and there are definite negative consequences when it is not recognized).

NOTE: While life can be fulfilling in unmediated

nature, we can consciously move forward together in society.

11.13.4 What is a 'humane' societal system?

INSIGHT: A sane society (and economy) is there to serve humans in opening horizons of lifeworth.

A humane system acknowledges and accounts for the needs of all individual human beings. If a system is defined as a set of interrelated elements, then a human system may be characterized as a system in which the principle elements are human beings. Human systems may be arranged differently. However, because the arrangements have a relationship to existence, they can always be organizationally understood through the following four axiomatic information categories required for existence as a population together: social, decision, lifestyle, and material. Herein, the 'human environment' is every conception and/or physicalization with which humans interact. Technology aside, humans maintain the same set of common needs. The organization of any given society's social, decision, lifestyle, and material can optimize the fulfillment of needs [for everyone] for a given environment, or it can do less (as in, negative efficiency).

In existence, each person shares an environment that overlaps with another's environment, physical and social. In community, the shared environment is produced through planning, coordination, integration, and contribution/participation. Each persons own environment is partly given, partly modified, and partly made by the person. These environments influence the probability of fulfilling human need (in common), and hence, impact quality of life (life experience) of everyone. Persons' environments, and the environmental system generating them, are part of the internal organization of a society, as part of a societal information system.

Each society has its own societal information system (which may or may not be explicated), consisting of the physical (natural and man-made) environment enclosed within a boundary (or city/Country-State), outside of which is nature (possibly caretaken, and possibly not). The state of the societal environmental influences the functioning of the society, ultimately reflecting upon the quality of life of the persons in the society. Humans exist on a physical planetary environment.

11.13.4.1 Prioritization

Human lifeforms are biologically wired to be social (e.g., mutually beneficial) with one another, but only in a certain order of operations. There are a core set of fundamental human needs that when met will "relax" a life-form to the degree to which it can effectively focus on things of even greater depth and importance than survival, such as love (i.e., extentionality) and growth. Humans have a threshold at which basic needs must be met for them to begin acting in full social conscience with one another, and societal systems engineering provides the ability to design and iterate said type of societal system.

In community, societal development involves the application of accumulated scientific knowledge and socio-decisional (philosophical), technical understanding about the nature of the human organism in a way that can convey social experience of the reality (or a presupposed reality).

INSIGHT: Human life time is not simply the duration of our existence as physical organisms calculated in conventional units of temporal measurement, it is a morally meaningful whole of experiences, activities, and relationships unifying the moments between a person's birth and death.

12 The 'community' hypothesis assumptions list

A.k.a., Community theory assumptions.

A real-world spatial environment is understandable through conscious experience of physical relationships to which knowledge is known as 'physics' (physical explanations), and composed of [world] objects (Read: spatial material resources). That which has shape to the mind [concept], and that which has shape in a sensible environment.

This project assumes that human beings are experiential vehicles, that enable consciousness, to experience a physical environment with other individuated consciousness. Within this axiomatic assumption, this project plan assumes that it is possible:

- 1. For humans to cooperate -- to act together, harmoniously.
- 2. For humans to identify a sufficiently stable set of information, and service systems, for completing human requirements synchronously.
- 3. For humans to calculate the ways in which resources may be useful.
- 4. For humans to determine the optimal arrangement (configuration) of resources.
- 5. For humans to select a solution (of objects and relationships) to provide for each and everyone's highest [level of human need] fulfillment.
- 6. Society is a system for which it is possible to design and operate the existence of.
- 7. For humans to construct a lifestyle that allows for living together in a fulfilling way (e.g., constructing a diet that allows the individual organism to eat in an intuitive way among others, as eating for its nutritional and psycho-emotional benefit; and not, eating with disorder).

It is an assumption that the following questions have testable answers:

- 1. How can "we" organize the human societal system to produce the products and services humanity requires, cooperatively?
- 2. How can "we" maximize the efficiency of resource usage for each and every individual's human access to the highest-level of fulfillment, given what is known?

Let us wipe the board free of past limitations, before assuming and proposing:

1. Let us assume that it is possible to understand how a society without the market or the State could exist to produce a sufficiently optimal and continuous state/dynamic of human fulfillment and ecological regenerability.

- Let us propose the existence of a societal system by means of a standardized and planned specification for the construction of a most fulfilling society system.
 - A. Let us contribute our efforts in a coordinated manner to service the fulfillment of the highest fulfillment of all.
 - B. Let us visualize together a proposal that assumes we are all capable of living together in the service of all.
- 3. Let us assume we can coordinate a Global InterSystem Human and Resource Contribution Team who continuously provide services to the global population of community users.
- 4. Let us propose an information system that accounts for common resources and the common requirements of all of humanity.
- 5. Let us assume coordinated access to a common pool of resources.
- 6. Let us propose a network of integrated habitat service systems that distribute access optimally for individual human need fulfillment.
- 7. Let us assume customized cities within a global/ planetary community-city network.
- 8. Let us propose access to services as resources are distributed through a transparently understandable decision support-computational algorithm.
- 9. Let us assume a population of conscious intellects, capable of reasoning and growth.
- 10. Let us propose a unifying information systems model/method that resolves into the continuously iterative improvement to conscious life well-being.
- 11. Let us assume that humans are capable of optimal well-being (the highest-possible fulfillment) and the least optimal suffering (the lowest possible feeling of fulfillment).
- 12. Let us propose a community-type society configuration where we are all together, most likely, to live lives of optimal well-being.
- 13. Let us assume that we exist together in a common, real-world environment.
- 14. Let us propose a societal specification that optimizes our fulfillment together in our common real-world environment,l which we further propose can be visually explained as a unification of conceptual and spatial information a project coordinated specified plan of execution by an InterSystem Team.
- 15. Let us assume that it is possible for society to be differently configured, producing different results than those proposed by this theoretical explanation

for the next optimal iteration of our consciously materialized societal system.

- 16. Let us propose the specification contain the reasoning, so that the next optimal society configuration may be more completely understood by all those users with the intention. Let the proposed societal system explain (contain the explanation for) the logic of its own theory.
- 17. Let us assume humans can connect resources together into services that transport and transform material [spatial] resources into as-required-by specification of the requirements for human fulfillment.
- 18. Let us propose a habitat service system that connects the life-cycles of planetary ecological services.
- Let us assume it is possible to control the coordination motion of ecological resources into optimal [integrated] habitat service configurations.
- 20. Let us propose a solution to individual human fulfillment at the planetary scale.
- 21. Let us assume spatial objects are what the material environment is composed of, and conceptual objects are what the information environment is composed of.
- 22. Let us assume values are directional conceptual objects as shapes/structures with an intention for the next conditional iteration of the whole societal system.
- 23. Let us propose an information system that resolves a responsively uncertain decision support system that determines and selects optimal solutions, which become evaluated materializations, physical objects.
- 24. Let us assume there are categories of configuration of a societal system, as well as, the real-time consciously experienced configuration of material resources.
- 25. Let us propose the specific design of a societal system that has been designed by selecting among categories of configuration [of resources] (as solutions) for the one that demonstrates optimal real-time fulfillment of all within a planetaryscalable solution.
- 26. Let us assume that different organizations of resources and qualities of services can achieve different levels of individual human-conscious fulfillment.
- 27. Let us propose that services can be designed within a spatial environment to facilitate and/or "automate" a product-result and/or conditional outcome.
- 28. Let us assume that it is possible to observe any human societal system as a series of societal

information sub-sets.

- 29. Let us propose values become conditional objectives in the decisioning selection of the next societal solution.
- 30. Let us assume that all existence is in continuous physical motion.
- 31. Let us proposed a specific information and habitat service system as the next iteration of our society.
- 32. Let us assume that is possible to together decide the next execution societal solution.
- 33. Let us propose that society starts with language, because we are proposing an informational and physical interpretation that linguistically interrelate.
- 34. In the early 21st century, most people say "society, you know what I mean", and then just keep going without defining society.
- 35. Let us assume that resources are objects, and that the informational habitat service system is a concept, a category of objects ("things") that relate to the life-support, technological support, and facility support of all human life.
- 36. Let us propose a system composed of informational and spatial objects globally coordinated into a network of InterSystem Service Teams.
- 37. Let us assume that Intersystem Teams composed of users can develop and operate services through their contributions.
- 38. Show me the documentation so that we can all transparently understand the theory of the proposed system.
- 39. Humans can consciously intend and knowledgeably construct a material (Read: spatial information) system configured to optimize services that complete human need.

Herein,

- Fulfillment is a dynamic concept because what all humans require as a habitat service system [configuration] may change through time. Fulfillment is a concept that can be accounted for by the engineering of a service to complete a set of requirements. Fulfillment "takes shape" as the conditional configuration of spatial resources into an optimally experienced habitat service system. Fulfillment is a dynamic concept.
- 2. There is no market or State object in the realworld There are organizations of conscious humans and material resources. Community is the societal-level term given to the organization of humans and resources by design to complete human requirement fulfillment optimally, given what is known and possible. What is known and possible must be accounted for and specified so

that sufficient information is available to operate services as required. Neither the market nor the State are stand alone [material] objects. In social engineering, the market is the defensible division of common heritage. In social engineering, the State is an organization of humans and resources to organize the rules for compliance, while coercing and enforcing their finality as the classification of a criminal (or more accurately, criminalized) or personalized [as a player] in the socio-economic market. It turns out that there are better ways of configuring resources by deciding optimal solutions to human issues at the planetary scale. Conscious human beings can point to other humans and point to material objects, but "you" can't point to the market or the State. The "market" and the "State" are just concepts, which can be encoded into a societies information-decision system with reciprocal affect on the individuals' feelings of wellbeing. The habitat service system is the record of, and also the result of, the flow of resources and humans through the constructively materialized information system.

3. "Civilized" people do not use violence, economic life competition, or threats of punishment to resolve decisions/solutions to human fulfillment.

12.1 In community, what keeps the services in alignment with fulfillment?

A unified societal information system oriented by design toward optimizing all human individual life experience, given what is known and available. A contribution-based system with transparently understandable decision support keeps all community individuals "faithful" to the continued execution of the next existent societal system iteration.

12.2 In community, what is between a service for humanity and humanity.

A unified information system exists as an interface for coordinating the flow of material and information resources into configurations that represent a service to humanity. In community, scheduled InterSystem Teams perform tasks that use resources within a projects coordination structure. In the market-State, there is property and coercion existing between humanity and services for humanity. In the market-State, competing entities use resources.

Scholarly references

- Benthem, J.V., Amsterdam & Stanford. (2006). Rational Dynamics and Epistemic Logic in Games. Universiteit Van Amsterdam. [staff.science.uva.nl]
- Furman, S., Theofanos, M., Wald, H. (2014). Human Engineering Design Criteria Standards Part 1: Project Introduction and Existing Standards DHS S&T TSD Standards Project. NIST Publication, NISTIR 7889. DOI: 10.6028/NIST.IR.7889 [nvlpubs.nis.gov]

Online references

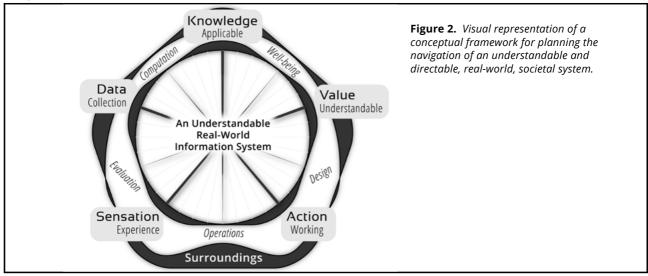
- *High Level Component Model (HLCM)*. Accessed: December, 2019. [hlcm.gforge.inria.fr]
- Specification/Declaration modeling pattern. Accessed: December, 2019. [web.archive.org]

The Approach to a Community-Type Society Project

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com Version Accepted: 8 June 2020

Acceptance Event: Project coordinator acceptance Last Working Integration Point: Project coordinator integration


Keywords: Systems science, project-engineering, operational societal methods, integration plan.

Abstract

An organization that process information and or objects can have selected methods applied to it. An approach is the selection of concepts and methods that facilitate a more correctly aligned orientation. As a societal-level project, it is necessary to select a set of conceptions and methods of approach that are likely to orient society most greatly toward the experience of mutual human fulfillment. For anything that is created in the world, there are a set of tools that allow for its creation. It is possible to come nearer to in distance and time a societal operation that meets the expectations of individual human fulfillment, through a recognition of how patterns are identified, designed, and contributed to. In order to unify, a unifying method is required. The systems science approach involves the application of the systems language in order to facilitate the identification and synthesis of useful patterns. In order to act upon information usable to societal organization, there is a necessity to use project-based in combination with

engineering-based processes and knowledge sets. In order to optimally plan an execute the cycling of information and objects through a societal environment, project-engineering is used to optimize standards, contributions, decisions, and solutions to society. By viewing all global service systems as project plans, it is possible to plan the life-cycling of fulfillment for a global population with consideration to the individual dimensions of information, socialization, and material resource utilization. An integrated approach is necessary to remain sufficiently confident that thinking and actions are likely to facilitate mutual human fulfillment at the societal level.

Graphical Abstract

1 Introduction

Every approach to state change in a material environment requires work. The approach is to work toward cycling through time a system [materialization] that meets (through project-engineering) human needs (decision), given what is known (standardization), and contributed (contribution). The approach is to view all work, all intentional change, as an engineering project, within which decisions are determined about the next [to be]existent state of the society.

The approach to planning is the same approach outlined in the Social System specification: the systems methodology resolves into the selection of the systemsbased methods. Science is a systems-based method of discovery. Engineering is the systems-base method of working for development and operations of services. Project coordination is the systems-based method of computing a schedule, given what is known, and what is available from contributions and resources in time.

INSIGHT: To de-compose and re-compose, every system must be assumed based on some kind of structure (structural pattern), which may be personally and socially understood through a complex of association networks..

2 The systems-science approach

INSIGHT: Simply, the approach is to work with patterns together for our mutually directed benefit. Systems in the real-world express behavior (motion) and exist within a context (network). To fully identify a system, it's behaviors and context must be identified. Whole-system engineering—optimizing an entire system for multiple benefits, not isolated components for single benefits.

Systems sciences provides a potential to explore what are the temporal patterns inside of society. Within the system 'society', how is it possible to recognize and control temporal patterns (of access and creation), optimally, using [a temporal] data [stream of needs and values, projects, solutions, and resources]? Systems science studies, seeks to describe and explain, systems in nature and society. In the context of this study, systems thinking is an approach to organization and problem solving that considers the parts of a system as interconnected (interrelated), rather than independent. The systems approach enables an understanding of the relations and interactions between the various components of a system. The adoption of systems thinking can be especially helpful in illustrating the complexity inherent in socio-technical systems through better problem definition processes and visualizations; synthesizing complex wholes, as opposed to breaking them into parts; understanding causal relationships between parts; and putting forward differing perceptual views by creating awareness of the differences in social relations. The application of systems thinking in design is a required approach to address the increasing complexity of society and societal problems. The systems approach is explained in depth in the Social System Specification.

NOTE: A classification of systems approaches is detailed in the Social System Specification, which aims to identify relevant criteria for the adoption of systems thinking into design and operations.

Technically speaking, every societal solution design specification is like a societal motion tracking signature (based on a pre-existing information system), and can be identified again, because of its patterns of information that form its model. Every society can have a model built for (or, of) it, to which other models of society can be compared (to identify individual differences).

Systems theory is a formal language, and like any formal language (e.g., mathematics), it is independent of any external subject matter and is solely dependent upon its own internal logic. If logic is consistent, then it 'works' (conveys capability, extensionality). If there are logical inconsistencies within the syntax of the language, then does not work. The same is true of any formal language (e.g., the programming languages that operate instructions in a computer).

- Errors in syntax cause mal-functioning.
- Errors in communicating syntax as semantics cause [human] mis-understanding.
- Errors in symbolically reifying (real world modeling, pragmatics) cause [human] mal-adaptation.

If systems science is the application of systems organization to scientific inquiry, then that is a strange definition, because science is a systems-based method. In other words, to select scientific inquiry as the method of discovery is to have selected a systems based method. One of the definitions of science is rational explanation. The scientific method is the method of rational, physical explanation using the language of systems. In the case of physics, science is rational explanation involving physical objects and cause mechanisms, of phenomena that occur. Systems science is just science, it is called systems science because in the market, the scientific profession is divided by discipline, and so the term system is often added before science to show its systematic application in a particular context. Science is a process for explaining the workings of systems in the real world. In their design and operation, systems involve measurement, applied toward the useful representation of information.

Science is an empirical [system] method; meaning, that it is dependent upon reference to some real world experience ("subject matter") in order for its validation. Whereas collection and analysis is the information processing domain of science, design and operating is the information processing domain of engineering. Set theory mathematics currently acts as the formal proving method for proof of scientific fact validation. Systemsbased language formalization is the foundation out if which to build a robust framework for highest fulfillment of all of humankind.

Systems science is a framework powerful enough to describe our 'world' and our 'work', in all its richness. Our working world requires the qualitative capacities of system science that allows us to properly contextualize existence and the rigorous quantitative methods of analysis that allow us to properly compute this information, with the net result as a full[-fillment] visualization of the real world. Along with the individually social method of participation, contribution, humanity has the tools it requires to flourish.

Science as a single body of knowledge, must by definition, be unified. Systems science is a holistic approach the inputs, processes, and all possible outputs, together. Seemingly separate domains, upon closer inspection, fit together at points of integration.

Systems science allows for a recognition of the important interplay between people and technology, and may thus be considered an accountable method for socio-technical understanding and the foundation of [systems engineering] development.

Traditional science rests upon an objective view of the world (Read: analysis) which rests upon removing the subjective interpretation of the view from the model. Systems science is philosophically sophisticated enough to deal with the questions surrounding the subjective nature of the human experience (human condition) that are required to truly resolve an optimal society for all human individuals.

When we infuse belief into any step of the problemsolving process, it can easily become the frame through which all outcomes are viewed. In the market system of belief, in societal projects, a solution is not deemed successful unless it carries a financial upside. This financial upside doesn't have to mean actual revenue; it can simply mean shareholder market value, as is see with many software companies. Whether the solution solves the original problem or not is almost entirely irrelevant to market value. This prioritization of profits over progress puts a ceiling on the amount of real, human value we can actually deliver. It also papers over any resulting collateral damage. In this sense, the idea of human-centered design is about prioritizing human needs over human beliefs.

This principle isn't just about human life sustainability; it's also about the quality of human design solutions. At the societal level of intersystem team operations, the standards and protocols used to control life need fulfillment and life safety are developed based upon societal inquiry (including risk) tolerances aimed to meet the human requirements of all individuals. It is through standards and protocols that we discover, and it is through discovery that we improve standards and protocols.

Nothing create exists in isolation; it all lives within the overall natural cosmo-ecological system. Through systems science, solutions [for the next human societal iteration] can be constructed with safely optimized tolerances that support every individual human of that system. Through science and engineering we are likely to actually craft a more effective and efficient societal solution for human fulfillment.. Here, holistic thinking focuses on problems, processes, solutions, and orientations, given an environment with probabilities.

Does every problem need to be solved? The question of whether, every problem needs to be solved, is a useful one to facilitate recognition between actually necessary, and actually unnecessary, problems? Do any market-based problems need to exist? Do products and services in every human system need a trading price? How does belief-centered thinking keeps consciousness locked a self-centered, power-over-others regulated materializing life bubble. Society could otherwise be structured upon verifiable (falsifiable, verifiable and validatable) measures like well-being, sustainability, equity, and growth opportunity. Human life values could become a base filter through which we evaluate all of our design solutions instead of otherwise solved value orientations.

2.1 Data science

From an information system's perspective (because, this is a project to develop and operate an information

system > society), 'data' science is a set of understandings concerning the intentional/usable nature of data that conceptually unify studies of statistics, data analysis, machine learning and their related methods in order to understand (why) and analyze (how) actual phenomena occur with data. Data science could be said to employ techniques and knowledge of patterns:

- **Human patterns**, **life patterns** meaningful patterns; the experience of interfacing with patterns that mutually benefit all.
- <u>Mathematics</u>, conceptual-visual patterns computational patterns; the visual language of pattern recognition.
- Linguistics, language patterns, language science - unified communications patterns; the unification of linguistic communication, in order to facilitate precision of communication.
- Informatics, informational patterns, information science, data patterns - modeling patterns; the logical way of building and visualizing observable patterns.
- Analytics, pattern recognition, pattern comparative de-composition, analytic sciences
 the collection and de-composed recognition of patterns; a way to observe and de-compose patterns from data based on an existing model.
 - Social system > Discovery.
 - Decision system > Data acquisition and recognition.
- <u>Statistics</u>, pattern prediction, computational understanding sciences, mathematical sciences, inquiry threshold resolution patterns

- predictable patterns; a way to infer patterns from data based on an existing model.

- Social system > Knowledge development, memory, and search.
- Decision system > Parallel inquiries resolution thresholds.
- <u>Computer science</u>, computronics, pattern computation, computer language(s) - soft patterns, a way to build algorithmic patterns. These are conceptually/mentally/consciously interfaceable patterns) based on data of an existing model (i.e., software).
 - Social system > Application to computation, conceptual automation [inquiry].
 - Decision system > Solution Inquiry (in part), computational decision algorithm, which can be visualized and understood by the humans using it).
- Material science, pattern spatialization, spatial patterns, object patterns - hard patterns, a way to build material/physically interfaceable patterns based on data of an existing model (i.e., hardware/

hardware modules).

- Social system > Application to spatial, physical conscious experience [inquiry].
- Decision system > Solution Inquiry (in part), material objectives' encoding algorithm, which can be visualized and understood by the humans using it.

The following is sometimes said of the following processes:

- <u>Scientists</u> care about understanding <u>why</u> something works the way it does.
- <u>Engineers</u> care about <u>how</u> something works; and thus, whether something works or does not work.
- <u>Developers</u> care about <u>when</u> and <u>where</u> something is to work (note engineers are also developers).
- <u>Coordinators</u> care about <u>access</u> to working information.
- <u>Users</u> care about <u>how much</u> something works as required or expected.

2.2 What is a systems-based form of organization?

CLARIFICATION: While many definitions of the word "system" exist, nowadays, the concept, 'system', is more and more frequently used, in different domains, to refer to a real world set of bounded dynamics, as in: a software system, a hardware/physical system, a social system, an economic system, a service system, etc. In each domain the meaning of the word "system" may have nuances.

There are a large range of accurate definitions in the literature for the term, 'system'. In its most broad definition, a 'system' is an integrated set of interacted and organized elements and related processes. The following is a common, comprehensive, list of definitions of the concept, 'system':

- Autonomous entity with regard to its environment, organised in a stable structure (identifiable in the course of time), constituted by interdependent elements, whose interactions contribute in maintaining the system structure and making it evolve.
- A system processes inputs into outputs that achieve and satisfy a purpose or purposes through the use of resources in an environment.
- Aggregation of end products and enabling products to achieve a given purpose (ANSI/EIA 632, the earliest definition of a system to identify the components and the purpose of a system in its definition).
- Combination of interacting elements organized

to achieve one or more stated purposes (ISO/IEC 15288).

- Set of elements and a set of inter-relationships between the elements such that they form a bounded whole relative to the elements around them.
- Set or arrangement of elements [people, products (hardware and software) and processes (facilities, equipment, material, and procedures)] that are related, and whose behavior satisfies operational needs and provides for the life cycle sustainment of the products (IEEE 1220).
- Integrated set of elements, subsystems, or assemblies that accomplish a defined objective. These elements include products (hardware, software, and firmware), processes, people, information, techniques, facilities, services, and other support elements (INCOSE 2010).

NOTE: Many standardized definitions of what a system "is" are available, including but not limited to: [ANSI/EIA 632, IEEE 1220, ISO/IEC 15288, INCOSE SEBOK, TAP CDS-SS-01.

A system, itself, is completely defined by specifying (or otherwise, describing):

- What the system does.
- How the system does it.
- What the system uses to do it.
- Where the system lives ("is" in relation to a larger unified information system)

A system can be comprehended in its entirety through integration of various seemingly separate views, which unify the systems view:

- System context (system environment) context exist as the circumstances, factors, conditions, or patterns that enable or constrain system solutions.
- System bounding (system interface) the bounding of systems along different dimensions (geographical, physical, time, conceptual).
- System concept (system definition) the characteristics, properties, and classification of a system as a system of systems.
- System analysis (system de-composition) the development of approaches to engage in "holistic" analysis for systems.
- System transformation (system process) the nature, framing, and approach to transforming systems of systems from a "holistic" perspective.
- System representation and modeling (system intelligence) the distinction in modeling approach, and the role of representation, for systems.
- System intervention (system change) the design

and deployment of initiatives to purposefully modify a system.

- System development (system prototype) the execution of methodologies an environments necessary to engage in systems engineering.
- System serving (system operation) the development of guiding frameworks and platforms to support [human needs through] system engineering execution.

Wherever there is technology and population that values efficient and effective alignment, then automation and measurement will likely play an important role in service operations. At the societal level, systems science necessitates measurement, and systems engineering necessitates automation.

2.2.1 Systems-based work organizational concepts

The basic systems concepts of 'organization' as applied to 'work' (useful effort) are:

- **Order** An order is a permutation of a list of items, where you are trying to find the best way to arrange a set of given values.
 - A societal service system.
- **Grouping** The Grouping method assigns variables into sets.
 - An InterSystem Team of individuals.
- **Budget/Threshold** The Budget/Threshold method is similar to Recipe except that all of the variables' values must total a number. This method is designed to run budget calculations or assign resource allocations with a Recipe solution in which the total is kept constant.
 - Socio-technical resource accountability decisioning that concerns material composition and position).
- **Schedule** The Schedule method is similar to Grouping except that it assigns elements to blocks of times while meeting certain constraints. This can be used to assign workers or courses to time periods or schedule meetings.
 - Socio-technical event accountability decisioning that concerns material positioning and timing).

2.3 What is the systems approach?

A.k.a., What is a 'working'-type systems organization?

The systems approach is an approach that produces a working systems organization. Systems are processes organized in structural and functional hierarchies. Since all components, and their interactions, exist only

as processes unfolding in time, the word system and the word process are essentially synonyms. Systems are structured hierarchically (logically). As processes, functional hierarchies correspond with the structural hierarchical architecture if systems. Systems naturally organize the work they do by functional hierarchy. A system may consist of several levels where each element at each lower level may by this definition itself be considered a system (i.e., a subsystem of a large system may itself possess all of the attributes of a system).

In a general sense, the concept of a 'system' is applicable to all things, contexts and situations. In other words, the use of the word 'system' can be applied to everything: all situations and contexts, all behaviors and environments, all organizations and experiences, all definitions and explanations, and all visualizations.

Visually, a system is a mapping (visualization) between a set of inputs and a set of outputs. Wherein, there is a relationship between the inputs [entities] and outputs [entities] by means of process [entities]. Here, shape, position, and motion form visualization.

Hierarchies are recognized as the means by which systems naturally organize the work they do. Analytical tools decompose a system. Because systems function through operational hierarchies, it is best to design systems as a hierarchy of components (concept through to material) integrated into working modules, which, in turn, are integrated into meta-modules, the top level of which, at least for society, is the unified societal system. Systems are networks of components tied together via links representing different kinds of relations and flows. Dynamics refers to how the processes operate or change inputs into outputs over time. Systemness is a recursive property in which, starting at some level, one can go up or down. A sub-system cannot extend beyond the capacity of the total system of which it is a part, nor can a sub-system be understood except through the larger system of which it is a part.

CLARIFICATION: A tool is some "thing" (physical or informational) used to carry out a specific function (task, or job).

In order to understand a real world system, it must be studied and engineered as a process, not just structure. As processes, functional hierarchies correspond with the structural hierarchy of systems.

INSIGHT: In a system it is <u>most effective</u> to distribute tasks and processing, but it <u>most</u> <u>efficient</u> to centralize the information system; both can occur in parallel.

The system's approach describes a system (i.e., a system has the following properties):

 Holistic refers to a continuous region of space/ time, that is viewed as a single entity identifiable by properties manifest at its boundary, and is identified generically as the system-of-interest or specifically by a meaningful descriptor.

- Closed boundary refers to the terminating surface that limits the region of consideration from the space/time continuum that it exists without, i.e. its environment, and across which flow interactions between the system and its environment.
- Elements refer to the complete set of discrete subordinate entities that comprise the whole, each having a different homogeneous nature and identity relative to all other members of the set;
- Order refers to the arrangements of elements, their functioning and their relationships and their precedence in a hierarchy of consideration;
- Interaction refers to all the mutual influences that each element has with all other elements;
- Properties refer to all qualities that emerge at the level of the whole in all degrees of freedom as a result of the combinatorial effect of each individual entity, one on another.
- A system is a state of energy and matter with distinguishable arrangement. The reasoning mind is tuned to define regions and to degrees of ordering within them.
- A system is most effectively defined by boundaries that encapsulate meaningful need and practical solution.

NOTE: *A complex system has both structure and process.*

The more common, though broad characterizations of a system include:

- A system is a whole composed of parts, and there is a similarity (resonant quality) between the whole and the parts.
- A system is, in part, defined as a set of system elements that interact to achieve, output a defined mission, input.
- A system is a hierarchical composition of [system] elements. Each [system] elements will need to perform functions that have been allocated to it so that it can contribute to the system's existence, objective, or purpose (as in, imperative or mission).
- A system's objective is broken down into a hierarchical structure of its functions. The logical description of a system's mission is broken down into a hierarchical structure of its major functions to form a functional hierarchy, or a functional architecture.
- The physical hierarchy [of a system] consists of, for example: system, sub-system, assemblies, components.
- All complex system design and development occurs

through a project-based structure (coordinating the designed resolution to commonly indicated problems):

- 1. A project coordination (management) process (e.g., one that can easily be applied to all societal systems).
- 2. Common indicators
 - A. Indicators that allow someone to check how the users handle any mismatch between expectations and results. These expectations may concern:
 - 1. The system to be built (as viewed from the angle of the product or service), or
 - 2. The system for creating (as seen from the viewpoint of performance, stability, and integrity of the organization supporting the project).
 - B. Construct aggregate indicators and dashboards providing an overall process transparency capability.
- 3. Designing a system for an integrated coordination:
 - A. Define mechanisms that provide an objective tool ("aid") for taking into account the needs of stakeholders and following-up, verifying, and validating these needs according to the indicators selected.
 - B. Anticipate and plan the efforts needed (as in, activities and tasks), to check and validate both systems (i.e., the system to be built and the system for creating).
 - C. Mechanisms for tracking any malfunctions by using trend analysis.

2.3.2 Visualization

A.k.a., Modeling.

The second form of visualization, after shape, is structure. A structure is an ordering of objects. Objects and structures can and cannot have motion. Objects and structures without motion are static. A combination of moving objects is a dynamic.

Experience arises through the conscious ordering of structurally static and dynamic shapes, which can occur both at an information (conceptual-interface) level, and at a material (physical-interface) level:

- 1. **Experience** An orderi[ng memory] of consciousness is an experience.
 - A. **Shape** An order of identifiable [geometric] patterns is a shape.
 - 1. **Structure** (order or parts) An order of parts is a structure. Structures can be characterised as having or not having motion (internal and/ or external)

- i. **Motion** An order of operations is a motion..
 - Static no motion (internal / external). No motion to the visualization experience.
 - 2. **Dynamic** motion (internal / external). Simulation of the visual experience.

2.3.2.1 Feedback loop models

Feedback loops are the building blocks of systems' dynamics (i.e., systems' control of behavior). A feedback loop is a structure within which a decision variable (flow) controls an action that is integrated into the system to generate a system state. Information pertaining to the state is then fed back to the decision variable, which in turn is used to control the flows. Two kinds of feedback loops comprise all complex behaviors of a system:

- 1. **Positive feedback loop** Positive loops are self-reinforcing and tend to amplify whatever is happening in the system.
- 2. **Negative feedback loop** Negative loops are self-correcting and tend to counteract and oppose changes. An increase in one parameter causes the other parameter to increase, which then decreases the first parameter.

A feedback loop is composed of two kinds of variables:

- 1. **State** State is an accumulation characteristic of the state of the system that generates the information upon which decisions and actions are based. A state variable is altered by inflows and outflows and is represented by a rectangle in a model.
- 2. **Flow** Flow is a variable that changes a state over a period of time. Flow variables are of two types: An inflow increases a state and an outflow depletes a state. In short, a flow is a statement of system policies that determines how information about the system is translated into action(s).

2.3.2.2 Causal loop diagramming

Causal loop diagrams (CLD) is a systems visualization language composed of a framework of rules for seeing interrelationships rather than just things. For seeing patterns of change rather than static snapshots. A causal loop diagram has two entities:

- Variable state, condition, action, or decision, which can influence or be influenced by other variables. A variable can be quantitative (number or value of some thing), or it can be qualitative (objectives, values, feelings, non-functional requirements).
- Arrow indicates a causal relationship or change of the state of new variables.

A causal loop diagram shows the visual dynamics of inter-relationships. Those salient variable points are identified (or, scheduled) in time as events (or, milestones and tasks). A causal loop diagram is a systems-type modeling tool and can be analyzed by identifying feedback loops formed in the model. A real world causal loop diagram would normally have feedback loops. A feedback loop arises when a sequence of interactions between variables through arrows form a closed loop. The feedback loops can be reinforcing, or balancing, which are visualized, which then become visible as taskactivities. For example a recent analysis of the biosphere on Cat Ba Island in Vietnam identified ten reinforcing (R) and five balancing (B) loops. (Tri et al., 2018)

There are two types of feedback loops:

- **Reinforcing loops** positive feedback systems that represent growing or declining actions, or information cohesion.
- Balancing loops (negative feedback loops) negative feedback loops seek stability or return to control; for example, those designed to control automated vehicles and service bots.

2.4 Modeling system dynamics

A system dynamics (objects-process) model can be used as a virtual world to simulate real-life material situations. A virtual world is a formal model, simulation, or "microworld" in which decisions can be taken (i.e., there is choice), experiments can be conducted, and situations can be acted out (i.e., simulated), in order to more greatly understand.

Everything in physics, in engineering, is a model. A model is a set if "ideas" about the ways some thing works. A model explains the facts (the meaning, explains the experience).

2.4.1 Modeling system objects

All objects have the property of shape, and all shape is geometry. Therein, objects perform motions. The objects themselves, their relationships and motions may be modeled (as in, identified by rules and explained by visualization of the objects and their relationships).

2.5 Why is the systems approach used?

The systems approach may be used by all conscious individuals to ensure the freedom, efficiency, and effectiveness of all cooperation. The systems approach greatly facilitates certainty of directionality in an uncertain environment.

2.5.1 Evidence of claim to existence

In its real-world application by embodied consciousness,

systems science encodes three primary types of evidence for individually, conscientiously considering (and socially "taking") a claim to existence:

- 1. Physical observation (sensation, perception).
- 2. Physical explanation (physics modeling).
- 3. Statistical evidence is demonstrated by data analysis on a study:
 - A. Clear evidence.
 - B. Some evidence.
 - C. Equivocal evidence.
 - D. No evidence.

2.5.2 Data validity

'Validity' is traditionally understood to refer to the correctness or precision of a data reading. Validity concerns measurements 'truly' recording what they intend to measure. In qualitative research it concerns the extent to which the phenomena under study is being accurately reflected, as perceived by the study population. Validity has two dimensions, internal concerned with the success of the research to investigate what it claims and external concerned with applicability of the abstract constructs to other populations.

NOTE: If it is 'valid' science, then it is 'valid' science, and it doesn't matter who is doing the science.

2.5.3 Data reproducibility

Reproducibility is the systematic reproduction of a system, or set of data. Reproducibility is the foundation of modern systems science. If there is not reproducibility, then possibly it could be a mistake, error, fraud, corruption, or just a conflict of interest. It's not science as a body of knowledge until it has been tested, checked and replicated. Science is based on being able to understand and to reproduce a result. In order for data to be use useful, engineering knowledge, it must be reproducible. When science is going to be used for engineering into human lives, it is tested first.

NOTE: *Modeling (analytical-synthesis, computation) is not the same as scientific inquiry.*

Science is used to discover data from an uncertain environment. Sensors are used to discover data from a certain environment, because the sensors are designed based upon an engineering pre-designed and preselected model.

2.5.4 Real [world] information system processes

Everything is a system, and every system in an information process. A real system's core information processes can be described in two broad descriptive

ways (logical and physical):

- Logical (or functional) requirements description (a.k.a., functional hierarchy) - what the system will do, how well it will do it, how it will be tested, under what conditions it will perform, what other systems will be involved with its operation.
 - A. System logical architecture (functional architecture; system development) outlined in requirements breakdown structure.
- 2. **Physical/material requirements description** what the system elements are, how they look, and how they are to manufactured, integrated, and tested.
 - A. **System physical architecture (system development)** - mapped onto the logical architecture as represented by [the configuration items contained in] the *work breakdown structure*.

***NOTE:** In general, the logical description of a functional system tends to change slowly; whereas the physical description tends to change much faster as knowledge and technology advances.

2.5.5 System information flow modeling

Systems can be described in various ways by their expressed type of interactions (information flow relative to the system boundary):

System types (per type of environmental interaction):

- Open system interacts with the surrounding environment through a boundary.
- Closed system does not interact/exchange with the surrounding environment.

System types (by internal interaction):

- Transformational a process that receives one or more system inputs I from an external environment, transforms them with process T, and then releases them as system outputs O to an external environment. A transformational system generates an output and them terminates.
 - Single input/single output
 - Multiple input/multiple output
- Reactive -a system that, when turned on, is able to create desired effects in its environment by enabling, enforcing, or preventing events in the environment. Reactive systems are involved in a continuous interaction with the environment. Wherein, the environment generates input events at discrete intervals through on or more interfaces

and the system reacts by changing its state and possibly generating output events.

System types (reactive types):

- Real-time systems a system in which the correctness of a response depends on the logical correctness and time at which the response is produced.
- Safety-critical malfunctioning of the system could lead to a loss of life or the system itself.
- Embedded the system is embedded within another system.
- Control determined and/or generate a desired behavior in the environment.

Some common characteristics of a life-system type of organization include:

- Emergence -the way in which complex systems and patterns arise out of a multiplicity of relatively simple interactions. Something unexpected in the collective behavior of an entity within its environment, not attributable to any subset of its parts, that is present (and observed) in a given view and not present (or observed) in any other view). Other definitions state that that which emerges can be expected as well as unexpected benefits or consequences. System properties emerge from the synthesis of the interactions between components, at each level of interconnection within a system. This emergent behavior is something other than what is seen at the level that gave rise to it. The concept of emergence as representing the collective behavior of the system elements that reside in a lower level. The behavior cannot (generally) be predicted from or described by the properties of those elements, but is something unique that manifests when all those elements are joined together and interact with each other. The concept of emergence is intrinsic to all types of systems.
- Hierarchy- an arrangement of items in which the items are represented as being above, below, or at the same level as one another.
 - Layered the hierarchy of system components is clustered into horizontal strata (e.g., open system interconnection, osi, model for computer communications, or google earth GSI with layers of data overplayed onto on the real world geographical model).
- Network a set of elements (or modules,nodes,or devices) that are connected by a set of interfaces (or links or commas channels or protocols).

Formally, a network is a graph. A network topology describes the connectivity (or arrangement) of nodes on a network.

2.5.6 Information systems organization

NOTE: *In information sciences, an organization is a variant of a clustered entity (or its equivalent).*

A 'system' is also known as an 'organization' (in various English contexts). An organization is an identity (a system has a boundary) in which there are component (combined, together) parts (a system has sub-systems).

There are two principal types of organizations, either as structure or process (note, these terms are often used interchangeably in common parlance).

Organization as structure (noun):

- Function and Condition of structure.
- Shape and Geometry of structure.
- This is prior action.
- This is project life cycle [knowledge].
- This is data architecture [in an information system].
- Structures are designed (aligned), selected, and implemented.
- Enters materiality as physicalized hardware and software assets (I.e., asset categories).
- Organizational structures determine information flow within an organization.

Organization as process (verb):

- Input and Output of process.
- Equation and Algebra of process.
- This is action.
- This is project progress/process [groups].
- This is computation [in an information system].
 Processes are designed (aligned) selected and
- Processes are designed (aligned), selected, and executed.
- Enters materiality as abstract 'service' categories (e.g., HSS).
- Organizational processes compute information flow within an organization.

Service organizations have a (1) function, and they, (2) will do it at a specifically pre-set quality (it is when we contribute that we may truly do:

- A 'function' [is a process into] transforms an input into an output
 - An 'operational process' that uses resources and transforms into outputs, the inputs of individual humans.
- A 'condition' [is a structure that] orders (regulates or qualifies) how an input is transformed into an output

• A 'quality' evaluation of expectation as pre-set by an individual human user's consciousness.

2.5.6.1 Organizational structure

An organizational structure defines how activities therein (e.g., resource allocation and work coordination) are directed toward the achievement of organizational objectives. An organization[al structure] can also be considered the view, visualization, model, or perspective through which individuals observe an organization's presence. And, the organization's observed behavior may be viewed as its active [operational] processes (which exist in relation to an environment and physics).

2.5.6.2 Organizational knowledge

In an information system, knowledge is structureorganization-process (a complete information package) with a high certainty in its alignment to real world existence; thus, carrying a usefulness in navigating within the real world. It is from this understanding of 'knowledge' that societal-level life[style] fulfillment becomes possible.

2.5.6.3 Information system data types

User view of data input types:

- Data having type was the user prompted to input information (i.e., is the user <u>having</u> a prompt to enter input)?
 - **Prompted** Requested input (i.e., requested data is input).
 - **Unprompted** Non-requested input (i.e., non-requested data is input).
- Data **being** type is the input information numerical (i.e., what type of data pattern is <u>being</u> input)?
 - Functional (quantitative, numerical) Numbered input (i.e., data of type 'numerical' is input).
 - Non-functional (qualitative, conditional) Nonnumbered input (i.e., data of type 'linguistic' is input).
- Data **doing** type does the input information conform to standards (i.e., is the user <u>doing</u> the input information correctly/coherently)?
 - **Structured information** Structured input; data fits into model precisely (i.e., data is input per standard structure).
 - Unstructured information Non-structured input; data does not fit into model precisely (i.e., data is not input per standard structure).

Developer/operator view of data input types:

- 1. Conceptual design (What, definition)
 - A. Technical design (How, explanation)
 - The design needs to be:

- Correct and complete
- Understandable
- In alignment with organizational protocols
- The design needs to satisfy a validation criteria:
 - The users direct requirements
 - · The organizations requirements

In order to meet the expectations of the user, developer, and operator, the system should be sufficiently curious (inquiring) about what [changes] may be needed:

- A prompt is a mechanism to capture the answer for a specific question.
- A prompt is a sign on the screen that shows that the computer is waiting for input. The answer provided to a prompt is stored as a parameter that can be used by another question or as a filter value for a data query.
- A prompt is a way of assigning members to a dimension. Note that in psychology, priming is a prompt is something that is added into the environment to help elicit ("cue") a correct response.

2.5.6.4 Materiality data (spatial data)

Spatial data [infrastructure, SDI] is a data framework of geographic data, metadata, users, and tools that are interactively connected in order to efficiently and effectively modify the environment. In general, this refers to the layered overlaying of data upon a visual reference of the geographic world.

2.6 What does society have as result of systems science?

A.k.a., Doing work systematically, society has stability. The design of an organization is causatively dependent on the requirements of that organization.

The completion of a set of studies that by some relatively designed degree absolutely provides the data required to resolve a new societal system, in the now, and therein, service usability is the result of 'systems science'. These studies inquire and account in order to meet life, technology, and exploratory demand in an uncertain, by degree, environment.

The "proof of truth" is not in the authority [of an expert], but in the experience of using the formal language of systems to represent a [working] real world (and have the individual conscious experience of that proof match with the linguistically shared model). As a data type, a fact is a description of that which has occurred (record of event), is occurring (executing and monitoring if event), or will occur (event predictability/probability). A societal systems-level proof necessitates the application and resolution of an operating system (life platform, where 'life' is the true alignment) populated with factual-type data [about life in the real world]. That which is a proof of true alignment with the highest qualities if life, is that which can be validated.

Both discoverability and reusability are critical to ensuring the reproducibility of the research, a basic principle of the scientific method.

- **Discoverability** is the ability of a data set to be discovered by someone else.
- **Reusability** is the ability for a data set to be used again by its producer and/or someone else.

Note that most factual descriptions carry the unifying reference record (meta-tag) of 'certainty of the fact', given all that is known currently by the unified system. Without unity (integration) there is no trust (or less trust) in the certainty of any record. In a dis-unified information system, there is some amount of uncertainty that could be avoided through more unity (more integration). With more integration, there is more trustability and less uncertainty. For a user, a high-quality service is a service that can be trusted. For a user to fully trust the quality of a service, everything about the service must be transparently integrated [at an interface for the user]. For a contributor, a high-quality structure is a team structure for which there is appropriate certainty that contribution will be effective.

NOTE: *In general, more [accurate] information facilitates uncertainty reduction.*

Whether someone is competent and qualified on knowing something, or knowing how to do something, from information in the unified societal information system is not a matter of opinion; it can be verified. In this way, the knowledge and actions of an contributor ("expert") can be tested. In an unaccountable or disunified system, where verification and accountability are less present, then "experts" and their "decisions" (opinions maybe) are less trustworthy.

In community, the idea of [a separate group of people known as] "experts" taking decisions on the part of others, is not only a dis-empowering viewpoint (because anyone given motivation can become one), but is also factually incorrect when society is viewed from a project approach (because projects exist for users).

In a societal structure divided by in-group bias, then decisioning and control by socio-technical "experts" may not be desirable for widespread human well-being, because the "experts" cant be verified through the a unified information system. And when an authority figure becomes the source [of all] experts, then the social honor of being an "expert" holds even less reliability ("credibility"). Rule by experts (who cannot also be oneself) is unlikely to create an optimally fulfilling set of conditions. What truly threatens the loss of fulfillment and knowledge is the loss of a contribution-based structure. The way to "protect" knowledge, to know the difference between truth and falsity, is to have unified information access (to ensure transparency), have a method (by which to determine either truth of false), and to use collaboration, where those individuals doing the work are verifiably competent (or in training, and their work can be validated to be so). The idea of rule by experts carries with it that the idea that who they will be ruling are intellectually passive consumers. An open source system could have useful contribution from anywhere.

It is essential when working together to not replace the individual experience of proof (upon the part of any user or contributor) with any authority [figure or leader]. In the context of, "Where does the project propose that 'authority' lie?", the following questions are used to bound the solution to that inquiry.

- This project does not propose a system controlled by an expert-ruling elite, a technocratic authority.
- This project does not propose a non-factual (opinion-type) decisioning structure, a political authority.
- This project does not propose a secret and closed information structure to coordinated societal organization, private [ownership] authority.
- This project does propose to account for the factual position and composition (past, present, and future) of resource configurations (i.e., of material solutions).
- This project does propose to account for discoverable human needs within a common, real-world human environment.
- This project does propose to account for the use of a specific set of value conditions to evaluate the results of different solution configurations. And, this project has reasoned the selection a specific set of condition encodability statements (i.e., the value statements of freedom, justice, and efficiency as core to the economic, parallel socio-decisioning protocol).

2.6.1 How could society be organized through systems science?

Systems science is unique in its mode of inquiry in that it reveals not just how one kind of system, say a biological system, works, but rather how all kinds of systems work. That is, it looks at what is common across all kinds of systems in terms of form and function. In this sense, it is a meta-science, something that informs all other sciences that deal with particular kinds of systems. In part, systems science (a.k.a., information science) is a formal language or formal logic, which is internally consistent and useful for modeling and interacting in a real world.

When applied to the human context, systems science has two problem-based information orientations:

- There is the problem of understanding the world.
 - Science explains the mechanism.
- There is the <u>problem of changing</u> (developing) in the world.
 - Engineering applies the mechanism.

In systems science, there are three primary questions that acquire information and compose its information set:

- Epistemic questions (philosophic questions, data structure) - questions that concern the axiomatic, non-contradictory, and structural flow of information.
- 2. **2. Physics questions** (scientific questions, discovery structure) questions that concern shape.
- 3. Applied physics questions (<u>engineering questions</u>, <u>operating structure</u>) - questions that concern the application of shape [in service] for a[n intentional] function.

At the societal level, there are three systems science problems domain, the resolved inquiry of which is an optimally discovered societal service system, given what is known:

- System application the specific classes of problems that are appropriate for the usage (ability) of systems science (scientific inquiry, project/ information coordination, and engineering).
 - Systems applications; systems science as a functional service to some user who has requirements (an intention). Discover how to identify information.
- 2. 2. System **method** *the specific* <u>function that</u> <u>resolves the problem (solution)</u>, given multiple names, including but not limited to: techniques, processes, or tools; all of which are used in applications.
 - Systems methods systems science as a body of method-based knowledge. Discover how to transform information.
- 3. 3. System **team** *the specific* <u>humans and technical</u> <u>systems</u> that execute the method, the highest level of which, in the context of a societal system, is the InterSystem Team. Discover how to most efficiently and effectively operate as a [social] team based upon information.
 - Systems teams systems science as a cooperative structure (and body of knowledge) coordinating the experience of a solution to a set of human requirements. In other words, it is here that society is "executed" for the fulfillment of all as a (or, through a) unified system.

In the content of intentional-conscious change to

existence, systems science can be partitioned into five information sets (areas) that form a solution to human requirements:

- System axiomatic the accepted knowledge (principles, theory, concepts, rules/laws) that explain systems and their associated phenomena.
 - Systems conception Instantiation of two (or more) objects and a relationship [as a system].
- 2. System **philosophic** *the* <u>epistemological</u> (Read: how any system may come to be known by following the flow of information to its source) and *the* <u>ontological</u> (Read: how systems are realized, as shape and structure, at various levels of the world of observation).
 - Systems visualization Instantiation of a data structure [for a system].
- System methodological the reasoned logical selection of systems-based methods to inquire into and gain knowledge concerning systems, and how they may be most optimally changed.
 - Systems logic Instantiation of a replicable pattern for accessing information [about a system].

NOTE: Often, the term 'philosophical' is used to describe the core conceptual reasoning for an ontological, or unified life, model.

Real-world systems are understood through objectprocesses that form the state of a system; thus existing:

- 1. Objects exist objects are that which exist, or can exist. All objects have shape.
- 2. Processes exist transformations of objects. All processes transform objects by generating, consuming, or affecting them.
- 3. States exist identifiable synchronization of object-processes. All states expresses the situation at which an object can 'be' in a conditional relationship to other object processes).

Herein, a system is an object with a structure, that does a functional process, that expresses a behavioral state condition:

- 1. Function what the system does.
- 2. Structure how the system is constructed.
- 3. Behavior how does the system change, or how is the observably system expressed, over time.

In relation to the systems method,

- 1. A system is an object.
- 2. All objects have structure (i.e., shape).
- 3. All designed (active, dynamic, in motion) structures

have a function, represented as a process (a type of sub-object).

 All designed process functions express sensible (observable) behaviors that change the condition(s) of their environment.

2.6.2 Information flows

Fundamentally, as a result of the application of systemsscience, society has awareness and the capability to work with information flows (of a conceptual and spatial nature). For there to exist human global cooperation, it is essential for humanity to have globally transparent awareness of all relevant information flows.

A "flow" of 'information' is defined as a unidirectional series of related data -- a set of 'information' "packets" passing through an observation point during a certain 'time' interval. In an information system, 'flow' is the observed or predicted motion of information. The motion of all information constructions in the conceptual and spatial systems can be planned (with some degree of certainty).

NOTE: To "flow" is to move, transfer, or behave. There are many types of information movement (e.g., sorting, translocating, calculating, encoding, etc.).

In any given information system, information generally flows from:

- 1. Conception (ideation), to
- 2. Decided execution (algorithm), into
- 3. Materialization (production-operations), and back again as
- 4. An information issue (conception), whereupon
- 5. The materialization is measured and its alignment in quantity and quality are assessed.

There are two general types of information process flow (Read: information flow model types):

- 1. **Linear type (linearity)** the process flows sequentially without repetition (or, iteration). In geometric navigation, this concept is visualized as a line.
 - A sequential flow (motion) of information. Linear, sequential.
- Iterative type (continuity/Life-cycle/ extensionality) - the process flows with repetition (or, continuity; a rotation of the linear into an extension/continuation, of life). In geometric navigation, this concept is visualized as an arc (a line rotated to become, or becoming, circular).
 - Iteration (repetition) of the flow/motion of information. Looping, overlapping.
 - An iterative process with memory is evolutionary (i.e., is an evolutionary/adaptive process flow).

All process flows can be visualized, because in all process flows there is an object with shape and/or a conception.

A flowchart (a.k.a process flow diagram, chart) - is a visual representation of the sequence of steps and decisions required to perform a process. Each step in the process of information flow is noted with a diagram shape. Objects and steps are linked by connecting lines and directional arrows. Each object/step can be made up of either: a concept (pure information), an object (geometric shape), or two objects and a concept.

The visualization of information process flows is necessary for shared creation and operation:

- Effective <u>understanding</u> of a process.
- Effective <u>communication</u> of a process.
- Effective execution of a process.

Common elements that may be included in a[n information] process flow [visualization] are:

- Sequence [of process]
- Inputs and outputs [of process]
- Decisions [of process]
- Activities [of process]
- People [of process]
- Time [of process]
- Measurement [of process]

2.7 What is a living system's approach?

A living system is the conception of organizationstructure-process is one in which a process [self] organizes [its own] structure (autopoiesis). Hence, three criteria are needed for identifying a living system:

- 1. **The pattern of organization** A pattern of organization is the configuration of relationships that determines the system's essential characteristics.
 - Autopoiesis as self-structuring and/or selfreplication (defined by Maturana and Varela, 1987).
- 2. **The structure** A structure is the physical (i.e., "architectural") embodiment of the system's pattern of organization.
 - Dissipative structures as defined by Prigogine and Stengers, 1987.
- 3. **The life process** A life process is an activity involved in the continual embodiment of the system's pattern of organization.
 - Cognition as defined by Gregory Bateson, 1979.

All [living] systems can be sub-composed by the three axioms (vectors, ontological forms) of systems:

- 1. **Shape** Structure refers to the attributes distinguishing some thing (trait, value, shape and efficacy) from other things. Structure refers closed systems (or the attributes of the universe that are independent). Also, structure refers to individual things.
 - A body.
- Relation Organization refers to parts that comprise some thing - the properties (evident by valued traits), and their relationship (evident by their shape and efficacy). Organization refers to open systems (or the parts of the universe that depend on closed systems). Also, organization refers to categories of things (clusters of individuals, where a part is a category).
 - More than one body.
- Transformation Process refers to the constitution of parts - the bundle of related properties that produces a whole thing. Process refers to social systems (or the wholes that are inter-dependent on closed and open systems that make up ecosystems, e.g., the universe). Also, process refers to universal things (all things, e.g., parts as the set).
 Chapring more than one body.
 - Changing more than one body.

A [living] system may be analyzed based upon:

- 1. What the thing is composed of (the structures that distinguish it)?
- 2. How the thing is composed (the organization of the parts), and that a whole thing is an organized structure (the process of comprising the parts)?

As a coherent whole, a living system is:

- An autonomous entity (i.e., a system is an autonomous entity with regard to its environment).
- Organised in a stable structure, identifiable over the course of time.
- Constituted by interdependent elements, whose interactions contribute in maintaining the system structure, and correlate with its evolution or de-evolution.

The primary attributes of the inputs and outputs are:

- The outputs may be equivalent and/or changed from the inputs.
- The inputs may be self-causative and/or environmental-causative.

Basic systems terminology for a living system are:

- Boundary that which separates a system from its external environment (e.g., walls in a building).
- Inputs -elects that enter the system (e.g., raw

materials entering a production plant).

- Outputs finished products and consequences of being in the system (e.g., a new vehicle leaving a production plant).
- Threats those elements that can potentially affect the acceptability of the system configuration (e.g., lack of knowledge, insufficient time, lack of resources, violence, etc.).

It is common to consider the activities being undertaken throughout the life of a real-world life system to be in either the:

- Problem domain (problem space) where predominantly logical descriptions are used.
 - A problem space is a "space" of possible problems that form the decision space.
- Solution domain where predominantly physical descriptions.
 - A solution space is a "space" of possible solutions, and a selected solution (if present).

2.8 Complex systems

Systems thinking provides the vocabulary and concepts to deal with complex environments. In the real world, there is a systems network. Within the unified systems network, there are supra-systems and sub-systems. The term 'system of systems' is sometimes used to refer to interacting system elements, some of which may be systems in their own right.

Society is a complex of systems (i.e., a system-of-systems). In systems thinking there is a distinction between:

- Systems as elements of a 'system of systems'.
- Sub-systems as elements of a system.

From a design perspective, the 'system of systems' comprises systems that have been optimized for their own purposes before joining the systems of systems. Alternatively, a system that comprises elements (system > sub-systems), the sub-systems, that are not optimized for their own purposes, but have been optimized for the system's purpose. From a higher level perspective, a 'system of systems' is most likely not optimized.

2.8.1 Systems bottlenecking

In general, the term bottlenecking means that one aspect of a system "holds back" (i.e., requires inefficiency) of another, keeping it from reaching its full potential. A good analogy is the merging of a five lane highway into/ before a single lane tunnel or accident; one part of the transportation system (e.g., accident or tunnel), will be holding back another one (e.g., getting to the destination quickest), keeping it from reaching its full performance potential. Bottlenecking is a systems builder's problem (or challenge) when designing a system to build.

However, from a designers perspective, "bottlenecking", is a misnomer; there is always a slowest component. If the designer/engineer replaces the slowest component with a faster one, then the designer has just created "bottleneck" (i.e., another point becomes the slowest, or least performable, in the system).

2.8.2 Systems hierarchy

PRINCIPLE: A society that helps everyone help themselves.

From a designers perspective, a system 'hierarchy' is a system 'accountability structure' with priority processing (given some meaningful purpose):

- A hierarchy is a tree-type framework (Read: a top-to-bottom flow of information) composed of related levels of information, and the hierarchy ("tree") representing a unification of information.
- In maths a hierarchy is called a 'directed' graph branches of information flow from the initiating directive [entity] at the top, down to the lowest level branches (requirements).
- A hierarchy is a visual elaboration of organization, where each level [in the hierarchy] can be decomposed to the next level down.
- Hierarchies require numerical or spatial information to identify separate levels.

Hierarchical multilevel structures are omnipresent in living (real world) systems; both in a purely technical context (e.g., cyber-physical systems) and in a sociotechnical context (e.g., InterSystem Teams).

A unified hierarchical structure enables organizational:

- *Accountability* within an environment of increasing technical and organizational complexity.
- *Efficiency* by breaking issues down into [decisioning units that solve] sub-problems or sub-integrations.

3 Why does this project propose an information system?

Information is an "abstract" form of resources without, which no system could be produced or operated. Living systems use information for control, so that intelligence can implemented. An information system is, by definition, a unified structure of information. Information systems are common to all [human] organizations.

INSIGHT: When reality is perceived as data, then computers give users the ability to simulate using data. Computers give individuals the ability to access a common simulation using common data.

For any given society, there may be one unified multiple information systems with sub-system perspectives. A socio-technical information system is a combination of information technology and human activities using that technology to support decisioning and operations (for user function). A project's 'information system' coordinates the integration of project information. A material-type 'information system' is used to refer to the model of all possible interactions between people, algorithmic processes, data, and technology [in a material world], and to sustain the operation of the current model, which is experienced. In this sense, the term is used to refer not only to the information and communication technology a social organization (or system) uses, but also to the way in which people (the social system) interact with this technology in support of self-organizational processes (e.g., human requirements).

The habitat service system is captured by information [as past states, a current states, and future probable states. As part of the material information system, a geographic/geospatial information system stores, analyzes, and models the [commonly] locatable, [within a visually] positional world. A geospatial information system merges cartography, statistical analysis, and database technology with real world objects in real world positions. Therein, the project 'information system' coordinates, and disseminates data, that are linked to decisions with temporal and location relevant information (decisions that affect the materialized/-ing societal system as the understood conception of an experienced existence by consciousness).

NOTE: A geographic/geospatial information system (GIS) stores, analyzes, coordinates, and disseminates data that are linked to locations. A GIS is the merging of cartography, statistical analysis, and database technology.

There are two inter-related levels information system operationally relevant for any given individual in society:

• <u>A social-level</u> [information] operating system the social organizational structure in actualized operation, capability pre-determined through a method of shared visualization and execution.

- The development engineers visualize and test services.
- The operations engineers execute and control services.
- There are two parallel societal decision system inquiry processes:
 - The social inquiry [solution] process
 - The technical inquiry [solution] process
- <u>A self-level [information]</u> operating system the egoic self (i.e., conscious self-modeling), capability pre-determined through a method of self realization and self determination.
 - The Individual uses and has issues with service. Individuals take decisions when using services.
 - The individual contributes to the continuation (iteration) of needed services. Individuals take decisions when producing and operating services.

NOTE: The real-world is a continuous, dynamic, and [partially] observable environment. An environment that is dynamic and partially observable has uncertainty (and therefore, novelty).

3.1 What is a real world societal information systems model?

A.k.a., Real world societal human information system.

A real world societal information system is defined as:

- Real world it contains the next selection of itself as a model of the real world and the next selection to execute into materiality.
- Societal it accounts for all individuals, together.
- Information it accounts for the information base of existence.
- System it accounts for formal cooperation, integration, and unified communication (unified communications language).

3.2 One unifying information model

In order to operate safely in a material world, intelligence must be applied, and this may be done through a unified model that accounts for an environment:

- Is the environment deterministic, then apply the actions of planning and search.
- Is the environment stochastic, then apply MDPs (modeling of interaction to achieve a goal) and reinforcement learning (note, in the real world, the

"reward", or reinforcement, is the fulfillment of a real human requirement).

• A Markov decision process (MDP) is a discrete time stochastic control process. The process is a mathematical framework for modeling decisioning in situations where outcomes are partly random (environmentally influenced without 99% certainty) and partly under the control of a decisioning [integration] agent. MDPs are useful for studying optimization problems solved via dynamic programming and reinforcement learning. MDPs are used in many disciplines, including robotics, automatic control, economics, and manufacturing. At each time step, the process is in some state s, and the decisioning agent [of control] may choose any action *a* that is available in state *s*. The process responds at the next time step by randomly moving into a new state s', and giving the decision maker a corresponding reward $R_{a}(s,s')$. The probability that the process moves into its new state s' is influenced by the chosen action. Specifically, it is given by the state transition function $P_{a}(s,s')$. Thus, the next state s' depends on the current state s and the decision maker's action a. But given s and a, it is conditionally independent of all previous states and actions; in other words, the state transitions of an MDP satisfies the Markov property.

NOTE: The real-world is a continuous, dynamic, and [partially] observable environment. An environment that is dynamic and partially observable has uncertainty (and therefore, novelty).

3.3 Societal planning

Societal-level (Read: societal systems-level) planning is possible through a total systems approach to abundant and safe materialization of human fulfillment in a common and complex state-dynamic environment. Therein, each societal system may be accounted for in any given societal project:

- A Social Systems-level project
- A Decision Systems-level project
- A Lifestyle Systems-level project
- A Material Systems-level project

3.4 What is a real-world, communityinformation systems model?

In order to resolve real world problems (not just patchwork), then a base foundation of 'information' must be perceived of by consciousness? The perception [by

consciousness] of everything as information is necessary if [real world] problems are to [f]actually conceived and resolved by the processing (linguistic sign) and calculation (mathematical sign) of information as 'data'. In other words, "we" perceive of everything as information, which may flow (by means of conscious intention) through a structure, and changing the entropy of the whole information system (towards greater complexity, more order, and thus, more potential [capability], or less complexity, less order, and thus, a lesser potential [capability]. It is here, from the information perspective, that knowledge becomes increasingly available the greater [a consciousness] is able to extend (Read: extensionality/exteriorization - the ability to extend one's view of self; beyond the self to encompass more of the self) its integrated "perception-conception" matrix. In romantic language, the prior sentence could be said as: "knowledge becomes increasingly available the more love one has".

NOTE: Society is the individual's socio-technical project.

Community is a single societal system (as in, socioeconomic, socio-technical, socio-decisioning), because the user and the contributor are the same (are in cooperation, sharing access). The market-State is not a single system, because the employer (owner) and/ or employee and/or consumer are not the same entity (are in competition, ownership of access). Whereas in community, there is recognition and unification of information, other types of society may neither recognize their information base nor seeks its unification.

All human-contextual complex systems exhibit closely interacting technical, decisional, and social components. Within the realm of 'technical' systems, emerging algorithmically unified (information-physical) systems, such as intelligent transportation and mechtronic (or automated robots) systems exhibit close interactions between components of, what was previously considered (now a historical context), a fundamentally different nature, namely, computational and physical components as separate. The informational systems view allows for a unification of the two previously separate perspectives, from which may arise, a second order ["cybernetic"] societal system:

- A system that evaluates and integrates feedback from the environment,
- after the execution of a decision,
- which resolved a solution to a problem,
- arising [in awareness] from an individual's interaction with an environment,
- artificially limiting individual's fulfillment, and causatively [in an information system], producing a 'decision' space,
- resolving through logic (which may be repeated as an algorithm) to an action in the material environment through execution by an individual or

system with tools and resources,

- that reconfigures the state-dynamic of the environment (Read: the habitat),
- for greater [entropy] or lesser [entropy] states of individual's fulfillment.

What is visible from this description of society as information is that real things are multi-faceted, and that each level (or differentiation) needs to be considered separate and together.

3.4.1 What is a unified approach to societal state change?

A unified approach to societal state change is likely to be composed of:

- A unified approach to <u>decisioning</u>, optimized as algorithmic decisioning.
- A unified approach as <u>indication</u>, optimized through modeling and evaluation.
- A unified approach as <u>servicing</u> (operations for) a user who is also a common[-unity, open source] designer.

3.4.2 How may a societal model be used as a navigation tool?

A.k.a., Organizing societal navigation.

It is possible to coherently organize society so that it navigates the planetary environment safely.

Societal navigation may be said to have two broad controlling principles:

- <u>Safety in ensuring fulfillment</u> of basic and higher potential needs as the direction.
 - Adapting direction, while following the precautionary principle.
- <u>Coordination in organizing the fulfillment</u> of needs.
 - Optimizing orientation, while following the efficiency (maximization) principle.

Sufficient for,

• Next steps are adaptively optimized to the conditions necessary to generate the highest fulfillment of all.

3.4.3 Science and engineering information sub-systems

Science and engineering have interrelating information flows:

• Science involves understanding (theory), Engineering involves prediction and creation (invention, implementation and optimization, optimal solutions).

- Science is why, engineering is how. Science is knowledge; engineering is the application of that knowledge to human purpose.
- Science is truth-oriented, whereas engineering is goal-oriented.
 - Science is the work of theory [visualization for understanding] and empirical research [testing, i.e. designing and conducting experiments].
 - Engineering is goal-oriented is solving a specific set of problems with available tools and techniques.
- A prediction is an expected future probability: science predictions are about the expected future probability that a model is true (i.e., accurate), and engineering predictions are about the expected future probability that a system will function as expected (i.e., accurately).
- In terms of data, data science is science (discovering data structures), while data engineering is engineering (designing and creating data structures).
- The discipline of decisioning (decision making) is decision science. Data science and data engineering both exist to support this discipline.

In a non-unified societal information system, these two disciplines are likely to evolve separately, and have separate cultures, think differently and speak differently, the social networks are different. Societal systems unification requires [the integration of] both.

3.4.4 Societal solution decisioning

In order to optimally sustain fulfillment among individuals in society, there are two societal-level, resource-access requirements:

- Coordinated and controlled access to common heritage resources (information and material) through societal solution decisioning.
- Coordinated and controlled design execution of a materializing habitat system through societal solution decisioning.

It is possible to develop and operate a service system with a high probability of fulfilling all [human] population requirements, optimally, when accounting for:

- Common heritage survey of global resources (as in, area and object; position and reference/standard).
- Common heritage information space for the open assembly and operation of the operational service system, including its information system.
- Common heritage index of human need, fulfillment and optimal environmental, solutions.

3.4.5 The projected societal system's

development

The development of a unified socio-technical system necessitates a unified, systems approach applying project coordination to a unified, societally engineered system.

Developing a [complex] societal systems is a highly interactive socio-technical process (group) involving many people that have to resolve decisions together (i.e., have to develop and take jointly consistent decisions). In this dynamic process, process organization and engineering must operate in conjunction. Projected systems necessitate the conception of an working information set. The project planning of a societal system necessarily involves the iterative integration of the planned sub-systems.

The principal societal systems include:

- Societal information system
- Material habitat service system
 - Service development [engineering] systems
 - Service operational [support] systems
 - Asset/objects systems

Decomposed by material operational structure type:

- Function-based system (functional asset)
- Non-functional-based (quality asset)
- Product-based system (service asset)
- Spatially-based (local [city] asset, global [HSS] asset)
- Information and digitally-based (community or InterSystem interface)

Decisioning protocols (logic):

- Execute protocols (decisioning to execution)
- Control information flow (centralized, decentralized)

Science is used to discover data from an uncertain environment. Scientific sensors are used to discover data from a certain environment (because they are designed based upon an engineering pre-designed model). Information is used to resolve plan issued decisions. Knowledge is used to resolve engineering issued decisions (e.g., technical solution inquiry space; engineering systems control; the engineering problem).

- The operations (a.k.a., service) problem (i.e., organizationally optimized operations problem).
 - The human operational-functional service [InterSystem] team (i.e., functional human contribution organization problem).
 - The [controlled] habitat service system (i.e., the engineered dis-/integration problem).
 - The materialized existence of a controlled object and relationship, of functional service and conditional quality (a matrix). As functional

service and a physical object. As a condition of the services development and functional operation, constraining its operation. As a condition of the services functional and conditional operation, which is evaluated by functional and "performance" (or quality) conditions.

Projects to create that sustain systems composed of two types of primary process:

- 1. Information coordination processes (a.k.a., project life-cycle or project coordination/management processes) These project information processes form a closed loop: the planning processes provide a plan, that is realized by the executing processes, and variances from the baseline or requests for change lead to corrections in execution or changes in further plans. "Management" is the centralized creation, revision, and implementation of plans. The life-cycle is commonly composed of the following processes:
 - A. Initiating
 - B. Planning
 - C. Executing
 - D. Controlling
 - E. Closing
- Technical engineering processes (asset-oriented processes) that specify and create the project product. A social project, such as this societal building project, is a collaborative activity, involving research, design, development, and implementation, that is appropriately planned.

Systems engineering directs project execution of the system's (product's) definition, development (sometimes through deployment and operations), monitor and control project work, and are responsible for closing out the project or phase's technical aspects.

3.4.6 Unified societal information system coordination

A.k.a., Socio-technical information integration; socio-technical unified creation/generation; socio-technical unified engineering.

In a unified societal information system, decisions are taken at:

- **The project/information-coordination level** The project level is solely composed of information.
- The scientific/technical-engineering level The engineering-development level is composed of digital information and material systems.
- · The service-operations level The engineering-

operations level is composed of digital and material systems.

For societal creations there are multiple types of goals; there are:

- Project goals (because, all societal-level solutions are seen as information projects (i.e., information "packets" or "sets" in a unified societal information "base" or "space". A project represents a complex (multi-part) project to be developed and resolved into a materialized solution
- Life-cycle goals projects are sub-composed of life-cycles.
- Technical goals life-cycles are sub-composed of technical goals, which become the engineering specifications selected, and then operational, in the societal system.

Approach tags for a unified societal information system's approach include:

- Information approach (data approach)
- Systems approach (holistic approach)
- Project approach (coordination approach)
- Engineering approach (generation approach)
- Platform approach (interface approach)
- Service approach (operations approach)
- Module approach (task approach)

3.5 Unified economic planning (one economic plan)

NOTE: One solved [for execution and operation] economic plan. Necessarily, a unified societal information system contains a unified economy.

When viewing the societal system as an information system, then through technology and computerization there now exists the function/ability to do [economic] access allocation through computation by direct calculation and direct location. Herein, universal product barcodes with universal product codes and computerized stock-taking account for logistics (technologicaltransportation support).

INSIGHT: Economics tells us that our prosperity depends on how efficiently we allocate resource to human needs and ecological regeneration.

3.5.1 Socio-economic planning

Socio-economic planning refers to the planning of a/the society, and relates socio-economic problems to socio-economic solutions. Socio-economic planning means that the economic and social aspects are combined and planned for given what is known. An economic interaction is a social interaction, and hence, socio-economic

planning is a component of societal decisioning (or predecisioning). Socio-economic planning is the deliberate control [of the flow and timing] of [economic] resources toward a life-cycle of needed services (and service objects or "goods"). In the market, economic planning also involves the "market" mechanism (which, is not present in community).

3.5.2 [Input-output] economic tables

NOTE: A planned economy, in part, means that the society has an information system that communicates to its material users [in the economy] the number of people who will be doing different tasks each day; including all meta-data about those tasks.

CLARIFICATION: An input-output model uses a matrix representation of a nation's (or a region's) economy to predict the effect of changes in one industry (The make table) on others (the Use Table) and by consumers, government, and foreign suppliers on the economy.

The input-output economic table is the first [basic] tool for doing any systems-based economic planning. Each service support system (and sub-system) in the economy is delineated on both dimensions of a graphing/ calculation table (i.e., the system becomes a category in the column and the row dimensions). Generally, an input-output [economic] table contains the following sub-units:

- Columns [a dimension] are categorized by what [HSS] system or market-State industry (e.g., mining forestry fishing agriculture -- where the raw resources come from)
- *Rows [a dimension]* are categorized by <u>what system</u> <u>or</u> industry (e.g., mining forestry fishing agriculture -- where the raw resources come from)
- *Cells [a bi-dimensional synthesis]* say <u>how much</u> of one system or industry, or other category if more than multi-dimensional, goes into the other system, industry, or category. Here, the cells list (display) the relative flows between the different systems or industries.

[Service support system] Input-output tables are required in order to 'project' through the outcomes. Here, the concept, 'project' has a double meaning. The concept, 'project' means:

- 1. To have an information system that supports the informational requirements of a [configuration of the] human habitat service system -- The outcomes desired have a [unified] project-based information system within which calculation is possible.
- 2. To have the ability to predict the outcomes -- The outcomes require projection (i.e., modeling,

visualization and simulation) of systems, and therefore, transparency (and openness) in concern to the inputs and outputs of those systems.

These tables can be refined:

- 1. Down (Read: dis-aggregated) to the individual products, and then to the individual modules (if separate).
- 2. Up (Read: aggregated) to the supra-service system level (i.e., life support, decision support, technology support, facility support).

When something is changed (or integrated/developed; e.g., a new product), these tables are used so that in a "what if" scenario what is the implications for other systems or industries due to a change in what (i.e., a target or given) system or industry.

Input-output analysis is the solution to simultaneous linear equations. In input-output analysis, there are many equations, but each equation has a highly limited number variables.

In mathematics, a connected graph is a system of:

- Circles (nodes) with
- · Arcs or lines joining the circles

Relations between the nodes of the graph and the arcs between them is an:

• N log n relationship

Any economy can be calculated and visualized as this [N log n relationship] graph, with each system or industry being a node in the graph and an interconnection between two systems or industries being an arc. Fundamentally, if the economy is unified (i.e., it's not split into two or more separate economies), then there is at least an N log n relationship within the graph (the Erdos diem, Jacobian solution).

3.5.2.1 Efficiency

Start with the basis that society is an information based system, then efficiency, necessarily, becomes a core value. Efficiency is important to computation based systems. If a computation system is inefficient, then is it wasting resources. Systems that remain inefficient become extinct.

NOTE: *Digital information is constantly copy able.*

4 The systems-science planned engineering approach

A.k.a., The scientific projects engineering approach.

Any approach to state change in the material environment requires work. Useful work requires a systems approach to socio-technically coordinated state re-creation. The integration of project coordination (project management) and system engineering is projects engineering.

5 What is the proposed method of integration for work?

The integrated project-engineering approach method involves the measurement of all work in time with resource:

- Project (effectiveness, efficiency)
 - Measurable goal using identifiable properties.
 - Measurable criteria for goal using defined parameters.
- System (effectiveness, efficiency)
 - Measurable goal using identifiable properties.
 - Measurable criteria for goal using defined parameters.

Systems engineering involves the designed formation of a system through a project-based structure. Ideas are developed into assets (systems) through projects. Projects are information-level organizations with knowledge areas and processes for asset creation. The existence of a project means the presence of presence of engineering and the vision of a resulting asset (state or condition).

Information can be observed (sensed) and processed (computed). In concern to projects, the idea that information [about production] can be observed, leads to the idea of a common "body" of knowledge areas [about a project-type, production information]. Therein, the idea that information can be processed, leads to the project control and coordination processes (organized by process groups). Note that with each iterative development, both at the project-level and productlevel, there is the potential of adding to our knowledge (value). We are doing iterative development because we want to learn with each iteration. The development of a functionally optimized, adaptive asset [known as society, highest level asset] is an iterative process.

INSIGHT: *This is a unified social approach.*

There is a unified system [development and operations] view, within which there is a:

- · Project-level view
- · Engineering-level view

Systems engineering and project management are two critical aspects in the success of complex real-world projects. A project to develop a complex real world system necessitates both systems engineering and project planning. Wherein,

- **Projects** define and decide how resources are cycled through a common materiality.
- **Engineering** defines and determines how resources are configured in the common material environment.

• **Operations** (Read: continued engineering projects) sustain and executes ongoing project-service configurations.

Coupling design and "management" through a decisional model associating the two process categories:

- The project-level information process
- The engineering-level materialization process

Both project management and systems engineering necessitate a life-cycle decisioning (or "gating") structure. The key principle of development is that it is goal-driven. In a projects should be planned based on explicitly set goals.

To develop [complex and adaptive societal] systems efficiently and effectively, it is essential to align practices in systems engineering and in project "management". This issue of systems engineering and project "management" integration is at the core of all societal concerns (e.g., economic and industrial).

The unification of the processes of engineering (systems engineer), planning (project management), and decisioning (decision management) has been given a number of names, including, but not limited to: collaborative engineering; unified engineering; unified planning; systems engineering management; project integration engineering; and integrated systems engineering.

In a non-unified approach, one without a recognition of the underlying information system, the engineering of a system, and the management of that as a project will likely be carried out separately (as two separate disciplines). Depending on the environment and organization, the two disciplines can be disjoint, partially intersect, or one can be seen as a subset of the other. However, integrating the engineering and project components of system development (i.e., in order to carry out and complete engineering projects) is essential for a unified approach (i.e., an information-based approach). Here, the term 'unified' is a reference to a whole, integrating information system. Both systems engineering and project coordination ("management") are necessary for engineering (or otherwise, developing) a real world system. This represents the integration of systems engineering and project management.

HISTORICAL NOTE: Traditionally, systems engineering and project management have been practiced separately (i.e., they were considered two separate sets of knowledge and processes, instead of two views into one set).

In the market-State, generally, competing entities usually attend to systems engineering and project management processes as separated roles (or processes), and do not consider connections between them. Indeed, for many years, the labor roles of systems engineers and project managers have thought of their work as separate, focusing more on their own domains than on the whole project as a unified information system. This compartmentalization of processes has led to significant inefficiencies is system design (and in society as a whole). In the economic labor market, the economic roles of systems engineer and project manager are in some degree of economic competition between one another. Further, in the market, research into the integration of these two roles is motivated by the prospect of improving the business' (or State actor's) competitiveness in the development of a product or service; it is not motivated by the prospect of improving [global] human fulfillment and environmental safety.

Engineering has a social function, and it is the presence of a social function (to lesser and greater degrees of quality, that makes engineering possible. An important point in looking at the social function of engineering is how society makes engineering possible. A complex feedback situation emerges. Societal organizations extend the power and reach of society and the individual. Society, in turn, through its organizations and demands, makes possible the development of complex habitat service systems and stimulates their constant technical evolution and diffusion. Today, to talk about the impact of engineering on society is meaningless without also talking about the impact of society on engineering, and how it shapes the role of engineering. The complexity of the interactions between society and engineering is at the root of unrealistic expectations about engineering, as social entities are often inadequately organized to develop and use engineering effectively. It is also at the root of the frustration of engineers unable to bring their capabilities to bear on the solution of social problems or the effective organization of the engineering enterprise.

Simplistically, the project-engineering of a society involves:

- Socio-technical issue input.
- Socially acceptable solution.
- Technically acceptable social solution.
- Projects organize the temporally positional information.
- Engineering organizes the compositionally positional information.

5.1 A unified systems approach

A unified society is highly likely to have two core societal systems applications ("disciplines"). In other words, the two main domains of comprehension involved in a unified societal systems approach are:

- **Systems engineering** (a.k.a., engineering development and operations, engineering coordination)
- **Project coordination** (a.k.a., project management)

as the:

- Engineering [design and development] approach
- Project [information] approach

There are two [information] domains when engineering a complex system into existence:

- Systems engineering (technical processes primarily), and
- Project planning (coordination processes primarily).

An integrated view accounts for both systems engineering and project management. In this sense, project management identifies and coordinates need fulfillment, and engineering is the systematic study and resolution of socio-technical problems. In community, engineering is not handicapped as its effectiveness is some societal configurations (e.g., the market).

The outputs of an integrated view of a solution are:

- Project coordination involves the project domain.
- Systems engineering involves the system-service-product domain.

The flows of an integrated view of a solution are:

- In the production process, the flow is materials and the objective is to make a system from materials.
- In the engineering process, the flow is technical documents or technical information, and the objective is to provide the necessary technical specifications for the product and production of it.
- The control process coordinates these other two processes. For the control process, the flow is information.

During the evolving stages of a project, users require (at least) the ability to:

- 1. Observe (perception)
- 2. Coordinate (organization)
- 3. Control (decision)

Together, systems engineering and project coordination (management) decompose a project into tasks and processes, planning tasks and processes with an overall project plan, and monitoring all tasks and processes until the validation of the project is complete.

Therein, effective action toward the users desired resolution necessitates the following information processes:

- Coordination
- Decisioning
- Tracking
- Analysis

These two disciplines can be more generally categorized

- Memory
- Feedback
- Correction

A project is an organization designed to fulfill an objective, created with this purpose, and dissolved after its conclusion. A project can be defined as an organization with a clear and well-defined objective; it is working through a planned and coordinated approach with possibly pre-defined parameters of time, cost, quality and resources available.

The aim of project coordination (project management) is first to define the project mission and organization, then to determine the budget and plan a schedule, and then to ensure operational control of said project through an assessment of performance by analyzing possible deviations relative to the initial schedule, and to implement corrective actions or new preventative actions if necessary to mitigate risks. Its role also consists of organizing and monitoring systems engineering processes.

Having in consideration that a project has a welldefined beginning and an end, it can be associate to a life cycle, generally designate project life cycle (PLC). The PLC establishes the work that must be done in each phase of the project and the number of resources needed in its realization. The PLC phases are context specific for that reason it may defer from one organization to another.

Unified project-engineering involves:

- 1. **Projects that:** Projects are concerned with the overall, [Social organizational context of an environmental change.
 - Lifecycle of projects: initiation, execution, closing.
- Develop systems: System development as a lifecycle is concerned with the [technical] work/ service systems that are to undergoing the change:
 - Lifecycle of system (loop) analysis, requirements, design, development, implementation, feedback.

A simplified project-engineering approach may be:

- 1. Recognize situation (articulate issue, problem, or need)
- 2. Identify societal requirements (understand system)
- 3. Identify user requirements (understand user)
- 4. Analyze gap (understand user demand)
- 5. Create solution description (design system)
- 6. Propose viable solution specification (propose system)
- 7. Select optimal solution specification (determine system, system construction decision)
- 8. Build new system state to solution specification (produce system)
- 9. Verify and validate system state (inspect and test system)

10. Cycle (de-integrate and re-cycle as appropriate)

5.2 System life-cycle coordination

The integration of project and engineering information sets requires coordination. The primary coordination systems required to coordinate the development of a unified socio-technical system are:

- Project planning process group (processes)
 Project coordination (parallel inquiry process)
- System planning process group (processes)
 - Engineering coordination (solution/technical inquiry)

Coordinating the development of a system into the life-cycle of a [habitat] service, necessitates the major activities of:

- Systems [life-cycle] engineering
 - The system which is being brought into existence has a lifecycle.
- Project [life-cycle] coordination/management
 - The project to bring the system into existence has a lifecycle.
- Service/product [life-cycle] operations/management
 - The system in its operation has a lifecycle.

5.3 Service coupling

In order to complete human requirements together as a global population using common resources, a social organization must be coupled to a decisioning organization as a service organization (note that the following are all engineering views, because engineering does the work):

- 1. Simple service view (e.g., concept of operation)
- 2. Document concept of service (e.g., model of service)
- 3. **Development of physical service** (e.g., designed service system)
- 4. Manufacture, fabricate, assemble service actual service (e.g., produced service system)
- 5. **In-service operations** (e.g., the operating habitat service system)
- 6. Iterate service operation (e.g., the strategic plan)

In the context of a service [system] operation, the integration of systems engineering and project management become two coupled mechanisms system, those of design (and development) tools and project management (coordination) tools into an effectively operated service. These two mechanisms are used, in part, to propagate the operational-organizational decisions necessary to sustain a service [system] as a solution (to societal system's organization, for example):

- Information coupling (information interfacing): each sub-project is directed by requirements distributed between the two architectures (design & project), leading in some cases to the definition of common indicators. The information flow between these two points of view is based on the definition of these indicators and on their "management". The most straightforward example is resource presence:
 - From the design point of view, will the resource be available? Are these materials available, or are others optimal [in our selection of a solution]?
 To what is information optimally flowing?
 - From the project viewpoint, can a resources be made available? Are those materials available, or other solutions optimal?
 - How could information flow optimal?
- 2. Structural coupling (real-world, physical interfacing): each sub-project is broken down into a design architecture and a project-system [management] architecture. These two architectures are logically connected to enable an exchange of information that facilitates the optimal construction of real [world] interfaces. The most straightforward example is, the function of a set of given buildings at a given location (where, the buildings and land are the interface; GIS data):
 - From the design point of view, the data set is a design specification modeling the function of the buildings at the given location.
 - What is to be built?
 - From a project viewpoint, the data set is the construction (or re-construction) of the set of given buildings at a given location.
 - How is it to be built?

5.4 Integrating project management and systems engineering

CLARIFICATION: *Presently, the integration of project management and systems engineering into a unified approach has no directly attributable name.*

The integration of systems engineering (SE) and project management (PM) has only been considered in the beginning of 21th Century. The point is that, depending on the environment and organization, the two disciplines can be separate, partially intersecting, or one can be seen as a subset of the other. Previously, there were often treated as separate, using different persons, different tools, and different processes. For many years, a cultural barrier has been growing between practitioners of SE and of PM leading them to consider their respective work as separate rather than integrated towards a common objective, that of satisfying the end user. As a result, work is often more costly, takes more time to be completed and provides a suboptimal solution.

A cooperative society requires a tool wherein the high-level process groups of project management and systems engineering are optimally integrated. This is accomplished by:

- Integrating standards from both domains into a unified domain.
- Formalizing the definition of integration.
- Developing integrated assessments.
- Sharing responsibility for risk, quality, lifecycle planning, etc.

Systems engineering and project management are two critical aspects in the success of system development and system operating projects.

- Project management is organizational decision processes
- Engineering management is solution decision processes

The integration of project coordination and systems engineering necessitates types of requirements:

- Decision requirements (organizational)
- System requirements (service)

Systems engineering is focused on product requirements and should be empowered to handle them autonomously, involving the project manager when a technical requirement has project requirement impacts.

Project management and systems engineering are complementary functions, with great benefit from leveraging each other's strengths in a team environment.

Project manager manages the project life cycle, the systems engineer manages the technical baseline of the product under development. The project manager and systems engineer share requirements management responsibility, and by working closely together they keep the project on track.

A development system requires a repeatable controlled process - a fully integrated project cycle that addresses both the organization (PM) and technical aspects (SE) as an integrated process:

- A project organization project coordination (a.k.a., project management) initiates, plans, and then monitors and controls the execution of a technical solution. At any point in the lifecycle, project coordination may close the project or put the project on hold. Projects are closed when:
 - They are completed.
 - A decision is taken based on organizational inputs that determine the risk outweighs the expected benefits (safety protocol).
 - They are terminated by the user.

- Phase closure to define a more prominent gated progression.
- A technical solution the work required to realize the result, and the specification, which is acted upon.

5.5 Systems reference standards

In both the project management and systems engineering disciplines there exist a number of globally recognized and utilized [reference] standards for brining into existence (i.e., working) an environmental change in a systematic manner.

NOTE: Not a single one of these standards (or guides) contemplates an integration or sufficient cooperation between systems engineering and project management, despite the fact that engineers and managers (a.k.a., coordinators) have to cooperate closely throughout all stages of project development.

5.5.1 Systems engineering reference standards

System engineering has the following recognized standards (systems engineering reference standards):

- ANSI/EI-632 (ANSI and EIA 1998)
- IEEE-1220 (IEEE 2005)
- ISO/IEC-15288 (ISO and IEC 2008)
- International Council on Systems Engineering (INCOSE)
- Systems Engineering Handbook (SEHBK) (Haskins 2010)
- NASA Systems Engineering Handbook (NASA 1992)
- Systems Engineering, Coping with Complexity (Arnold et al 1998, 152-168)
- Systems engineering management plan (SEMP)

The most important systems engineering standards are:

- ANSI/EIA 632 Processes for Engineering a System
- ISO/IEC 15288 System Life Cycle Processes
- IEEE 1220 Standard for Application and Management of the Systems Engineering Process
- INCOSE Systems Engineering (SE) HandBook
- SEBoK Guide to the Systems Engineering Body of Knowledge (SEBoK)

5.5.2 Project management reference standards

Project management has the following recognized standards (*project management standards*):

 PMBoK 2018 (Project Management Institute, PMI)
 A Guide to the Project Management Body of Knowledge

- *Notice how the term, "management", is in both the title of the Institute (P<u>M</u>I) and in the title of the standard (P<u>M</u>BoK).
- ISO 21500 Guidance on Project Management

Additional project-related reference standards:

- ISO 9001:AS9100 Quality Management Systems
 - Requirements for Aviation, Space and Defense Organizations
 - ISO 9001:2015 International standard for a quality management system ("QMS")
- ISO 55000:2014, ISO 55001:2014, ISO 55002:2014 Asset management
- ISO 8000 Data management
- ISO 16404, ISO 10795, ISO 14300-1, ISO 21351 - Requirements Management space systems program management
- BS 1192:2007 + A2:2016 Collaborative production

5.5.3 Building information management reference standards

Building information management (BIM) standards:

- ISO 19650, Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) – Information management using building information modelling
- Level of development specification v2013, v2015, v2016
- BSI PAS 1192-2:2013 delivery phase
- BSI PAS 1192-3-2014 information Operations & Maintenance (M&O) phase
- PAS 1192:2015 security phase
- PAS 1192-6 Health and safety
- BIM Guide

5.5.4 Architecture reference standards

The American Institute of Architects (AIA) has produced an integrated guide for architects:

• *Integrated Project Deliver: A Guide*. Ver. 1. (2007). The American Institute of Architects. [info.aia.org]

5.5.5 Integrated reference standards

Integrated standards are those that integrate both project management and systems engineering. The most recent, important integrated reference standard is:

• ISO/IEC 29110 - System and Software Life Cycles

5.6 Reference standards re-alignment

The best current reference standards candidates for integration (as the alignment of processes):

- ISO/IEC 15288 standard would represent best candidate to alignment with PM standards.
- PMBoK 2018 standard would represent best candidate to alignment with SE standards.

The five processes of the ISO/IEC 15288 must be executed one after the other (initiating > planning > executing > monitoring and controlling > closing, in series in time). For ISO/IEC 15288, the four process group can be executed concurrently, or not (Agreement Processes, Technical Processes, Project Processes, and Organizational project enabling Processes, in series or parallel). For processes, some of them can run simultaneously, while the others must be executed in a chronological order.

5.6.1 Integrated reference standards data structuring

ISO/IEC 15288 data structure:

- 1. Process groups
- 2. Processes
 - A. Purpose
 - B. Outcomes
 - C. Tasks & Activities

PMBoK 2016 data structure:

- 1. Knowledge areas
- 2. Process groups
 - A. Inputs
 - B. Tools & Techniques (the processes themselves)
 - C. Outcomes

5.6.2 Standards Software integration

Integrated software solutions (for PM and MS) include, but are not limited to:

- In project management: Primavera, MS Project, etc.;
- In product life-cycle management: Windchill, Team Center, ENOVIA, BIM software with Autodesk Fusion and Revit, etc.

NOTE: Generally, software solutions are traceable to accepted reference standards. The starting point of software is a reference standard, a specification.

6 What is the proposed method for life-cycling project-engineered solutions?

Every solution is an integration of project coordination and systems engineering through life-cycle (of process groups). Although there are many variations of project composition, the following is a simple and general composition of the interrelated, synchronously integrated project-engineering phases for a 'solution':

- 1. Coordinate (project coordination)
 - A. Have informed information system.
 - B. Establish decision processes.
 - C. Decide who.
 - D. Determine resource allocation (resource access).
 - E. Define quality evaluation standards.
 - F. Document processes.
 - G. Develop evaluation plan, framework or policy.
 - H. Review evaluation (do meta-evaluation).
 - I. Develop evaluation capacity.
- 2. Define (project definition)
 - A. Develop initial description.
 - B. Develop project theory/logic model.
 - C. Identify potential unintended results.
- 3. Frame (solution framing)
 - A. Identify primary intended users.
 - B. Decide purpose.
 - C. Specify the key evaluation questions.
 - D. Determine what results ('success') looks like.
- 4. Describe (solution description)
 - A. Sample.
 - B. Use measures, indicators, or metrics.
 - C. Collect and/or retrieve data.
 - D. Coordinate data usage.
 - E. Combine qualitative and quantitative data.
 - F. Analyse data.
 - G. Visualize data.
- 5. Understand cause (problem-solution evaluation)
 - A. Check the results support causal attribution.
 - B. Compare results to the counter-factual.
 - C. Investigate possible alternative explanations.
- 6. Synthesize (design solution)
 - A. Synthesise data from a single evaluation.
 - B. Synthesize data across evaluations.
 - C. Generalize findings.
- 7. Implement (apply solution)
 - A. Execute an action (or multiple and/or dynamic actions) to bring the solution into existence.
- 8. Report and Support Use (of solution)
 - A. Identify reporting requirements.
 - B. Develop reporting media.
 - C. Ensure accessibility.

- D. Develop recommendations.
- E. Support use.

6.1 Simplified project systems engineering

The group of functional relationships that form a highly simplified view of project systems engineering are four:

- 1. Coordination (share plan)
- 2. Design (concept model)
- 3. Build (spatial construct)
- 4. Operate (real-world system)

Note that any re-cycling system is itself an operated system; in other words, there is list #5 for re-cycling, because all systems are either operational or under design to become operational (a re-cycling system is either under design, or operational currently).

6.1.1 Historical note

Neither the project nor engineering approaches represent a new way of developing a system, or providing and operating a service. Before the principles of mass production were developed, all complex production and operation was carried out as projects to produce engineered systems. Craftsman (early term for an engineer) have always made products based on the information, materials, and time, available, and adapted to the requirements of a user.

Therein, project coordination (or more commonly in the market, project "management") has been practiced for thousands of years, and can be dated back at least as far as the Great Pyramid of Giza and Gobekli Tepe. The idea of project "management" is related to early civil engineering projects. Until 1900, civil engineering projects were generally "managed" (coordinated) by the architect(s), engineer(s), and master builders, themselves. It was in the 1950s that organizations started to systematically apply documented project coordination ("management") tools and techniques to complex engineering projects.

In the professional market for labor, 'project management' became recognized as a distinct discipline arising from the labor market's management domain, with material creation (design and development) occurring through the labor market's 'engineering' domain. In 1969, the Project Management Institute (PMI) was established in the USA, and then globally, to solidify and refine the 'project management' [economic] profession. In the professional [labor] market, there are now 'project managers'.

In 1996, the PMI first published "A Guide to the Project Management Body of Knowledge" (PMBoK), which described project management practices that were common to "most projects, most of the time". In 2012, the International Standards Organization (ISO) also realized the importance of project management and published a project management standard ISO 21500. Today, there are many similar and related disciplines of project management, such as program management, project lifecycle management, product lifecycle management, and others.

NOTE: More technically, beyond the labormarket, a "project manager" is simply a type of information process unit, a unit that coordinates and controls the flow of a high-level project related information.

6.1.2 A project [development] integration view of the projected system's life-cycle

The project life-cycle provides a framework (of processes) for resolving coordination problems to the production of complex work.

A project life-cycle necessitates:

- **Project initiation** In project initiation, the goals for the project need to be consistent (in alignment) with organizational goals. Organizational models, such as the societies decision system help with this.
- **Project execution and controlling** The executing and controlling steps of a project is where the 'system development life cycle' exists. This is where/when the analysis of existing systems and processes takes place, and when new ones are developed and implemented.
 - One way to view the [system] development/ operations [life]cycle is as one executable step in project coordination.
- **Project planning** Planning occurs in between (in parallel, often) initiation and execution. This is where the goals of the project (Read: the reasons for doing the project) into actionable steps. A variety of documents are developed during this phase. These documents are used to coordinate ("manage") the project. The three core [project] planning > plan documents (Read: recorded and transparent, living, information sets) are:
 - The [project] charter
 - The work breakdown structure
 - The [project] schedule

Systems are engineered into the coordinated operation of a larger and pre-functioning system; they are integrated:

• **Integration** - Once characterised and accepted as suitable, the products/services undergo adaptation and integration into the required assetservice system. The maturity of this integration is measured through Integration Readiness Levels (similar to Technological Readiness Levels, but with operational evaluation information). Any new development elements are integrated with the adapted elements to form the new systems.

- **Transition into service** The transition into service utilises project views of materiality (architecture) to schedule the requisite elements of products and services for deployment and use (Read: access). At this stage the asset-service systems are used in their intended environment and undergo validation against the capability requirements (of the architecture).
- In service support Throughout the sustainment/ operating period, asset and service measures are captured/observed and analysed against the indicator-metrics selected to correct for alignment errors based on alignment requirements, which form the basis of process improvement [in a given information system]. Progressively, the capability [requirements] architecture, system and service models are validated, or not validated. As changes are undertaken (to correct for validation) the architecture, models, and operative services are updated. Any potential change can be modelled prior to commitment to change (i.e., solution) to ensure the changes will contribute to system's objective/requirements.
- **Dis-integration** the end-of life-cycle removal (and possible modified replacement) of an asset-service.

6.1.2.1 A system [development] life-cycle view of the integration

The systems development life-cycle provides a framework (of processes) for system creation and integration, for technical (solution inquiry) change in the environment given a user with requirements [for which a project has been composed].

The system development life-cycle includes:

- 1. **Analysis (of situation)** The sdlc starts with an analysis of the situation. What can be better? What is going wrong?
- 2. **Requirements (for systems change)** describe the solution to the degree that the delivery can be compared in alignment with the [solutions] description. What is required for fulfillment? What are the goals, specifications, and must haves in order to resolve the [systems] change.
- 3. **Design** After the situation is fully understood and the requirements for and solution, the you start planning out that solution. What will the future situation look like? What do the technologies look

like that support this future situation? Design out what the technologies look like, what they should do, and their expected context(s)?

- 4. **Development** Create, build, and prototype and test the technologies.
- 5. **Implementation** integration of the technology. Train InterSystem and Community people on them, and InterSystem Team operate the systems as services for our human community.
- 6. **Analysis of implemented situation** After implementation, evaluate to see what is working as expected (alignment with requirements) and desired by users (fulfillment as expected)? What is working and what is not? Then, start the process life-cycle all over again with analysis.

Alternatively, the system development life-cycle could be viewed as:

- 1. System definition
 - A. Collection of user needs
 - B. Translation of user needs into technical requirements
 - C. Initial design concept
- 2. System development
 - A. Specifications for functional level
- 3. Process development
 - A. Design and prototype manufacturing and assembly processes
- 4. Process quality control
 - A. Process parameters (specification for performance/quality level) are determined and evaluated

When analysing a situation it is important to analyses it in the context of the goals for the organization, the user and the service that meets their needs (in a business goal context, for example, profit, reduce costs, improve customer value)...if these conditions aren't going to happen, are you sure the change should be taken? The usage of a social information model facilitates the analysis of and identifies the requirements for parallel societal decisioning (i.e., the societal decision value alignment inquiry processes).

The system development process includes:

 A development process, where the main activities are represented going from requirement definition to maintenance of the finished product; a life cycle based on evolving prototypes into a fully integrated system; and the methodology itself (why the method was logically selected).

Most generally, the development process is:

1. Direction - put together a specification of the

objective.

- Conceptualization put together a specification of the system. Conceptualization involves the organizing and structuring of acquired knowledge.
- 3. **Implementation** implement the concept model to create and/or operate the system.
- 4. **Evaluate** execute an evaluation (and "judgement") by doing a technical analysis on the process and result, and correction any mis-alignments with objectives and requirements (system so that all information in all phases is more coherent and/or useful).

The commonly accountable elements of the design phase are (i.e., what is the "design for"?):

- **Function** the "means" by which (how) the system operates for user fulfillment. Why and how does the system operate? How is that specific operation determined and measured (or observed)?
- **Interface** the "means" by which (how) which two systems interact (Read: share information).
 - Because an interface's principal purpose of existence is to represent usability between an object and a user, the principal interface design [operational-conditional] principle is: usability. The interface is being designed to literally 'interface' with another system, and so, it must do this effectively for both systems. Humans and other necessary systems can interact with the target system (e.g., a societal system) in a way that allows them to achieve their purposes in an efficient and effective manner, together.
- **Performance** the evaluated the quality of the method (means) by which the function occurs (how in alignment with expectations is the function):
 - Information is shared between systems (per requirements).
 - The function operates for user fulfillment (per requirements).

6.1.2.1 The planning [development] life-cycle view of the integration

- 1. **Assess** the articulations alignment (recognition and effectiveness) of the inquiry.
 - A. If there are gaps, then change social value set or evolve self value set to remain in coherence so alignment of articulations can be assessed.
 - B. If there are [now] no gaps (otherwise, repeat prior step), build the vision (as a model through to simulation as integration over time), while maintaining a set of goal-oriented (need) conditional statements, that will be translated

into an extant system.

- 2. **Simulate** the vision by modeling in real-time to resolves more complexly, completely, and commonly.
- 3. **Test and evaluate** a prototypical operation of the requirements of the vision.
- 4. **Planning** What possible solution fulfills the technical engineering and constraining organizational requirements, together as a system, most optimally? That solution is the selected plan. The planning process is a continuous, dynamic process -- the "creation" of the plan is a continuous activity group.
 - A. Plan the project (information-) oriented components of Information-Project Engineering Development - integration of the following units into a directionally coordinated human societal fulfillment interface (plan) including, but not limited to the following major sub-component systems defined by their "engineering" requirement: requirements coordination (a.k.a., requirements management), schedule coordination (a.k.a., schedule management), resource coordination, [societal] quality coordination, risk [and, cost] coordination, communications [and interface] coordination, computation and logic coordination,
 - B. Plan the lifecycle-oriented components of Engineering Operations of the service and/or service asset.
- 5. **Execute** by resolving the decision to a section, which sends a signal to a controller, causing an execution of action involving a modification to the state-dynamic of the material (habitat) service system, which will either be acted upon uniquely by an InterSystem team(s), or it will be integrated into an active service lifecycle as an asset by an InterSystem team, or it will be removed from active materialization by the core Effectiveness Inquiry Process.
 - A. Engineering developments of service systems by applying information processing (Read: lifecycle planning). Engineering controls design process.
 - As part of the Development InterSystem Team, those individuals who contribute in accountability toward the sustainment of the habitat service system's operation.
 - 2. As part of the information system, control decisioning (constrain solution to value-alignment), and thus, control design process.
 - 3. Define technical operational baselines.
 - 4. Coordinate design solution is the result of a controlled design process and the development of baselines.

- 5. Configuration [state of HSS] levels through this the entire design effort can be coordinated via decision points ("audit") informed by:
 - i. Concept [configuration] level study generate system concept description; what should be done, behave, exist?
 - System [configuration] level study describe requirements for integration into service (performance requirements); how will the system perform under different conditions?
 - 2. Component study [sub-component configuration] of subsystem level performance requirements - detailed description of characteristics required for production; what are the components of the system that enable the fulfilling of performance requirements?
- 6. System definition three documents
 - i. Functional baselines
 - 1. Allocated baselines (preliminary design definition)
 - 2. Asset baselines (detailed design definition, product baseline, and material asset realization)
- B. Engineering integrations of service systems by accounting (surveying baselines) - subcomponent of both systems, simultaneously, indicator-metric-evaluator interface.
- C. Engineering operations of service systems by applying systems by applying apply service (operations) knowledge areas (including, principles) and processes.
 - As part of the Operations InterSystem Team, those individuals who contribute in accountability toward the sustainment of the habitat service system's operation.

6.1.2.2 The system-conception engineering life-cycle view of the integration

1. Concept DEVELOPMENT phase

- A. Need analysis a valid need has the form of:
 - 1. [Human] Needs analysis
 - 2. [Social organizational] needs analysis
 - 3. Technical needs analysis
 - Need analysis questions: Is there a valid need for a new system? Does there exist a practical approach to satisfy the user need for a new system (is it feasible)?
 - i. Inputs
 - 1. Operational deficiencies (gaps in service)
 - 2. Technological opportunities (knowledge)
 - i. Processes

- 1. System studies
- 2. Technology assessment (technological readiness levels, or new technology)
- 3. Methodological assessment (model readiness level)
- 4. Operational analysis (is it feasible to operate)
- i. Outputs the output of this is the first (preliminary) iteration of the system's design itself, which is a basic (high level) concept model
 - 1. System operation effectiveness

2. System capabilities

B. Concept EXPLORATION phase

- Concept exploration questions: What are the principal characteristics of the systems concept that can provide the best design between capability, life of system, resource occupation of system (and in the market, cost).
- 2. Concept exploration tools: process methods, decision support systems, expert analysis.
 - i. Inputs
 - 1. System operation effectiveness
 - 2. System capabilities
 - ii. Processes
 - 1. Requirements analysis
 - 2. Feasibility tests (alternative search) what are the other alternatives available to the system for fulfilling the need(s)
 - iii. Output
 - 1. System performance requirements
 - 2. System concepts

C. Concept EXPLORATION phase

- 1. Concept exploration questions: what are the performance requirements of the new system so users needs can be satisfied? Is there at least one feasible approach to achieve the desired performance at an affordable/ acceptable resource usage (and in the market, price)?
- 2. Concept exploration tools: process methods, decision support systems, expert analysis.
 - i. Inputs
 - 1. System performance requirements
 - 2. System concepts
 - ii. Processes
 - Selection from alternatives ("trade-off" studies)
 - 2. Architecture (system [architecture] logic; not engineering architecture)
 - iii. Outputs
 - System functional specifications a description of what the system must do

and how well?

2. System concept definition (a.k.a., system definition)

Scholarly references

 Tri, D.Q., Thai, T.H. (2018). Biological environmental survey in Cat Ba Island. Biodiversity International Journal, 2(2). DOI:10.15406/bij.2018.02.00054 [sematicscholar.org]

Book references

- Mobus, G. (2017). A Framework for Understanding and Achieving Sustainability of Complex Systems. Systems Research and Behavioral Science, 34(5), 544–552. doi:10.1002/sres.2482
- Skyttner, L. (2005). *General Systems Theory: Problems, Perspectives, Practice*. World Scientific Publishing Co. Pte. Ltd. 2nd Edition. ISBN-13: 978-9812564672

Online references

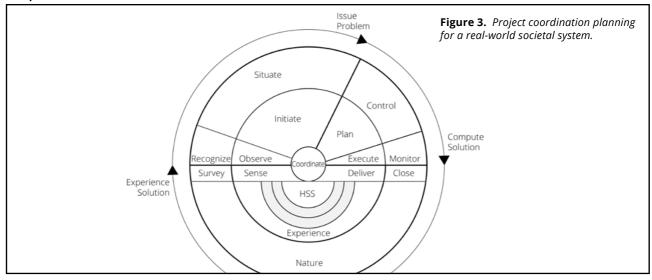
- Essence: Kernel and Language for software engineering methods. (2015). Ver. 1.1. Object Management Group. formal/2015-12-03. [omg.org] [semat.org]
- Hevner, A., Brocke, J.V., Maedche, A. (2019). Roles of digital innovation in design science research. Business & Information Systems Engineering. February 2019, Volume 61, Issue 1, pp 3–8. [link.springer.com]
- Jacobson, I., NG, Pan-Wei, McMahon, P.E., et al. (2012). *The Essence of Software Engineering: The SEMAT Kernel*. ACMQueue. Vol. 10, Issue 10. September/October 2019. [queue.acm.org]
- Jacobson, I., Ng, Pan-Wei, Mchanon, P.E., et al. (2013). The Essence of Software Engineering: Applying the SEMAT Kernel. Addison-Wesley Professional.
- Mobus, G. P. (2016). Systems Science and Biophysical/ Ecological Economic. Slides presentation access on 18 June 2019. In Principles of Systems Science by Springer. [isecoeco.org]
- Zapata, C., Jacobson, I. (2014). A first course in software engineering methods and theory. Dyna rev.fac. nac.minas vol.81 no.183 Medellín Jan./Feb. 2014. DOI:10.15446/dyna.v81n183.42293 [scielo.org.co]

The Project Approach

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com Version Accepted: 8 June 2020

Acceptance Event: Project coordinator acceptance Last Working Integration Point: Project coordinator integration


Keywords: project approach, project management, project coordination, project planning, project operations

Abstract

A project-based approach is a real-time, informationbased approach to coordinating the resource realization of complex socio-technical systems. It involves the processing of coordination-related information in order to design, construct, and potentially, operate, some system in the real world. In other words, a project-based approach involves coordinating the design, development and operative life-cycling of service systems through materiality (i.e., through a material, hardware and software, environment). In practice, the project method is the specific, coordinated way of performing an operation that implies precise deliverables (at the end of each stage of the project). Projects are coordinated packages of information that are used to plan actions and results by performing tasks that deliver useful objects and information. To a contributor, these tasks are known as activities. Activities are coordinated so that contributors work together as a team that acknowledge all stakeholders present within a project and schedules the

project appropriately.

Graphical Abstract

1 Introduction

A.k.a., the project structure; the project-based approach, and the project method.

A project-based approach is a real-time, informationbased approach to coordinating the resource realization of complex socio-technical systems. It involves the processing of coordination-related information in order to design, construct, and potentially, operate, some system in the real world. In other words, a project-based approach involves coordinating the design, development and operative life-cycling of service systems through materiality (i.e., through a material, hardware and software, environment). In practice, the project method is the specific, coordinated way of performing an operation that implies precise deliverables (at the end of each stage of the project).

CLARIFICATION: "Projectability" (project-ability) is the ability realize (Read: make real or material, to reify) that which is currently unrealized (informational), and to distinguish between the two. Effectively, the project approach allows for (i.e., conveys the capability for) complex, parallel "projections" (i.e., constructions or creations) into a commonly shared, real world environment. When you think about projects you have to think about moving forward. A plan brings common understanding to navigating motion together in a shared space.

Real world problems and challenges are complex and necessarily approached through projects. Projects define tasks by means of scope and requirement with the purpose of a designed construction as the output. Projects involve teams of individuals working together toward the shared constructive purpose for the projects existence. Here, there are tasks within which are processes for accomplishing the task. There is a spectrum of effort automation for task fulfillment processes. In other words, some tasks and subtasks are entirely automated, some involve a combination of automation and human effort, and some involve only human effort.

2 What is a project?

A.k.a., Program (collection of inter-related projects), portfolio (collection of inter-related programs, projects), plan.

A project is a systematically structured approach to resolving a problem in the form of a[n information through to materialized] solution (e.g., the community's societal habitat service system). The output of a project is an operational system or result, as a selected response to some directional input (e.g., an issue or problem). More technically, the function of a project [in a unified information space] is to successfully deliver one or more requirements in the form of a product or result. In other words, a project is a bounded, directional information space within which a problem space is resolved into the selection and construction of a solution into an operational, materializing environment. At the human level, a project encompasses a set of interrelated tasks and decisions that are executed over an identified period of time within limitations (real world and organizational) to resolve an intention. A project can be visualized as structured flow of information and events, by initiation, through a process or processes, producing an outcome. The purpose of a project is an outcome, a result - a directional "desired" change in a material condition that benefits the user (as the "target" population or group). A projects can be viewed as an organizing mechanism (process organization) for getting work done. Organizations do projects. Projects drive (direct) change [to/in an environment].

CLARIFICATION: In some organizations there are differences in meaning between the terms 'project' and 'plan', and in other organizations the terms are used interchangeably. Here, the project to bring into existence a network of integrated city systems operating through a unified societal model, and the plan to bring this system into existence is detailed within an information set called the 'project plan'.

A, 'project plan' may also sometimes known as: a plan; a project management plan; a project coordination plan; an implementation plan; an execution plan; and a construction plan, etc. Psychologically, a plan ensures that the momentum is kept up (because progress and issues can be seen) when a plan is executed. Planning and scheduling in society are a dynamic and a neverending process. A project is setup to be "successful" when the right environmental conditions exist for it to be successful. Therein, a "successful" project is a project that satisfies its intended purpose in a safe, timely, and resource-effective manner producing a result that aligns with the intention.

NOTE: In some social contexts, the word "project" is replaceable with the words "mission", and to a lesser extent, the words "goal",

"objective", and "outcome".

are:

Every project relates to a product (system, service, object, etc.). The product could be a tangible product, a software system, a service, or a new organization. Note that the project result is not synonymous with the product. The product definition is the product's boundary condition(s).

INSIGHT: The deliverable of a societal-level project is that which we all are "collectively" materializing.

A project is carried out through a series of interdependent tasks - that is, a number of nonrepetitive tasks that need to be accomplished in a certain sequence in order to achieve the project objective. A project consists of a coordinated series of activities or tasks performed for a common purpose. Here, phases must be worked through and tasks must be completed (as "gated" processes) in order to complete the whole project.

A project utilizes various resources to carry out the tasks and meet the project's stated requirements. Each task is a sub-system containing input, process, and output elements, and is a sub-part of the unified, projected system.

Note: It is not logically possible to "do a project", it is only possible to "do tasks as part of a project".

The following is a common list of definitions of the concept, 'project':

- A project is composed of components, activities, and rules that lead to some "thing's" materialized existence.
- A project is an forward/series progression ("endeavour") designed to produce a unique service, product, or result. All projects have boundaries for progression (i.e., a life-cycle), progression proceeds through phases, each with a defined beginning (input) and end (closing output). Sometimes the beginning and end are timeconstrained, and sometimes not.
- A project is executed ("undertaken") to meet unique goals and objectives, typically to bring about beneficial, objective change. The change must be objective, as in, measurable. The change must be measurable so that the project's success/ completion can be evaluated.
- A project is the first [in]formation of a construction. Wherein, a construction is an information and/ or material asset, a designed solution. That asset represents a potential construction or realized construction (into materiality).

• Given what is known, a project has a synthesized output, known as a 'solution'.

• Given a motivation by consciousness, a project is the progressive elaboration of a problem (direction, goal, etc.) and its predicted, and then tested and delivered/operated answer, known as a 'solution'.

It is relevant to note here that current operations are run as [continuous] projects with typical task start and end times. Ongoing service issues (operations concerns). In project management, these tasks are considered processes and not projects. However, the habitat service system operations themselves are considered to be run as projects; they are also process or serve groups, and at a lower level, processes. Synonyms for current operations are day-to-day operations of habitat service systems.

Projects may be classified according to a set of characteristics, including, but not limited to:

- **Novelty** refers to a derivation, update, or a new system.
- Service complexity refers to the number of [societal service] systems engaged.
- **Technology complexity** refers to the level(s) of technology engaged.
- **Organizational complexity** refers to the number of information sets engaged.
- Uncertainty refers to the degree of unknowns.
- Pace refers to time (e.g., fast, regular, slow).

For any complex project plan there are two levels of action:

- 1. **The Project Level** a plan for developing a community-type society. The top-level for which the purpose of the project is to construct a community-type society. The project level is the level for which the purpose of the project is to meet one or more of the top-level project imperatives.
- 2. **The Sub-Project Level** sub-plans for discovering and developing a community-type society. A subproject plan (a.k.a., project integration plan) is a standard (i.e., not a societal-level) project plan that accounts for integration within the top-level plan, and provides the basis for all coordinating activities between the sub-project and the Project. A subproject plan ensures alignment with the project level.

2.1 Project structural information set representations

The three processes of executing, planning,

The 'solution' characteristics of a project information set

<u>controlling</u> rely on a single structural representation of the project (e.g., the work breakdown structure type). These three responsibilities (Ex, Pl, and Co) share the same obligation, when programming so dictates or when a malfunctioning warning sign occurs, to embark on a discussion and to go ahead only if a decision has been taken.

- Executing
- Planning
- Controlling

Projected-based information coordination comprises the transformational processes of:

- Gathering
- Structuring
- Retention
- Access
- Update
- Application

Information transformation, itself, comprises:

- Synthesis put parts together to form a whole.
- Analysis separates material or concepts into component parts so that its organizational structure may be understood.
- Application applies what was learned.
- Comprehension understand the meaning, translation, interpolation and interpretation of instructions and problems.
- Knowledge recall data or information.

The common flow of information through a project structure:

- 1. Project initiating
- 2. Project planning
- 3. Project execution
- 4. Project completion

2.2 High-level project organization

At a high-level, a project is composed of the following actionable information sets:

- 1. **Information system or space (system):** All information relevant to the project.
- 2. **Directionality, purpose, or imperative (input):** Describes the goals (and objectives) for performing the project's process(es).
- 3. **Results or outcomes (output):** Describes the observable (materialized) state-dynamic expected [in an environment] from the successful/complete performance of the project's process(es).
- 4. Tasks, instructions, or activities (process):

Describes the actions intended to produce the outcome(s) using the project's inputs.

Using other terminology, a project is sub-composed of:

- 1. **Directive component** (input of initialization that initializes the space) - a directive (or imperative) area represents the point-source intention and defined input for the state-dynamic change.
- 2. **Knowledge component** (input of learning that from memory) - a knowledge area represents a complete set of concepts, terms, and activities that make up a usable, specialized information set.
- 3. **Process component** (input of instruction that of software code and material task) - a process a specific method, mechanism, procedure, task, protocol, etc. Process components are characterized by their inputs, the tools & techniques that can be applied (and developed), and the resulting outputs.

The basic flow of information within a project structure could be viewed as:

- 1. Prioritization
- 2. Analysis
- 3. Design
- 4. Build
- 5. Evaluate

2.2.1 Executable project elements

In order for a project to be completely "delivered", actions ("activities") must occur. An activity or action is one of a coherent set of specific steps that must be taken to reach the imperative(s) conclusion (i.e., the change for that which the project was initiated). Therein, an executable is an information set upon which action can be taken.

Executability means,

- From an operator's perspective that a service is operational and monitored for alignment with specification.
- From a user's perspective that a system may be validated against specification.
- From a developer's perspective that a specification is verified against the facts of its operation.

The commonly named executable elements of a project include:

- **Deliverable** a tangible (materializable), verifiable work service or product.
- Activity a planned action.
- Activity work package a deliverable at the lowest

level of the deliverable diagram (work breakdown structure). A work package may be divided into activities. Work elements with expected duration and resources requirements (and in the market, costs) that may be subdivided into tasks.

- **Task** a deliverable at the lowest level of the work breakdown structure. A work package may be divided into activities.- the selection of a 'job', procedure, or other process, to accomplish an effort.
- Work package a deliverable at the lowest level of the work breakdown structure. A work package may be divided into activities.

The executable project elements are coordinated into existence by an accountability organizational structure and matrix:

- Organizational breakdown structure relates work packages to organizational [InterSystem] work/team units.
- Accountability matrix (a.k.a., responsibility matrix)

 relates the organization structure to a deliverable diagram (work breakdown structure) to ensure that each element of the project's scope is assigned to an accountable individual or system.

2.2.1.3 Project selection for execution

For any project, the project is first defined, then projected solutions must be uniquely identified, and then, those solutions are screened for optimality prior to execution of the optimal:

- 'Project selection' refers to selecting (via some decision-determination method) the one project solution which is probably best to execute. To identify the one project solution out of a set of possible project solutions, project identification is required.
- 'Project identification' is formalized by a specified set of objectives and a given the context of an internally and externally bound nature. Internally, projects become identified through their solution. Externally, projects become identified with their results. For any projected solution, solution design possibilities are screened [through a decision control system consisting of logical programs] to provide an optimal project proposal for execution.
- To "screen a project" is to have a set of criteria for evaluating the project. An appraisal of a project['s success] has to be based on a set of criteria. There are always criteria in screening for optimal solution selection and for evaluating the experienced results of that solution selection.

• At a societal-level, the socially defined values

for any society represent these set of criteria (i.e., values are societal alignment conditions). In community, these values are reasoned and identified in the Social System Specification. In the market, investment, payback, and likely profit are a good set of [value] screening criteria. For this proposed community-type societal system, the core orientationally stabilizing values of individual freedom, restorative justice, and technical efficiency are a good set of [value] screening criteria.

2.2.1.1 Execution [tasking] phases

A.k.a., Project execution phases.

In concern to this societal building project, the primary execution tasking phases are:

1. Project initiation/identification

• A plan is created to change the state of our common living system toward one that meets all human need while facilitating the generation of well-being a the individual, social, and ecological levels.

2. System specification

- A design is created to model the common system (a unified societal information system), to which the state of the living system may be changed.
- 3. **System prototype** (minimal to fully integrated prototype)
 - The design is tested and reworked.
- 4. System operation
 - The new system becomes fully operation at the population level (context dependent, integration can have a widespread affect and effect due to the rapidly real-time nature of the community's service network).

5. System feedback

• The integration of feedback for the next iteration of the system.

2.2.1.1 Execution [tasking] life-cycle

A.k.a., Project execution phases.

Every project is executed through a life-cycle of project phases. Every project [to develop a new system] follows the same (or similar) set of task-based execution phases. Information about changes within a project pass through these "gated" event phases, becoming more coherent and actualized over time, as tasks are performed, until the intended result is met (i.e., the new system is produced).

A project [to develop a new system] may be sub-divided

into the following set of execution phases, representing the collection and integration of information relevant to the resolution of the project:

- 1. Identification define usage of system.
 - A need or issue is recognized.
 - A problem and set of requirements is formulated.
- 2. **Design[ation]** integrate information into a unified information system.
 - A design is synthesized.
- 3. **Development[ation]** construct the system from the unified information.
 - Discover[ing] analyze the situation and acquire information to design the system.
 - Design[ing] synthesize the design of the system.
 - Construct[ing] and Test[ing] construct the design and integrated into full operation.
- 4. **Operation** operate and monitor the system.Use[ing]
- 5. **Evaluation** assess and verify the system
 - Survey[ing]
- 6. **Iteration** update, upgrade, and replace the system
 - Issue[ing]

Note here that the common "executive" functions include:

- Panning
- Deciding
- Checking work

2.3 Societal-level project execution elements

NOTE: Projects sustain values.

The following are axiomatic input-tasks for project development coordination:

- Define the system concept through imperatives and requirements, which are attainable, definitive, quantifiable, and with specific duration and resulting conclusion. The intention of the societal project is composed of a set of imperative requirements. In engineering, the imperatives ("obligations") and proceeding requirements, define the primary problem domain.
 - Define ("identify") the societal system.
- 2. Identify the work (a.k.a., tasks, actions, events, and other activities), which is sub-divided into tasks following either a manual system (of input, process, and output), or they may be automated to provide a functional service, of which the societal system is itself in service to fulfillment.

- 3. **Sequence the tasks**, which involves the mapping of all relationships across all scheduled activities into a visual network map, allowing for effective monitoring of the project by everyone (open source).
- 4. Estimate the activity costs and durations, which allow for resource budgeting, scheduling, and decisioning.
 - InterSystem Team work packages become available.
- 5. Reconcile constraints, including time, resource, and financial constraints, which will likely necessitate the determination of a decision.
 A decision protocol.
- Execute the tasks to design and build the system by executing tasks required for physical and/or digital integration of the system concept.
 - Design the information system through work packages.
 - Construct a habitat service system through work packages.
- 7. **Observe and Review the results** and integrate the changes.
 - Operate a habitat service system through work packages.

2.4 Project measurement

Measurement is a component of every project. Measurement is used to (i.e., project metrics enable a project coordinator to):

- 1. Assess the status of an ongoing project.
- 2. Track potential risks.
- 3. Uncover problem areas before they become 'critical'.
- 4. Adjust work flow or tasks.
- 5. Evaluate the [project team's] ability to control the quality of work products.

2.4.1.1 Process measurement and process metrics

In the context of measurement, process measurement is the efficacy of a process (often, indirectly). Process measurement provides a mechanism for objective evaluation of a process.

NOTE: Frequently, the same measurements can be used for both process metrics (measurement across many projects) and project metrics (measurement upon a single project).

Process metrics are useful for:

- Estimation
- Quality control
- Productivity assessment

- Project control
- Tactical decisioning
- Coordination

Process metrics can be derived by:

- 1. Measuring the characteristics of specific engineering tasks.
- 2. Measuring outcomes that can be derived from the process.

Potential outcomes for process measurement include, but are not limited to:

- Measures of errors uncovered before release of the product.
- Defects delivered to and reported by end-users.
- Work products delivered (productivity).
- Human effort expended.
- Power/energy expended.
- Material resources expended.
- Calendar time expended.
- Schedule conformance.

Process metrics include, but are not limited to:

- Quality (quality-related) focus on quality of work products and deliverables.
 - Correctness (e.g., adherence to requirements)
 - Maintainability (e.g., easy to fix?)
 - Integrity (e.g., attack vulnerability)
 - Usability (e.g., training time, number of interfaces)
- Productivity (productivity-related) production of work - products related to effort/energy/material expended.
 - Value analysis (a.k.a., earned value analysis)
- Statistical SQA data error categorization and analysis.
 - Severity of errors (1-5)
 - Mean time to failure (MTTF)
 - Mean time to repair (MTTR)
- Defect removal efficiency propagation of errors from process activity to activity.
 - Defects found in this stage
 - This Stage + Next Stage
- Reuse data the number of components produced and their degree of reusability.
 - The number of components produced and their degree of reusability.
 - Within a single project this can also be a "project metric". Across projects this is a "process metric".

2.4.1.2 Project metrics

Project metrics include all measures related to the project used to assess product/system quality on an

ongoing basis, and when necessary, modify the technical approach to improve quality. Project metrics measure aspects of a single project to improve decisions taken on the project.

Project metrics include, but are not limited to:

- Number of team members.
- Number of external systems interfaced.
- Number of technology objects used.
- Number of executable functions.
- Etc.

Project metrics are used to:

- 1. Minimize the development schedule by making the adjustments necessary to avoid delays and mitigate potential problems and risks.
- 2. Assess product quality on an ongoing basis, and when necessary, modify the technical approach to improve quality.

Every project should measure:

- Input metrics (inputs, project input metrics) measures of the resources required to do the work (e.g., materials, people, tools).
- Output metrics (outputs, project output metrics) - measures of the deliverables or work products created during the engineering process.
- Result metrics (results, project results metrics)
 measures that indicate the effectiveness of the deliverables.

Examples of project metrics include, but are not limited to:

- Effort/time per [engineering] task.
- Errors uncovered per review hour.
- Scheduled vs. actual milestone dates.
- Changes (number) and their characteristics.
- Distribution of effort on [engineering] tasks.

Best practices for developing and using metrics include:

- Teams must set clear goals and metrics that will be used to achieve the goals.
- Never use metrics to threaten individuals or teams.
- Metrics data that indicate problem areas should not be considered "negative". These data are merely an indicator for process improvement.
- Do not obsess on a single metric to the exclusion of other important metrics.

Best practice for developing effective metrics:

- Simple and computable
- Empirical and intuitively persuasive

- Consistent and objective
- Consistent in use of units and dimensions
- Programming language independent
- Should be actionable

Actionable metrics - metrics that guide change or decisions about something.

- For example:
 - Actionable measures the amount of human effort versus use cases completed.
 - If result is too high: actions may include more training, more designing, etc.
 - If result is too low: actions may include maybe the schedule can be shortened.
 - Non-actionable measures the number of times a word appears in a manual.

QUESTION: What is to be done if the measured result, in comparison to the metric, is too high or too low?

3 [Project] Coordination

NOTE: *Individuals among any society may communicate and coordinate in order to optimize their fulfillment.*

'Project management' is the market-labor term for that which, in community, is referred to (in part) as 'project coordination'. It could be said that the general purpose of project coordination (a.k.a., project management) is to control ("gate") and monitor a project's information flow(s). At the information system level, project coordination ("project management") is an information support service to other Functional-Service InterSystem Teams (composed of contributors), and the whole userbase (through open source creation). The InterSystem Teams, and also, the whole community of users, have several formalized organizational structures common to cooperative teams.

Project coordination is an iterative process. For example, the planning phase is a refinement of the initiation phase. In some instances, phases may be repeated because of changes within the project. Also, project phases may be performed simultaneously as well as sequentially. For instance, the planning, execution, and control phases may be performed in parallel as changes are made to the project baseline.

A fully coordinated societal environment one in which each action taken by each individual in a demarcated set of actions, correctly takes into account (1) the actions in fact being taken by everyone else in the set, and (2) the actions that the others might take were one's own actions to be different. To achieve equilibrium in this model, it is not enough that each subject correctly anticipates the contingent actions of everyone else. It must also be the case that each subject—using these correct understandings - chooses his or her own strategy and actions so as to maximize utility; because, it takes work (effort) to sustain a utility.

In order to sustain a unified information system where actions taken by individuals benefit themselves and others, work organization must be sub-categorized. Project coordination involves the accounting for and directing of information between multiple sets of projectrelated lists (i.e., categories of data that are useful for coordination purposes):

- Project 1
 - Tasks
 - ...
 - Personnel
 - Resources
 - Deliverables
- ...
- Project 2
- Project 3
- Project ...

3.1 Societal-level project coordination

NOTE: At the societal level, project coordination makes the societal system more resilient (i.e., robust) by taking the needs of all the stakeholders (everyone whose humanmaterialized, conscious life is involved) into account.

Some common questions necessary for coordination of a project for a type of society include, but are not limited to:

- Who coordinates community [into existence]?
 - Individual humans are contributors (open, global cooperation) to the societal system
- <u>What coordinates</u> community [into existence]?
 - A societal decisioning system integrated within a larger societal, real-world information system.
- How is community coordinated [into existence]?
 - By enabling, and using, a societal information system (while, encoding common individual human need and common access to planetary resources).

NOTE: From a project perspective, a [living] societal system may be viewed as a problem of project selection.

3.1.1 Project 'management' [at the societal level] is redefined as project 'coordination and control'

Community can use the discipline of 'project management' (project organization), and it does not need to adopt the market and state elements. In the literature, there are a large range of "accurate" definitions for the term, 'project management'. In its most broad definition, project management is the:

• Application of knowledge, skills (competencies), tools, and techniques (methods) to project activity objectives to meet the project requirements.

In an information-based society, the idea of project 'management' becomes replaced by project 'coordination', which is characterized by:

- Unified, global cooperation-based accounts for everything, applies everywhere, and is open to view integral in access.
- **Objective, predictive model-based** informed by first order real-world abstractions, and not second order abstractions.
- Algorithmically, encoded instruction-based (controls-based) - logical variability, and adapted from previously taken decisions.

Simply, in community, people are not "managed" as they are not coerced or awarded by an authority to work, but are working because they are self-motivated to participate in the development and operation of society as a contributor. Project management is a career profession in the market.

NOTE: What 'management' does can include secret decisioning. Whereas, the concept of 'coordination' does not carry that association, and instead, carries the association of shared relationships.

Market-labor parlance terms for project-related coordination include:

- Project management (PM) "The application of knowledge, skills, tools, and techniques to project activities to meet the project requirements. The role applies to any project or program personnel applying the knowledge, skills, tools, and techniques to project activities to meet the project (not product) requirements" (ANSI and PMI 2008, 6). This term will apply to those project managers, program managers, systems engineering managers (SEM), systems engineers that perform the rolespecified activities regardless of their associated discipline. It applies to all disciplines such as finance, contracts, supply chain, quality, and engineering managers.
- In community, this is project coordination.
- Program [manager] "A group of related projects managed in a coordinated way to obtain benefits and control not available from managing them individually" (ANSI and PMI 2008, 9). 1209 Project "A temporary endeavour undertaken to create a unique product, service or result" (ANSI and PMI 2008, 5).
 - In community, these are service systems, the largest of which is the Habitat Service System (e.g., life-support, energy, water, etc.).

CLARIFICATION: *The PMI defines 'program* **management'** (a sub-discipline to project management) as, a group of related projects managed in a coordinated way to secure benefits and control which could not be achieved individually. A program coordinator would thus "manage" a portfolio of projects, whereas a project coordinator would "manage" one project. (PMI 2016; ANSI Prince 2; ISO 21504:2015).

- Project Management Body of Knowledge (PMBoK) – the knowledge of how and why to "manage" a project as produced by the Project Management Institute (PMI).
 - In community, this the social knowledge-base within the unified information system.

- Project manager (PM) a person named to manage the complete project, which includes product and system oversight as a subset of the overarching responsibility, authority, and accountability demanded of a project manager. A project manager is the person accountable for accomplishing the stated project objectives. The term will also be inclusive of the term program manager for this paper.
 - In community, this is the project coordinator; the project coordinating entity.

The Lifestyle System Specification describes in greater detail how there is not the market-labor profession of "management" in community. Simply, in community, people are not "managed" (as in, not coerced or awarded by) an authority to work as part of an InterSystem [Projects] Team, but are working because they are selfmotivated to develop themselves as well as participate in the development and operation of society as a contributor.

In the Community, people are not managed and the interrelationships between people do not have to be managed because everyone is arriving at the same or similar decisions about the system and they recognize their responsibilities both to themselves and to the community. And that those responsibilities to the community are also responsibilities that support themselves and their lifestyle. Not because they are robots, but because they have the same knowledge about the system and a similar set of understandings, values, purpose and approaches to the empirical and life-grounded system that maintains the community.

In an information-based society, the idea of project 'management' becomes replaced by project 'coordination', which is characterized by:

- Unified, global cooperation-based accounts for everything, applies everywhere, and is open to view integral in access.
- **Objective, predictive model-based** informed by first order real-world abstractions, and not second order abstractions.
- Algorithmically, encoded instruction-based logical variability, and adapted from previously taken decisions.

In the context of logistics (Read: the optimal, logical movement of objects), coordination refers to efforts (Read: the execution of supra-tasks and suprainformation processes required) to be in the right place (location) at the right time (temporal) to execute a task as planned; thus, moving an object to its intended destination, optimally.

In an information system, the idea of project "management" is replaced, in part (i.e., the human subjective-management part is replaced), by objectively informed and processed project information. In an information system context, think of project management as an pre-programmed, open source, algorithmic coordinator of information relevant to a project, which processes project-level information in order to achieve all of the project goals and objectives, while remaining in the bounds of constraints.

A project coordinator actively and passively monitors a projects information sets to actively ensure that the solution inquiry (a.k.a., system development lifecycle, engineering development) delivers an optimal and organizationally/societally acceptable solution (through parallel decision inquiry processes).

INSIGHT: A project, in the market sense, is something that creates "value" for someone. A project could also be viewed as a structure for resolving a greater state-dynamic of fulfillment (i.e., resolving problems with fulfillment).

Additionally, this coordinator monitors and controls the flow of project-level information. The term project "management" (and "manager") is a misnomer, because instead of the creation of something being the work of management (power-over-other relationships), it is a collaborative effort to bring something new into existence, or maintain the iterative operation of an existent system.

Within the context of a project, there is a need for coordination, which requires intrinsic motivation among the workers, who are voluntary contributors, and not laborers for anyone other than themselves, as users of the service systems they are "co-creating". Among community, there is no need for external reward and punishment, and hence, need for the management of other humans.

That framework which is applied to ensure the successful resolution of a project space is more akin to a coordinator, rather than a manager. A coordinator can still maintain control functions, as managers do, but the term is socially agnostic, whereas the idea of 'management' arises out of an authority-based, transactional set of social relationships.

3.2 Communication coordination

Coordination necessitates precise and accurate communication. Communication, in general, necessitates asking and answering the following five questions; these questions are are essential for coordinators and good practice for all communicators:

- 1. What do I need to communicate?
- 2. To whom do I need to communicate?
- 3. When do I need to communicate?
- 4. What method is most appropriate for the communication?

3.3 Technical coordination

A.k.a., Unified potential for movement.

Depending on the context of its application, the concept of 'coordination' has several related meanings.

Coordination is the ability:

- To combine several distinct [informational/physical] patterns into a singular movement, with efficiency [in input usage] and effectiveness [in output delivery].
- To integrate all the components of fitness so that effective movements are achieved.
- To unify movements into a coherent and optimally effective pattern of movement.
- To engineer/develop and apply/operate patterns of [information] movement efficiently, effectively integrating visual information for a purpose [vector].
- Of system entities (i.e., actors or patterns) to interact beneficially for a higher-order system purpose/function.
- To optimize the direction and sharing of information and materials.

Simply, coordination is the combined sub-abilities that allow people and/or systems to work together [efficiently and effectively for a common purpose]. Generally speaking, coordination is a global systems ability, made up of several synergistic elements and not necessarily a singularly defined ability. Decisioning, [spatial] orientation, and the ability to organize an effective and efficient pattern of reaction to real world stimulus are core elements of coordination.

QUESTION: *How well are we coordinating information and resources so that people have what they need, where they need it, when they need it?*

Society requires a coordinating structure to support a contribution-based platform. Societal coordination can be broken down into two high-level components (or component systems):

- Social-project coordination
- Technical-engineering coordination

And also, one low-level component (or component system):

• Socio-technical tasks (Note: Both social-project coordination and technical-engineering coordination have associated socio-technical tasks)

As a structure for the flow of information, coordination is an organizational relationship among entities/actors, which may become more or less coordinated over time (due to various internal and/or external factors). Coordination becomes optimized through cooperation (in computation, 'cooperation' effectively means, simultaneous and purposeful operations).

CLARIFICATION: At a societal-level, project coordination refers to organizing, planning, initializing (execution done by teams), monitoring, evaluating, and deciding multiple societal-project inquiry tasks simultaneously. More simply, coordination refers to organizing and planning multiple tasks simultaneously.

Coordination requires commonality, a similarity, or pattern with a purpose, otherwise there is less, or not, coordination (i.e., less of an ability to move together). For example, in the context of a project, everyone involved in the project uses ("follows") and informs the same, single, unified project plan, as part of a larger and more unified societal/organizational information system.

INSIGHT: The idea of coordination is not theoretical; it's application to society, as an information system, will likely change (update) the language of the individuals therein, their comprehension of the real-word, and their ability to create safely together, in the real world.

In concern to the idea of project management, herein, "management" is a misnomer for coordination and organizational/societal-level decisioning. Instead of a project manager, there is the element of an information system and the coordination of information therein via a project coordinator [that coordinates the flows of information during a project's societal/organizational life-cycle].

INSIGHT: Coordination is the ability of a system to orient in an environment so that it aligns more closely with a given direction as iteration/ motion occurs. And there, a system requires the ability of sub-systems to work together to re-orient its own internally motive system toward a direction of system fulfillment; because the system has a purpose. In concern to system resources, coordination ("management") may be simplistically defined as having and doing what is required/necessary to achieve the greatest access to, and get the most usage out of available resources.

3.3.1 Monitoring phase - Project quality review

The purpose of quality reviews is to assure that the established systems development and project coordination processes and procedures are being followed effectively, and that exposures and risks to the current project plan are identified and addressed. Quality reviews facilitate the early detection of problems that could affect the availability, reliability, integrity, maintainability, safety, security, or usability of the system or product. Quality reviews enhance the quality of the end work products and deliverables of a project.

All deliverables (work products) are subject to quality review.

NOTE: In a societal decision process, the *Effectiveness Inquiry is continuous, and is part of the quality review process.*

3.3.1.1 Peer review

A peer review is an informal review of systems, including documentation, which can be conducted at any time. These informal reviews are performed by the developer's "peers" -- frequently other developers working on the same project. Informal reviews can be held with relatively little preparation and follow up activity. Review data are collected and the developer determines which data require future action. Some of the work products prepared are considered interim work products as they feed into a major deliverable or into another stage.

3.3.1.2 Structured walk-through

A structured walk-through technique (SWT) is a more formal review and is prescribed by the engineering for all project deliverables. SWTs are used to find and remove errors from work products early and efficiently, and to develop a better understanding of defects that might be prevented. They are very effective in identifying design flaws, errors in analysis or requirements definition, and validating the accuracy and completeness of deliverable work products.

SWTs are conducted during all stages of the project life-cycle. They are used during the development of work products identified as deliverables for each stage, such as requirements, specifications, design, code, test cases (scripts), and documentation. SWTs are used after the work products have been completed to verify the correctness and the quality of the finished product. They should be scheduled in the work breakdown structure developed for the project plan, where, in practice, they are sometimes referred to generically as reviews. SWTs should also be scheduled to review small, meaningful pieces of work. The progress made in each life-cycle stage should determine the frequency of the walkthroughs; however, they may be conducted multiple times on a work product to ensure that it is free of defects.

SWTs can be conducted at various times in the development process, in various formats, with various levels of formality, and with different types of participants. They typically require some advance planning activities, a formal procedure for collecting comments, specific roles and responsibilities for participants, and have prescribed follow-up action and reporting procedures. Frequently reviewers include people outside of the developer's immediate peer group.

3.3.1.3 Exit review

A.k.a., Stage exit review.

The exit review is a process for ensuring a project meets the project standards and milestones identified in the project plan. The exit review is conducted by the project coordinator with the project stakeholders. It is a high-level evaluation of all work products developed in a life-cycle stage. It is assumed that each deliverable has undergone several peer reviews and/or SWTs as appropriate prior to the stage exit review process. The exit review focuses on the satisfaction of all requirements for the stage of the life-cycle, rather than the specific content of each deliverable.

The goal of a exit review is to secure the approval (verification) of designated key individuals to continue with the project and to move forward into the next lifecycle stage. The approval is a "sign-off" of the deliverables for the current stage of development including the updated project plan. It indicates that all qualifications (issues and concerns) have been closed or have an acceptable plan for resolution.

Generally, at a during stage review, the project coordinator communicates the positions of the key personnel, along with qualifications raised during the stage exit process, and the action plan for resolution to the project team, stakeholders, and other interested participants. The stage exit review is documented. Only one stage review for each stage should be necessary to obtain verification ("sign off") assuming all deliverables have been accepted as identified in the project plan.

3.3.2 Alignment and control variables

Alignment is the principal sub-coordination process. Alignment means the ability to adjust the position and/ or orientation (Read: alignment) of some directed thing in motion (or iteration).

INSIGHT: The principles of coherency (or consistency) and alignment (degree of logical relationship of the one to the unified) are required for optimizing coordination.

Alignability requires control. Some controls can be automated, given what is known and available.

3.3.2.1 For example, project control variables

The following are some of the variables that can be adjusted for any project:

Standard control variables for a project include:

- 1. Scope
- 2. Time
- 3. Resources
- 4. Cost (market-only)
- 5. Jurisdictional (State-only)

Complementary control variables (control variables that are particularly salient in undefined projects):

- Transparency
- Inspection
- Adaptation

3.3.2.1 Alignment in cybernetic second-order systems

Alignment is a second-order cybernetic systems control function. Alignment requires the integration of feedback into a control system to determine the current value, and correct for the error, to an objective trajectory. By collecting and collating measurement data (i.e. observing the speedometer and the clock), the driver (the controller) can calculate at any point in time how fast the vehicular system should drive in order to achieve the defined goal [of getting to a location an a specified time]. Or, in the case of the habitat service system, by surveying human [need] requirements, the unified information system project coordinator (the controller, the project information processing unit) can calculate at any point in time how many human services must be produced, and in what time-frame, in order to meet a defined human fulfillment-requirement objective.

3.3.3 Coordination decisions

A.k.a., Coordination decision points.

A unified information system must coordinate between multiple information sets to ensure the fulfillment of the whole population of the society. The following are some common coordination decision points, expressed in the form of decision deliverables:

- **Decision analysis coordination** decide the current model of the situation; decide the decision variables; decide the method of optimization.
- **Technical planning coordination** decide the scheduling; decide how to track; decide resource and system allocations.
- **Technical assessment coordination** decide how to track, measure, and assess metrics (for metrics collection).
- **Requirements coordination** decide requirements and decide mode of bi-directional traceability flow tracking.
- **Risk coordination** decide how to identifying and mitigate risks.
- **Technical data coordination** decide data structure; decide logging, decide data access, data storage, data control, data use; decide formal documentation interface.
- **System/product coordination** decide functional, physical, and non-functional, and FAIT (SAITL) specification, provide traceability.
- **Service coordination** decide the protocols by which a service operates.

- Implementation coordination decide the prototype model, simulation model, and testing model.
- Verification coordination decide the testing and evaluation model.
- Validation coordination decide how the end user will validate that the end-user's need(s) are met (with no further issues).

3.4 Project situational analysis

Coordination is not possible, at least not optimally, without a persistence of data being analyzed about the project's internal and external situation (i.e., issues with the project or environment as related to the project).

In order to sufficiently form a situation space the following questions must be answered:

- 1. What is the problem?
- 2. What causes the problem?
- 3. Who is affected by the problem?
- 4. Who cares about (is affected by) whether or not this problem is solved?
- 5. What are the priorities?
- 6. How will existing decisioning, research and experience, solve the problem?

NOTE: *If the 'problem' is not recognized, then the situation where an information resolution determination is required is not recognized.*

More generally, project situation analyses involve the following information sets:

- 1. **Participant analysis** *who* is involved in the project's situation ("stakeholder/user analysis", person tree, "whose").
 - Here, there is are people (users, humans).
 - Here, there are technical systems (users, machines).
- 2. **Problem analysis** *what* is problem of situation (problem tree, "ends").
 - Here, there is an issue with some system from a person and/or some technical system (problem tree, root cause analysis, "cause")
- 3. **Objectives analysis** *what* are objectives for situation (objective tree, "means")
 - Here, there is also an outcome tree depicting a change in condition that benefits the user (target group).
- 4. **Solution analysis** *what* are alternative solutions for situation (solution tree).
 - Here, there is a solution analysis at a societal level with societal-level inquiry decision processes.
 - Here there is a solution analysis at a technical

level with technical-level inquiry decision processes.

3.4.1 Assessment

A.k.a., Project evaluation, project analysis, situational analysis, situational assessment, situational report (sitrep).

An assessment is an analysis of a situation in order to acquire additional information in order to inform decisioning. In order to take informed decisions, often, a number of analysis activities are required to be carried out. The analysis data are not an end in themselves, but are used to inform (input into) decisioning.

There are many types of assessments. A conditional assessment (e.g., risk, impact assessment) is an objective analysis (i.e., review) of one or more conditions (e.g., risk) applied to a system, concluding with a determination of the probability or likelihood of the condition being true. However, not all assessments conclude with a probability. For example, a gap assessment analyzes what may be missing from a solution, given what is currently present in the solution (i.e., where are the gaps in the solution?).

An assessment process needs to include details on,

- 1. How will the project's result be assessed (i.e., what is success; what is the criteria?)
- 2. What are the difficulties and risks in the project and its final assessment of success?

3.5 The project coordinator

A **project coordinator** is an information processing unit (agent) that coordinates the flow of all project related information.

Project coordinator activities (functions/operations) include:

- Identify project requirements.
- **Define** clear and [probably] achievable objectives.
- **Combine (integrate)** the knowledge areas into processes (process groups).
- **Update/adapt** the specifications, plans, and approaches to users requirements.

A project coordinator integrates (combines) the three constraints (a.k.a., triple constraints) that are present in every project:

- 1. Scope (objective)
 - Quality (condition/value)
- 2. **Resource** (materials; a.k.a., "budget")
- 3. Schedule (time)

Each constraint constrains the other and is in turn

constrained by the other two. Planned projects can be impacted by impacting these variables. All change requests to the values of these variables must go through a formal change request procedure and form.

The 'scope' is the foundation of what is being developed [by a project] through <u>resources</u> and <u>time</u>. Herein, 'scope' is Project coordination carried out by a project coordinator, like a project managing project manager, necessitates the following information system elements:

- 1. **Documentation(s)** Project documentation interprets the awareness of a project in the unified information system. To record existence and change within existence.
- 2. **Surveys(s)** Project positioning in the information system and transparency with information system resources. Project positioning occurs through surveys, which also provide data for situational analyses. First, there must be known that some "thing" (what) exists.
- 3. **Integration(s)** Project integration identifies and integrates the project's imperatives, in relationship to the determined method for their successful completion. There are memory structures, information processes, and the software tools for integration.
 - To combine available information into a more completely view of what is:
 - Occurring in the project.
 - Planned to occur in the project .
- 4. **Evaluations(s)** Project evaluations (sometimes "administrations") follows the operational progress of the project and reports on its progress; analysis highlight discrepancies, risks, while protocols issues alerts and requests decisions.
 - To observe if there is an error between the environmental value and the required value.
- Decision(s) Project decisioning involves coordinating the resolution of the project space among the common constraints of quality, function, deployment, time, and resources.
 - To decide the flow of information by "gating" activities within the life-cycle, closing them when they meet completion requirements. Here, "gating" refers to decisions as to whether (Read: <u>how</u>) information does or does not flow [due to the completion of requirements for a given activity].
- 6. **Plan(s)** Project plans involve ta visualization of the coordinated project resolution space (e.g., the Habitat Service System plans).
 - To decide prior in time <u>how</u> information will flow. The result is a set structure for the flow information, known as a life-cycle [for the flow of

integrating information].

- 7. **Monitor(s)** Project monitoring involves the opening of a real-time or recorded visualization of a process in order to maintain transparency and ensure the process was completed as planned (as the rules for the gate were followed).
 - To provide analytics [through a "dashboard" interface] to those who require calculated data for decisions to be taken concerning a project.
- 8. **Interface(s)** Project interfacing refers to the visual interface users have into the project [information space], including the view the interface has into the unified information system, and its visualized and "dashboard" configuration.
 - To provide a transparent interface into the whole project information space, to all users.

Project plans are organized by a project coordinator. The following is an example organization of project-related plans (Lewis, 2016):

- 1. Overview of project
- 2. Definitions applied in project
- 3. Project organization
 - A. Method of organization
 - B. Internal interface
 - C. External interface
 - D. Roles and responsibilities (accountabilities)
- 4. Coordinator process plans
 - A. Estimation (schedule, cost)
 - B. Work (activities, resources, budget)
 - C. Control (quality, metrics)
 - D. Risk
- 5. Technical [generative] process plans
 - A. Process model
 - B. Methods, tools
 - C. Acceptance plan (decision plan)
- 6. Analytical process plans
 - A. Configuration coordination (past and probabilistic future configurations)
 - B. Verification/validation (of requirements)
 - C. Quality assurance (reviews, audits)
 - D. Subcontracts
 - E. Process improvement plan

A common project planning coordination outline is:

- 1. Project coordination
 - A. Title and approval sheet
 - B. Table of contents
 - C. Distribution list
 - D. Project/task organization
 - E. Problem identification/background
 - F. Project/task description
 - G. Quality objectives and criteria

- H. Special training/certification
- I. Documentation and records
- 2. Data generation and acquisition
 - A. Sampling design
 - B. Sampling methods
 - C. Sample handling and traceability-accountability requirements
 - D. Analytical methods
 - E. Quality control
 - F. Instrument/equipment fabrication
 - G. Instrument/equipment testing, inspection, and maintenance
 - H. Instrument/equipment calibration and frequency
 - I. Instrument/acceptance requirements for supplies
 - J. Non-direct measurements
 - K. Data storage and coordination
- 3. Assessment and oversight
 - A. Assessment and response action
 - B. Reports and roles
- 4. Data validation and usability
 - A. Data review, validation and verification
 - B. Verification and validation methods
 - C. Reconciliation with user requirements

4 [Project] Planning

A.k.a., Planning, system planning, adaptive planning, dynamic planning.

Having a 'project' is a pre-requisite for planning. Projects involve the process of planning under the condition of uncertainty; they require coordination. In a typical project lifecycle, planning occurs in between project initiation and project execution. Project planning applies to all projects regardless of their size. Planning concerns the processes associated with pre-execution inquiries, integrations, and decisions within some predictivelyprobabilistic environment.

In general application, there is a project-level plan, and then, there are more detailed and progressively elaborated plans for each phase level. Plans are more like snapshots of a desired change or development, instead of static blueprints, and their focus is more on temporality and movement than on the long-term configuration of an emergent structure. Simply, a 'plan' is a course of action (i.e., a model of actions). A plan is a mechanism or set of techniques to guide the activity of economic [socio-technical]decisioning through time toward the achievement of specific goals. A plan is a process with an input, process, and output; whereupon, something does work until the output is out.

In application, planning is the unified information processes of:

- Organizing [of information]
- Analytical-synthesis [of information]
- Predicting/estimating (probability value, meta-value)
- Tasking (task value, numerical hierarchy of work breakdown, WBS)
- Scheduling (temporal value with all relevantassociated project information)

Planning is deciding, in advance, what to do, how to do it, when to do it, where to do it, and who is going to do it. Therefore, panning determines:

- What is going to be done?
- How is it going to be done?
- When will it be done?
- With whom and what will it be done?
- How will it be known that it is done?

Planning is a precise information processing and task coordination tool. Planning is essential to every project, regardless of the size of the project. The result of all planning is a deliverable, a plan [of action/execution] that is then, executed (and modified, as required). As a plan's execution progresses, more information becomes available, and therein, feedback loops may modify the plan.

The amount of detail required to plan varies according to the needs of a given project. Planning is a repeatable supra-process, which is involved in multiple other processes. The project approach processes information into a high-level usable format.

When planning is conducted in a systematic and precise manner, then execution of effort toward a goal(s) has a greater potential of being optimal, adaptive, effective, and efficient (i.e., execution becomes easier). Without a complete and comprehensive plan, it is difficult to execute and coordinate optimally, or even coordinate at all.

Using a travel analogy, 'planning' is the aligning of an intentional direction with potential action, to explain how to arrive at an intended destination, and what the experience of the intended destination will be, prior to executing the movement toward the intended destination.

Simply, planning is:

- The word for doing project tasks with documentation.
- The systematic preparation for action in the [temporal] future (i.e., some future iteration).
- Deciding about the future "course of" [materialized] action (i.e., some spatial motion).
- Thus, inherent in all activity (individual or collective), because all activity happens in time-space (i.e., materializing time).
- Within a community-type society, habitat service systems provide an aggregated framework for the planning of the material [experience] system. There is a reason the material system, and life experience therein, is the way it is.

To plan is to decide ahead of time, to envision, everything about some desired state/output, and what is required to achieve [as checked off criteria] the desired output. Every plan has a predefined goal (or objective). Once there is a goal (or direction), then a plan(s) can be developed (configured, and selected) to achieve the goal and arrive at the objective. Therein, planning is itself, sub-composed of well-defined objectives. Planning is an information process that happens in the context of goals. A plan defines and explains what is needed, and is to executed as an operation, over some period of time

It is relevant to note that a plan can be deviated from. For any team-based plan, there are acceptable and unacceptable divergences off of [alignment of] a plan. For any team-based action, an objective approach is necessary to re-align [and restore] unacceptable divergences from a planned trajectory.

If "to plan" is to decide ahead of time, then "to use an algorithm" is to automate decisioning. If a plan may be coordinated into materialization, then coordination is, in part, the ability to synchronize project information for sequential execution, ahead of time.

In the real world (because of temporal-spatial existence), planning is required for:

• Optimum utilization of resources.

A '**resource**' is any "thing" that may be used in a project. Time, energy and material resources are the minimum. In a community type society, no human is considered a resource for other human; technically, there are no "human resources" as humans are not managed in the hierarchical and authoritarian sense.

The first project integration is planning:

• When time and task become available, planning becomes available.

The requirements identified in project related materials, (e.g., a scope of work, concept of operation). The level of detail will vary depending on project type and size.

The overall planning process can be sub-defined by linked set of inquiry-deliverables:

Definition of what is to be *the activity:*

- 1. *What* activities are need (processes).
 - Inquiry: what.
 - Deliverable: tasks.
- 2. Why are they needed (knowledge and values).
 - Inquiry: why.
 - Deliverable: knowledge and values.
- 3. *How* they are to be performed <u>(information logic</u> and scientific knowledge).
 - Inquiry: how.
 - Deliverable:
 - Information processing logic (what function).
 - Scientific knowledge (what models of useful prediction).

Location of what is to be *the activity*:

- 1. *When* will the activity be executed (time).
 - Inquiry: when.
 - Deliverable: temporal information system (Read: schedule).
- 2. Where will the activity be executed (space).
 - Inquiry: where.
 - Deliverable: graphical information system (Read: GIS).
- 3. *How much* [resources] are required to be executed (technical solution design inquiry).
 - Inquiry: how much.
 - · Deliverable: technical solution resource flow

simulation (and data and logical processing model).

- 4. *How/what quality* [condition] will the activity be executed (condition-quality solution design inquiry).
 - Inquiry: how/what quality.
 - Deliverable: quality-function-deployment (QFD) combinatorial [decision to selection] synthesis.

4.1 Environmental surveying

A.k.a., Project surveying, environmental surveying of humans and resources.

Surveying, which feeds into detailed planning directly returns information on what is required (what is the direction and what is accessible -- must have global cooperation as pre-requisite). Note that in the commercial market, a survey is not a direct input; it returns information on price (i.e., the price people are willing to pay in the market). The surveying specified here is primary abstraction surveying (i.e., categorized objective data) and not a survey of secondary order abstraction (i.e., categorized subjective-price data). Surveying feeds objective data into detailed planning (directly) by returning information on what is required.

In the market, a survey is not a direct input; it returns information on price (i.e., the price people are willing to pay in the market).

INSIGHT: We have to keep track of what is about to happen so we can prepare, and we have to keep track of what has happened because an important part of what we are going to do next is in consideration through what we have just done. The past and the future flow into one another by keeping track of data and integrating it.

5 [Project] Plan of action

CLARIFICATION: *All projects contain one or more plans. A 'project plan' organizes and integrates every single bit of information (Read: "all details") that there is with any relevance to a project, combining them to produce information that can be taken action upon.*

A project plan is the data set integration of situationally relevant information required for the coordinated (as in, allowing for optimality) resolution of a societal, technical problem. The design and operation of any [complex] system is approached optimally through project organization, the who integration of which, becomes, a project [access] plan (i.e., a plan for deciding, coordinating, and resolving access to a real-world, socioeconomic system). Herein, a plan is an information model (specification or work package) with the following characteristics:

- Visually documented.
- Executable through tasks, which have objective functions separated out at a high level into phases.
- Related through integration modeling of all objects and processes (and states, stages, or phases).

In general, project plans have at least the following three characteristics:

- 1. The project ["management" or coordination] plan is an information system that contains all project related (subsidiary) plans (PMBoK 2018).
- 2. A project plan is an adaptive, iterative information system that gets updated every time something new is learned or otherwise discovered about the project.
- 3. A project ["management"] plan is a complete/final aggregation of complete planning (control and monitoring) done for a project.

A plan involves the information processes of:

- Understanding the meaning of objectives.
- Identifying assets.
- Analysing the consequences and risks.
- *Establishing* project performance requirements.

A project plan is the sole formalized document, repository, interface, tool for project organization, execution and control.

• The project plan describes and communicates the status (i.e., state) of the project to everyone concerned. As an information repository (or reference-base_, a project plan represents the formal database for all project related content. A project plan facilitates communication and optimizes effort expenditure between participating humans and technical systems.

- A project plan documents the solution to a degree that the team can produce and deploy the solution effectively. A project plan is formalized in order to ensure coherent communication of the state of a project, which is necessary for complete and efficient project execution.
- A project plan acts as a project's information control tool; it is the master planning and coordination referent for the project. Herein, 'project control' is the analytical process of comparing the real world progress with the scheduled/planned progress.
- The project plan must correctly and accurately define the output as best as possible given what is known.

A plan is the result/deliverable of the planning process. In general, a plan is a represented determination of what tasks must be done, and which tasks precede others in order to accomplish some effort, work or created result. Plans focus and coordinate all effort. Simply, a plan is the "step-by-step" proceedings of a sequence of actions (tasks) to achieve a stated goal. A plan is analogous to a map; it maps out a "step-by-step" progression to completion of the some intention (objective, vision, etc.). The primary function of a plan, given a social organization, is to coordinate [social] effort.

More simply, a plan is a directional information set that everyone can see and point to, and say, "look here, this is what we are building, and this is when and how and with what we are building it (given that the language is understood)".

Effective plans cover all aspects of a project, giving everyone involved a common understanding of the information space and the work ahead. Plans must be kept up-to-date to be continually useful (i.e., they are a "living" information set).

A project plan if often considered a "visionary" piece of information (i.e., a visionary document), because it defines the vision and how the vision is to be achieved. A vision or goal is an end state (a description of). The project plan provides the [required] vision, as well as, how to realize the [complete] vision. The project plan allows participants to observe and control the flow of information through a project, from initial questions, to requirements definitions, to functional designs, and finally through to unit, interface, system, and user acceptance testing (or any similar integration lifecycle flow).

Summarily, a project plan defines the information elements of a solution in detail:

- What is required?
- How is it required?

- Who requires it?
- Who will build it?
- When will it be built?
- Where will it be built?
- With what will it be built?
- How will its building affect previous buildings?

In other words, a project plan of any level should be able to answer the four basic project questions:

- 1. **What?** What is the desired outputs/deliverables for the project? What work needs to be done in order to achieve these outputs?
- 2. **Why?** Why is the project being undertaken? What is it trying to resolve?
- 3. **Who?** Who are the team members working on the project? What does each individual do while on the project?
- 4. **How?** How will the project be completed? What activities must be completed, and in what order?

A project plan should [be designed to] visualize to everyone involved [in the project] the following information sets:

- 1. *Why* the project is being undertaken. The project plan includes the *why*, the reasoned imperative.
- 2. *What* will the project produce (i.e., the destination state of the habitat). The project plan includes the what, the described vision (or mission) as an information flow into a set of goals and objectives, which flow into a set of [engineering] requirements. Note, the execution of the project develops the specification, its construction, and potentially, its operation.
- 3. *How* and *when* will the project produce its intended result (i.e., the path to the destination). The project plan includes the *how* and *when* a project's objectives are to be achieved, by showing (in part) the deliverables, activities, resources, and schedule.

5.1 [Plan] Action structured view

MAXIM: If you fail to plan, then you are planning to fail.

In general, a complete project plan will include (most of) the following project content categories:

 The imperatives - Goal-orientation, solutionorientation, problem-based orientation, a direction of orientation. An imperative (objective) is a stated intention of direction (or, direction of intention). The objective may be a mission, a vision, a goal, an end product, etc.)

- 2. **The approach** the type of logic (or, not logic) to be applied to the flow of information.
- 3. **The work** task information integration (task-based information "work" packages).
- 4. **The schedule** time information integration.
- 5. **The tools and techniques** to be employed procedural information.
- 6. **The people** human InterSystem accountability.
- 7. The resources common materiality.
- 8. **The risks** the probability of harmful [human and ecological] consequence in materiality.

Table 2. Project Approach > Plan of Action: Planning concepts

 and their alignment to core project instantiating elements.

Plan concepts	Alignment to core instantiating elements
Requirement	Need, Value, User
Design	Solution, Need, Context
Plan	Change Solution, Context, User
Risk	Change, Value (reduced)
Benefit	Change, Value (increased), User, Context

5.2 [Plan] Action executable view

In order for a project to arrive at completion, it must integrate several information sets. The complete integration of these information sets is known as a lifecycle - it is the computation to completion of information given what is desired and what is known.

From an action/work coordination view, there are five information sets (or phases) to any given project (this is a recursive list, because 'execution' is a phase itself and part of every other phase):

1. Breakdown work into tasks

• A task is another name for a processes with an input and an output.

2. Identify resources

• The composition of the input, process, and output.

3. Identify dependencies

• Tasks relate in requirements, input, process, and output; their relationships can be visualized through a database matrix.

4. Schedule time and resource access

• The time and resource variables are added to determine temporal-location execution, and eventual completion.

5. Execute

- Tasks are executed as actions/activities at the scheduled time and with the allocated resources. After evaluation, execution is the modifying of tasks.
- 6. Evaluate

• Was the task executed correctly and did it have the intended impact or result.

Herein, the execution of an action has four principal project phases (note that this is a recursive process, and each phase also contains actions; for example, the identification of an activity to take action on requires actions itself):

- 1. Identification of activity.
- 2. *Preparation* of activity.
- 3. Activity action.
- 4. Evaluation of activity/action completion.

5.2.1 Simplified view of the project action life cycle

A simplified project action life-cycle involves detailed elaboration upon the following phases:

- 1. **Plan** plan what needs to be done.
- 2. **Act** take action to collect everything that is required for what need to be done.
- 3. **Do** do what needs to be done.
- 4. **Check** check to make sure what needed to be done has been done.

NOTE: This life-cycle is sometimes written as: (1) Plan, (2) Do, (3) Act, (4) Check. [the9000store. com]

5.3 [Plan] Action decisioning tools

The following are information synthesis tools that have application in determining optimal planning decisions:

- Category diagram (identification) categorize as similar to an entity, such as group or label (entities as shapes but no relationships as lines)
 - Affinity diagram generate and group ideas.
- **Relationship diagram (elaboration)** categorize as entities with relationships (entities as shapes and relationships as lines)
 - Activity decision program chart identify potential problems and contingency measures.
 - Activity network diagram identify optimal path and schedule to complete work.
 - Relationships diagram (interrelationship diagram)
 map cause and effect links between items, events or tasks.
 - Tree diagram map tasks to achieve a goal in increasing detail. High level information is de-composed into lower-level information. An organization chart is an example. It graphically breaks down complex processes into smaller level details.
 - An issue is known or being addressed in broad

generalities and requires specific details.

- Developing actions to carry out a solution.
- Analysing processes in detail.
- To determine the root cause of a problem.
- To evaluate implementation issues for several potential solutions.
- After affinity diagram or relations diagram has uncovered an issue.
- As a communications tool to explain information to others.
- Combination diagram (comparison)
 - Matrix diagram identify, analyze, and rate relationships between two or more sets of information. Shows the relationship between two, three, or more groups of information. Its completion will give information about the relationship (e.g., no, weak, strong, ...). Graphically establishes relationship between two or more sets of items in such a way as to provide logical connection points between each item.
 - L-shape matrix diagram
 - T-shape matrix
 - Y-shape matrix
 - C-shape matrix [3D model, cube]
 - X-shape matrix
 - Roof-shaped matrix (used with a L- or T-shape matrix, roof used with QFD)
 - **Prioritization matrix** narrow down options by comparing them against criteria.

NOTE: Lines indicate links and lines with arrows represent a direction of [information flow in a] relationship.

5.3.1 Quality function deployment (QFD) tool

A.k.a., Production relationship matrix for evaluation/assessment decisioning

The quality-function-deployment (QFD) method (matrix) is a method of combing the articulations of a users needs and expectations, while effectively accounting for the users by understanding their requirements, and then, developing engineering specifications to fulfill their requirements in an executed environment. The QFD method is used, in part, to determine optimal paths (synthesize a selectionable, optimal decision, given what is known). The QFD is a systematic method of translating the requirements of users into both the design and service (production & operation) process. QFD is a visual-logic (calculation) tool for ensuring user requirements are accurately translated into relevant technical specifications (from asset definition to asset design to process development and finally to asset-process implementation).

INSIGHT: *Every organization has users (in the market, customers).*

Quality-function-deployment is used to translate user requirements into measurable design targets, and derive them down through the different compositional categories of an asset:

- 1. Assembly (of asset)
- 2. Sub-assembly (of assembly)
- 3. Components (of sub-assembly)
- 4. Production process (of components)

Multiple QFD matrices are used to translate this progression.

From a performance perspective, QFD could be viewed as:

- Conception of performance (qualities)
- Function of performance (functions)
- Deployment of performance (deployments)
- QFD is a decision interface for communication (concerning the engineering of a system)

6 [Project] Life-cycle

A.k.a., Project lifecycle, project life cycle, project process groups.

A project is sub-divided into a set of phases (resolving information sets) as sub-parts of a life-cycle plan for coordination and decisioning (control) purposes. The [project] life-cycle plan forms the foundation for project planning, scheduling, coordination, and estimation.

NOTE: *Different types of projects may have different life-cycle structures.*

6.1 [Plan] Life-cycle control

A.k.a., Planning control, plan control, plan management, plan programming, plan[ned] decisioning, controlling coordination.

In the discipline known as project coordination (project management), when the words 'plan' (and 'control' or 'management') come together, only the knowledge areas change. For example, Plan quality control/management, Plan schedule control/management.

The controlling of coordination [as intentional motion in a physical environment] for the purpose of navigation, in time-space, requires 'planning' as the intentional conception and expectation (of a particular sensation, giving rise to a memory of [the unit] experience).

In documentation, every time the terms 'plan' and 'control'/'management' are together in a project coordination/management title, it means, "the rules or procedures of the [information flow] gating and monitoring process" (i.e., the rules of the gate that allow information to pass). The control of the flow of information, and of all access, can be sub-divided into bounded phases, for easier and more model-like understanding, known as a 'life-cycle' (Read: a whole unified system sub-divided into interrelated boundaries that form a [whole life-]loop).

In a project, these rules are defined [within the unified information system] ahead of the project [phase or sub-process] gate. For example, the term "Plan scope management" means the rules for how to process information associated with scope as, the defined direction, which includes the process group decision-deliverables of: defining objectives, collecting requirements, and producing a "work breakdown structure".

TERMINOLOGY: A 'rule' is (in part) a pre-decided flow of information from one point to another by the method of a [controlled] relationship that links to one entity out of multiple possible entities.

In the process group known as CONTROL, when plan

and coordination come together, it means the logical resolution of information into a decision point to be acted upon in the future by an accountable (i.e., monitored) entity, who understands the plan (decision structure/ procedure) and is able to act). More completely, project coordination "management" is about information-level control and communications under more or less well defined information categorizations and processing goals.

INSIGHT: Instead of an environment where relationships are based on [market] transaction and power-over-others (i.e., the Stateowner-authority), relationships are based on collaboration, as a global cooperation of thought, resolution, and action in a common environment.

The center (Read: core process) of each process [group] is 'integration'. Integration combines the other 9 knowledge areas into a fully specified understanding of some knowledge area of a project. All terms that start with Control are sub-sets with Integration.

In other words, project integration involves controlling how information is integrated into a decided project plan knowledge-base. Project integration involves:

- Initializing project-level information [sets] -Identifying the issue and the users (as in, those who may be impacted by the issue).
- Analyzing project-level information [sets] -Collecting and analyzing the project data on the results achieved by the project, ensuring the project meets the project objectives, by constantly monitoring the project's progress.
- **Delivering project-level information [sets]** delivering a project plan (supra-plan) through a project information interface that will facilitate the optimal resolution of project objectives.
- **Closing project-level information [sets]** doing all the required work at the project-level to meet the requirements, and then closing (exiting, no longer working on) the active project process.

6.1.1 Control gates

A.k.a., The process group gates, control gate.

Each phase in the life-cycle represents a gate in the whole life-cycle process. Each gate in the project life-cycle, at a high-level, is called a 'process group'. Through the gating process, a project (or any deliverable) is broken down into smaller stages or phases, each delimited by a gate, which has a rule-set, wherein information is executed, leading to a decision to pass or not pass the gate. Each gate is a control point where verification that the necessary prior steps (and deliverables) have been completed. At each of these gates, the project requires decision determinations, deliverables, based on specific criteria and the information available at the time, whether to continue, stop, hold, recycle or modify the project/deliverable. To each of these gates corresponds one or several decisions/deliverables.

6.2 [Plan] Life-cycle monitoring

A.k.a., Checking accurate alignment, gating accuracy.

To monitor is to perceive, or not, a quantitative (behavioral) or qualitative presence.

IMPORTANT: Until a <u>measurement</u> [of presence] is taken, there is only <u>potential</u> [for presence].

Monitoring (which necessitates analysis) is done to meet information needs. Considering the level of abstraction a calculable concept can be composed of other sub-concepts, which could be represented by a concept model (e.g. ISO 9126-1 specifies a quality model based on characteristics and sub-characteristics). A calculable concept is associated to one or more attributes of entities. An entity is a tangible or intangible object that is characterised by measuring its attributes. Types of entities of interest to system engineering are: Project, Asset, Service, Process, and

Resource. The attribute is a measurable physical or abstract property of an entity. An entity may have many attributes; only some of them may be of interest for a given calculable concept. For a given attribute, there is always at least an relationship of interest that can be captured and represented in the formal domain by means of a metric, enabling us to explore the relationship mathematically and/or statistically. The metric contains the information of the defined measurement (and/ or calculation) method an scale. An attribute may be measured using different measurement methods and scales, hence one or more metrics can quantify the same attribute. (The reader can see the method definition and derived concepts likewise the scale and unit concepts in table 1, and the scale Type attribute).

6.3 [Plan] Life-cycle information sets

In order to fully describe the flow of information within a project-based structure, it is necessary to have a toplevel sub-division of information flow known as a lifecycle of different phases known as 'process groups' -- the axiomamtic, divisional categories of information processing required to complete the project. These process groups are, as the category name describes, groups of processes. In order to complete any given process, there must be knowledge:

1. *Knowledge about* <u>the process</u> itself, and <u>the</u> environment in which it is operating, in order to

effectively and efficiently execute and correct <u>the</u> <u>process</u> for a given intention/objective (for change).

Thus, a complete project coordination process flow involves the following information sets project-level [working] information sets:

- 1. **Process group** (5 total phases) plan coordination life-cycle.
 - A. **Knowledge area** (associated with process groups; 9 total) the knowledge of how to plan coordination.
 - 1. Project processes (47 total activities)
 - i. ITTO (input, tools and techniques, outputs) unique for each process. Some inputs are used for multiple processes. The number of ITTO associated with each project process is proportional to its prerequisites. The inputs, tools, techniques, and outputs when coordinating.

6.4 [Plan] Life-cycle data inputs

A.k.a., Project areas.

For any given project there are four core data [area] inputs include:

- 1. Project knowledge areas
- 2. Life-cycle knowledge areas
- 3. Life-cycle process areas
- 4. Project process areas

Core project knowledge areas (data inputs):

- Integration
- Scope (issue & goal)
- Schedule (time)
- Quality (& quantifiable evidence)
- Risk (incidents)
- Resources
- Stakeholders
- Communications
- Cost (the unnecessary factor)
- Procurement and disposal (market)

Core life-cycle knowledge areas (data inputs):

- Integration (system)
- Research (science)
- Development (support)
- Assembly-Operation-Disassembly (service)

Core life-cycle processes (data inputs):

• Initiate project (initiating) - goal setting requirements

- Design system (designing) modeling solution to requirements
- Build system (building) assemble system
- Use system (using) operate service system
- Cycle system (cycling)
- Observe > Analyze > Design > Build > Use > Cycle

Core project processes (data inputs):

- Initiating (intentional objective, directive issue)
- Planning
- Decisioning
- Executing
- Controlling and Monitoring
- Closing

6.5 [Plan] Life-cycle phasing processes

A.k.a., Plan coordination, plan phasing, lifecycle phasing, life-cycle coordination, project progression, project management life-cycle.

An iterative, cyclic flow of information known as a lifecycle (or lifecycle) bounds the organization of a project, and coordinates the project's forward progression toward resolution/completion. Each sub-organization in this flow of information is a gated process (Read: process group set), known most commonly as a 'phase' or 'stage' in the totality of processes known as its 'life'[cycle]. The collection of these phases at the informationlevel is the project lifecycle. And, the collection of these information gating phases at the operation-level is the engineering lifecycle (a.k.a. solution inquiry). These two 'categorically' separate lifecycle cycles are different views (windows) into the same sub-section of the unified information space representing that of the project's direction. In an information systems context, all phases are best viewed as categories of information in a unified information system, essential to the effective resolution of the complex social-project space.

LANGUAGE: The term lifecycle, life-cycle, and life cycle mean the same thing (i.e., are used interchangeably).

A project life cycle is the series of 'phases' that a project passes through from its initiation to its closure. A 'phase' is a set of activities that culminates in the completion of one or more deliverables (PMI 2017).

More technically, a 'phase' ('stage') is an invariantly sequenced, qualitatively distinct level that can meaningfully characterize process sequences of abilities. In other words, by measuring a system as it moves through a life cycle, at each of the stages/phases in the life-cycle it is possible to state that there has been a meaningful change, and that change has come (in part) from a technical ability within the life-cycling system.

Project [coordination] phasing is the process of dividing and sub-dividing a project into a number of

logically related phases (and related information sets) that must result in completion of the project's associated deliverables (informational and material). At a high-level, project phasing could be considered the project methodology, as in, the study and reasoned selection of a method by which to complete a project.

Project phasing produces the high-level representation of steps (phases) for project fulfilment and show objectives for each of the steps with durations and priorities. Typically the project phases are combined with the 'time' factor to compose a visual coordination tool known as a 'schedule'.

The process of subdividing a project into phases involves the following two intentional [design] processes, informed via project objectives:

- Identification The first process ("step") is to identify which phases, sub-phases or/and subprojects will be required for completing the overall project [life-cycle]. The identification should be based on the objectives and expectations stated by the project imperative. Time becomes the critical factor that determines the phasing so schedules (a timing tool) are used to identify the relative positioning of phases. All the objectives are divided into groups considering expected delivery time for each of the objectives. Then for every group the primary goal is to be determined. The goal combines and aggregates all the objectives included in each given group. In such a way project planners can group the objectives by delivery time and therefore divide the entire project implementation life-cycle into certain phases.
- Prioritization. This process ("step") associates priority activities for each of the identified phases. The relative ranking or priorities for the phases should be based on the extent to which every phase carries out a specific objective. Often priority activities are set up by defining the critical path for all the objectives of the identified phases. Practically: an objective with the longest duration in every phase is investigated and selected; such objectives are compared with each other and organized by durations (from shortest to longest). Then priorities are set up for the phases.

6.5.1 [Project] Life-cycle process groups

A.k.a., Project phases, project deliverables, project process groups.

The most common project phasing (i.e., life-cycle) is the five project supra-processes (i.e., project process groups). A typical project has the following five major phases, also known as the five project process groups (and, each process group has its own set of information

sub-components).

CLARIFICATION: Coordinating a project usually requires dividing the project's work into more "manageable" pieces called phases. Phases allow the project team to more effectively coordinate and control project activities throughout the life of the project. Collectively, these phases are called the project life-cycle.

The structure of the following project-specific view of the lifecycle phases is:

- Life cycle phases (process groups)
 - Sub-process group processes

The project-specific deliverable-view of the process groups (phases) are as follows:

- 1. **Initiation** (project/phase/process initiation)
 - Define initial imperatives.
 - Develop project charter
 - Develop stakeholder registry.
 - Generate initial plan.
- 2. Planning* (project/phase/process planning)
 - Determine where, when, and with what.
 - Decide selection of planned solution.
 - Survey (resources and humans)
 - Identify and prioritize action
 - Establishing action performance requirements vis the selection of metrics, used to monitor and assess downstream activities.
 - Documents that bound scope (what we are and are not doing);
 - Documents that list detailed requirements;
 - Documents that provide estimates for cost and time;
 - Documents that provide for a schedule;
 - Documents that plan for quality, communications, risk and procurement.
- 3. **Execution** (project/phase/process execution)
 - Discover > Design > Development > Operate > Evaluate
 - Execute the plan through doing/action as directed in the plan.
 - Determine *what* and *why*.
 - Build what, where, when, and with.
 - Operate what, where, when, and with.
- 4. **Closing** (project/phase/process closing)
 - Close project or phase (closeout).
- 5. **Monitoring and controlling** (*project/phase/process M&C*; *Integration*)
 - Testing and validation.
 - Protocols.
 - Repositories.

*Clarification: There is sometimes confusion concerning 'planning' and 'lifecycle'. Planning is a continuous [project process] group/activity. Planning is a phase specific process group; one that is continuously active while the project is active. It is a continuous phase in project lifecycle.

Project coordination involves the following domains of information processing, which interrelate:

- Initiating (1st phase) Instantiation of a project occurs through an imperative or other directional statement. Imperative and/or directional statements include, but are not limited to the following: purpose, needs, goals, objectives. Imperatives denote a direction (with which to align) or outcome (as a condition and conclusion). An imperative necessitates further action, and the application of a structure with which to resolve the imperative. Defining a new project or a new phase of an existing project by obtaining authorization to start it.
 - The activities performed to define a new project or a new phase of an existing project.
- **Planning (2nd phase)** Establishing the scope of the project and defining the objectives and the course of action required to reach the objectives. The planning phase itself focuses on developing sufficient details to allow various project elements coordinate their work optimally.
 - The activities performed in order to establish the total scope of the project, define and refine the objectives, and develop the course of action that will be followed to achieve the objectives.
- **Executing (3rd phase)** Completing the work defined in the project management and planning to satisfy the project specifications. Execution refers to the completion of informational and psychical work; wherein, work is packaged, distributed and selected, and then, completed.
 - The activities performed to carry out and complete the work as defined in the project plan. Executing activities includes coordinating people and resources and performing and integrating the activities as specified in the project plan.
- **Closing (4th Phase)** Finalizing all activities across all Process Groups to formally close the project (closeout).
 - The activities performed to finalize the project

 to bring it to a conclusion and to meet contractual obligations.
- **Monitoring and Controlling** While the other process groups occur sequentially (generally), Monitoring and Controlling hover over the whole project (i.e., happens throughout the project and is

not linear). Reviewing and regulating the progress of the project; identifying any areas in which changes to the plan have to be made and initiating the corresponding changes.

- The activities performed to track, review, and regulate the execution of the project; identify any areas in which changes to the plan are required; and initiate corresponding changes.
- The tools for monitoring and controlling a project include but are not limited to:
 - Cause-and-effect diagram (a.k.a., fishbone diagram) The causes are found by looking at the problem statement and asking "why" until the actionable root cause has been identified or until the reasonable possibilities on each fishbone have been exhausted.
 - **Control charts** Control charts measure the results of processes over time and display the results in a graphical form. These charts are a way to determine whether process variances are in or out of control. A control chart is based on sample variance measurements.
 - **Histogram** Histogram is used for illustrating the relationship in the context of two variables. Histograms are typically bar charts that depict the distribution of variables over time.
 - Flowchart Flow charts are used to understand complex processes in order to find the relationships and dependencies between events. Flowcharts are diagrams that show the logical steps that must be performed in order to accomplish an objective. They can also show how the individual elements of a system interrelate. Flowcharting can help identify where quality problems might occur on the project and how problems happen.
 - Checksheets (criteria sheets)- A check sheet is basically used for gathering and organizing data.
 - Scatter diagram Scatter diagrams use two variables; one is called an independent variable, the input, and other dependent variable, which is an output. Scatter diagrams display the relationship between these two elements as points on a graph. This relationship is typically analyzed to prove or disprove cause-and-effect relationships.

The core deliverables of a project, separated by [project process] phase, are:

- 1. **Initiating** representation of human opportunity, human direction.
 - A. Project charter (a.k.a. statement of work, proposal, estimate response document, etc.)

- 2. **Planning** (a.k.a., strategizing, strategy)
 - A. Project plans
 - 1. Deliverable diagram
 - 2. Communications plan what information needs to be communicated to what person.
 - 3. Schedule
 - 4. Decision coordination (a.k.a., change control)
 how do decisions come in, how are they assessed, what or who takes the decision.
 - 5. Cost management (market only)
 - 6. Procurement management (market only)
- 3. Executing and Controlling (a.k.a., plan

implementation)

- A. Performance reports
- B. Ongoing issues
- C. Change logs
- D. Project progress
- E. Deliverables (delivered?)
- 4. **Closing** the project, itself as a deliverable, is completely delivered.
 - A. Acceptance
 - B. Final report
 - C. Documented
 - D. Learned

Take note that sometimes the following combination of information elements is referred to as strategizing (or, strategic thinking):

- Purpose
- Values
- Objectives
- Metrics
- Goals
- · Capability and capacity
- Plan
- Action

The phases (process groups) are expressed below with their sub-processes:

- 1. Initiating process group
 - A. Develop project imperatives (project charter)
 - B. Identify stakeholders

2. Planning process group

- A. Develop project plan
- B. Identify requirements
- C. Develop work breakdown structure
- D. Define activities
- E. Sequence activities
- F. Estimate activity resources
- G. Estimate activity duration
- H. Develop schedule
- I. Estimate cost (market)
- J. Determine budget (market)

- 3. Executing process group
 - A. Coordinate project execution (track all project information)
 - B. Perform quality assurance
 - C. Acquire project team
 - D. Distribute information
 - E. Conduct procurement (market)
- 4. Monitoring and controlling process group
 - A. Monitor and measure project work
 - B. Report performance
- 5. Closing process group

A. Close project or phase

CLARIFICATION: Not all project have a closure -- not all projects have a specified end or end date. Some projects produce services with their own life cycles, and these services may still be managed as projects.

6.5.1.1 [Project] Life-cycle coordination process phases simplified

Each similar collection of project information processes are called project process groups (PPG, in PMBoK) -each process group is a phase of the whole common project life cycle. For any given project, all process group processes could be active at any stage.

Every project lifecycle has at least the following three ordered, principal processes (a.k.a, supra-processes, process groups, lifecycle phases):

- 1. Initiating process group
- 2. Phase specific process group
- 3. Closing process group

There are two important points to take note of in concern to a project's principal processes:

- Note that the processes (i.e., process groups) do not happen only once. They happen at every cycle of phase. Of course that the first time you pass on the process you create the document but in the following ones (other project phases you use what you created to improve the other process). The process does not occur only one time.
- Note that a project's lifecycle processes are recursive, because each phase of the project's lifecyle itself needs to initiated and closed with processes (Read: the process groups known as 'initiating' and 'closing').
- Note that different types of projects go through different stages before the result becomes life (or a part of the real world, the extant life cycle).

6.5.2 [Project] Life-cycle knowledge areas

The knowledge areas necessary for performing project

coordination are:

- 1. Scope coordination
- 2. Time coordination
- 3. Quality coordination
 - Scope, Time, and Quality = the three triples constraints:
 - Scope an objective given an environment.
 - *Time* schedule
 - *Quality* of resource
- 4. Risk coordination
- 5. Communication coordination
- 6. Procurement coordination
- 7. Cost [market] coordination
 - The *market (competition)* has externality costs.
- 8. Human resource [contribution] coordination
- 9. Integration [processing] coordination
- 10. Stakeholder [operating users] coordination

Concerning the timing of process groups and the integration of knowledge, the 10 knowledge areas can be executed (as information sets) concurrently (PMBoK 2018) within a project's phases (e.g., initiating, planning, executing, etc). All the knowledge areas will not begin and end at the same time; they are all independent: integration, scope, schedule, cost, resources, stakeholder, procurement, risk, quality, and communication (or any other composition) can be executed in parallel in time.

6.5.3 [Project] Life-cycle inputs, tools & techniques (as activities), and outputs (ITTO)

Each process contains a set of knowledge areas, each with the following information set structure (abbreviated ITTO):

- **Inputs (pre-requisites)** that which is necessary to start the process.
- Techniques and Tools (procedures, methods, mechanisms) the type and level of effort necessary to do the process.
- **Outputs (deliverables)** one or more of that which results from the process.

Each phase of a project's life cycle is composed of the following input categories:

- Resource life-cycles (materials)
- People voluntarily contributing effort (contribution)
- The **application** of tools, techniques, and knowledge in the form of an action, activity, event, task, etc. (the executed process).
- An intended result (the outcome)
- The actual result (the evaluation)
- Currency and authority costs (market-State only)

More completely, each knowledge area contains a set of ITTO.

- **Inputs** Any item, whether internal or external to the project that is required by a process before that process proceeds. May be an output from a predecessor process.
 - For example, plans, specifications, permits, financing, building materials, etc.
 - For example: project charter, project schedule, resource calendars, organizational process assets.
- Tools and techniques (for construction) skilled labor, concrete, framing, electrical, plumbing,
 - Tools Something tangible, such as a template or software program, used in performing an activity to produce a product or result.
 - For example: Analytical techniques, modeling, project management information system, benchmarking, product analysis.
 - Techniques a defined systematic procedure employed by a human resource to perform an activity to produce a product or result or deliver a service, and that may employ one or more tools.
 - For example, meetings, expert judgment, inspection, interviews, decomposition. Diagrams,
- **Output** A product, result, or service generated by a process. May be an input to a successor process.
 - For example, the finished product or service, work performance information, project plan updates, organizational process assets updates, project document updates.

In the PMBOK's, ITTO knowledge base is a standardized means of systematically using the same method of developing and executing processes and projects (i.e., the same methodological knowledge). Decomposing processes into systems (i.e., ITTO) reduces each to its most fundamental and basic [system-based] components, and does so in a standardized manner that is equally applicable for all processes and projects.

6.6 [Project] Plan life-cycle coordination process

The following is the complete project process flow (lifecycle), formatted into processes and their associated knowledge areas:

- 1. **INITIATING PROCESS** The initiating process details 'What' the project is about.
 - A. **Integration** (4.1 chapter of PMBOK 6th) knowledge start initiation by integration.
 - 1. [Develop] Project charter (a project exists, the projects intention and why it exists)

- B. Stakeholders knowledge (13.1 of PMBOK)
 - [Identify] Stakeholders any person or entity that has any kind of interest in the project (positive or negative interest)
- 2. **PLANNING PROCESS** to ensure that the plan will satisfy the stakeholders and deliver the project results. All of the below is part of the planning process.
 - A. **Integration** knowledge (4.2) start Planning by integration.
 - 1. [Develop] Project management plan
 - 2. All next content should be indented, but I don't want to do that
 - 3. At the end of the planning process, everything is consolidated into the project management plan.
 - 4. The project management plan details 'How' the project has been planned.
 - B. Scope knowledge (5.1)
 - 1. Plan scope management the rules for how you process information associated with scope
 - C. Scope knowledge (5.2)
 - Collect requirements (functional, technical, and activities as parts of the work) - things that need to be done to satisfy Charter and Stakeholders
 - D. Scope knowledge (5.3)
 - 1. Define Scope documented scope statement that reflects the scope of the project. Defines how you want to approach the project.
 - E. Scope knowledge (5.4)
 - 1. Create WBS
 - F. Schedule knowledge (6.1)
 - 1. Plan schedule management
 - G. Schedule knowledge (6.2)
 - 1. Define activities define activities that must be accomplished to deliver the work package on the WBS.
 - H. Schedule knowledge (6.3)
 - 1. Sequence activities
 - I. Schedule (6.4)
 - 1. Estimate activity durations
 - J. Schedule (6.5)
 - 1. Develop schedule a visualization of how the project will be placed over time. (gantt chart, network diagram, etc). The schedule will provide information on how much time (as a resource) is likely required to complete the project.
 - K. Cost [*Market] (7.1)
 - Plan cost management Who has approval to "spend" money? Costs are intimately related to resources and time.

- L. Cost [*Market] (7.2)
 - 1. Estimate costs if you know the activities and have a clear scope, then costs can be estimated.
- M. Cost [*Market] (7.3)
 - Develop budget how and when the spender will spend the money, s-curve. Note, the term 'enterprise resource planning' (ERP) is another term for cost budgeting, in general, the "resource" in ERP is that of financial cost in the market. These planning platforms often include the following modules: sales; purchasing; extracting and manufacturing; inventory management; distribution; accounting/finance; human resources; and, customer relationship management (a.k.a., customer services).
- N. Quality (8.1)
 - Plan quality management what are the quality standards that must be complied? What is expected to be delivered in terms of quality? This is the decision system's nonfunctional requirement inputs for integration into the extant community system.
 - 2. Here, the expected [standard] quality is set.
- O. **Resource** (9.1) (*6th, in past editions was only humans, no longer just humans)
 - 1. Plan resource management rules of the game of how you plan to manage the resources.
 - i. Do you have [access to] the resources, in what state, where?
 - 1. Do you need to discover or extract resources, in what state, where, how?
- P. **Resource** (9.2) (*6th, in past editions was categorized under time)
 - Estimate activity resources Estimate activity resources (9.2) and Estimate activity durations (6.4) go together and cannot be separated. Because most of the tasks are "effort driven", meaning that if you add more resources you will reduce the time (up to a certain level).
- Q. Communications (10.1)
 - 1. Plan Communications management build/ develop the communications plan.
 - i. What do you want to communicate?
 - 2. Who do you want to communicate to?
 - 3. Where do you want to communicate?
 - 4. When do you want to communicate?
 - 5. How much will the communications cost?
 - 6. How many resources will the communications require?
 - 7. For example, meetings go here.
 - 2. What is the best way of visualizing the

[societal] system so that the user may understand any inquiry into it?

R. Risk (11.1)

- 1. Plan risk management what is the 'tolerance'? Tolerance defines exactly what is risk for the group and organization, and what is not a risk for the group and organization.
- S. Risk (11.2)
- 1. Identify risks
- T. Risk (11.3)
 - 1. Perform qualitative risk analysis an ordinal scale (e.g., low, medium, high; green color, orange color, red color. A standard scale is used.
- U. Risk (11.4)
 - 1. Perform quantitative risk analysis math is used to calculate probability and impact. For example, there is a dice with six sides, and what is the probability of (rolling a) 1.
- V. Risk (11.5)
 - 1. Plan risk responses what can l do to protect my project from each risk.
- W. Procurement [*Market] (12.1)
 - Plan procurement management What do you need to do in terms of internal/external action (the make or buy decision is here). Will I do everything internally, or not? What must be acquired from the market? What does not need to be acquired from the market?
 - i. What must be made?
 - 8. What must be bought? [*Market]
- X. Stakeholders (13.2)
 - Plan stakeholder engagement map stakeholders via an influence, power, interest (four quadrant matrix), and understand what will be done.
 - i. Who needs it? What is its priority to whom needs it? What is the nature of the interest in it? Issue type to whom? Issue priority to whom?
- 3. **EXECUTING** to act or take action (occurs in parallel with monitoring and controlling; works together with monitor and control as a fluid process)
 - A. Integration (4.3)
 - Direct and manage project work (if you are not the resource that is executing the work) - you direct and manage the work being done by the resources that have been defined for the activities.
 - B. Integration (4.4)
 - Manage project knowledge what new knowledge is available to improve the whole process (i.e., "lessons learned").
 - C. Quality (8.2)

- 1. Manage quality
- D. Resources [Materials] (9.3)
 - 1. Acquire resources
 - i. Allocate material resources
 - 9. Buy material resources [*Market]
- E. Resource [Humans] (9.4)
 - Develop team ensure that the human (resources) brought to the project are working together as a team (i.e., collaborating), communicating effectively, executing tasks as planned, sharing information, etc.
- F. Resource [Humans] (9.5)
 - Manage team operational aspects (e.g., someone becomes sick or needs to take a leave). Manage the daily changes to work due to changes on the team.
- G. Communications (10.2)
 - 1. Manage communications make the meetings (time view)
- H. **Risk** (11.6)
 - 1. Implement risk responses this is where the planned risk responses are implemented (executed). If under Plan Risk Responses, the purchase of insurance is a planned risk response, then here, the insurance is purchased. Here, are the actions related to the plans.
- I. Procurement [*Market]
 - 1. Conduct procurement Execute purchases based on how procurement has been planned
- J. Stakeholder (13.3)
 - Manage stakeholder engagement what is happening with the stakeholder engagement (e.g., is someone gaining power, is someone losing interest?).
- 4. **MONITORING AND CONTROLLING PROCESSES** to observe and correct action (occurs in parallel with monitoring and controlling; works together with monitor and control as a fluid process)
 - A. Integration (4.5)
 - Monitor and control project work Is everything ok? Is everything going as planned? Where are the "flagging" issues around the project?
 - B. Integration (4.6)
 - Perform integrated change control The project will change over time, and the changes must be integrated (everything, not just scope, time, cost and quality)
 - C. Scope (5.5)
 - 1. Validate the scope check that the scope (goals and objectives) defined in the initiating process was delivered through the executing process?

D. Scope (5.6)

- 1. Control the scope concerned with changes in scope. The focus is on scope.
- 2. All tasks related to scope.

E. Schedule (6.6)

- 1. Control schedule is something going wrong with time and the schedule? Is a deliverable late? The focus is on time.
- 2. All tasks related to schedule.
- F. Cost (7.4)
 - 1. Control costs all tasks related to costs.

G. Quality (8.3)

1. Control quality - all tasks related to quality.

H. Resources (9.6)

 Control resources - all tasks related to resources. Are the resources sufficient? Do more resources need to be added? Are the resource performing at the level expected.

I. Communications (10.3)

1. Monitor communications - does some aspect of communicating need updating or changing to become more effective/efficient?

J. Risk (11.7)

1. Monitor risks - are the risks appearing, or not, as expected?

K. Procurement [*Market] (12.3)

1. Control procurements - receive products, and check (analyze) products to make sure products are as expected.

L. Stakeholder (13.4)

1. Monitor stakeholder engagement - because stakeholders may change.

5. CLOSING PROCESS

A. Integration (4.7)

2. Close project or phase - this can be done for every phase and every project. Check off completion of phase or project and disseminate information via interface.

Related planning areas (essentially, the same process) are:

- Schedule estimate activity duration and
 - Resource estimate activity resources.
- Plan communications management and
 - <u>Plan stakeholder management</u> (because most of the communication will be to reinforce stakeholder engagement).

Related Executing Areas (essentially, the same process):

• <u>Procurement conduct procurement</u> and <u>Resource</u> <u>acquire resources</u> (because in the market, most of the time, the way you acquire resources will require a market-based procurement process).

6.7 [Project] Plan list view

A.k.a., Project plan database view.

The plan [executionable] list (database) view shows the accepted executable plan of [future] action broken down as a series of lists (information categories that have some relationship to project execution). Here, a project (and its plan) is composed of a series of information sets (or lists or project database tables).

A project plan acts as the master coordination database containing a record of all information [list] elements relevant to the project. For practical purposes, a unified project information space is subdivided into a set of use-oriented information categories.

In order complete a project, a project plan must identify and relate the following lists, upon which calculation can be done:

- 1. **Schedule** The items in this list are Tasks within a hierarchical structure of groupings called the WBS (Work Breakdown Structure).
- 2. **Concerns**: Each Concern is either a Risk or an Issue which are handled in much the same way via a decisioning process.
- 3. **Actions** The list of all tasks (actions, activities, etc.), all of which are tracked. Some tasks exist to resolve concerns.
- 4. **Locations** The list of locations of everything in an information storage system.
- 5. Humans The list of who is contributing and where.
- 6. **Events** This is the list of computational integration points on a timeline. More broadly, any notable interaction between two or more people may be listed here. A recorded event always identifies the 'result' of that interaction (e.g., minutes of meeting, a report, a computational result).
- 7. **Deliverables** The outputs (of processes) that must be completed ("ticked off" as done).

More completely, a project must identify and relate the following eight top-level project lists/tables (within a database), upon which calculation can be done:

- 1. **Objectives list (requirement-oriented breakdown) -** An objective/requirement is a capability to which a project outcome (product or service) conforms to a measurable degree.
- 2. Deliverables list (product/service-oriented breakdown) - Deliverables are requirements packaged with contextual information into the form of products and services (as outputs of processes) required to complete the project. Note: There are project deliverables (project needs/requirements), and sub-project deliverables (sub-project needs/ requirements).

- 3. Actions list (action/Task/Work/deliverableoriented breakdown) - Actions (activities/work packages) are executable [process or construction] tasks. The items in this list are tasks within a hierarchical structure of textual groupings (a work breakdown structure, WBS). Synonyms for 'action' include, but are not limited to: work, task, activity, executable, "something to do", process, procedure, construction, and resolution. Actions are assigned to systems and/or people. Some actions are automated. Automated actions form automated services - services without the need for direct human effort, no 'event' instantiation (no addition to the Events List). Note: A project produces a product and/or a service, and so, that is why this type of plan, is called a "plan of action"); because, it intends to describe the act of brining something into existence.
- 4. Events list (Human-to-human-oriented breakdown) - Events are a specific type of task; they are social integration-decision event task. An event (on this list) contains [at least] the location, time, and contents of human-based interactions that have lead to, or will lead to, a change and/or decision about the project (or some aspect therein).
- 5. Schedule list (time-oriented breakdown) In order for action to occur (i.e., "things to happen"), there is time. Actions, deliverables, requirements and events can be organized within time (i.e., they can be scheduled and time delineated). These project information categories can be expressed in terms of a time (i.e., iteration) dimension. A schedule list may also be known be the following labels: timeline, gantt chart, or project schedule. A schedule can be a unified visualization of all (or selected) actions/work, deliverables, requirements, and events per [unit of] time, with all associated meta-/calculable-information. Through the scheduling of accountability project coordination can be calculated and visualized; wherein, it is possible to view: system and human bandwidth; who's available; and who's busy.
- 6. Concerns list (risk/incident/issue-oriented breakdown) Each issue of concern is either a risk or an incident. This is a list of issues concerning organizations and events that have been/may/or are adverse [in their effects] to the completion of the project (i.e., "threats"). Here, the issue is either a risk (with some likelihood of), or an incident (current affect of), inhibiting project completion. Incidents require resolution (hence, new actions/ tasks to resolve the incident), and risks necessitate mitigation reasoning for project preservation planning. Issues are prioritized (as in, 'triaged'). In general, issues themselves are not scheduled,

although their resolutions may be. A planned "issue" is either a test or a trap.

- Contribution accountability list (people/ actor-oriented breakdown) - Profile and activity information on every human in the project, including all their associated project and subproject information, resource allocations, and roles/responsibilities.
- 8. Locations list (Location-oriented breakdown) -Material and digital [resource] locations. Note that resources can be moved to re-located them over time, and this relocation can be scheduled.

6.8 [Project] Plan documentation view

A.k.a., Plan documented deliverable.

This is a high-level view of the multiple deliverables and integrated components necessary to complete a complex project with multiple sub-project plans in the market-State:

- 1. **Project charter** Initial visualization of the problem related information set as a solution-oriented project expected to resolve the problem in a specified (procedural, protocol) manner (i.e., via a documented method).
- Scope statement (statement of work) A description of the who direction, an overview; the statement of work explicates a high-level set of requirements (with references) that define the user expectations of the work ("scope").
- 3. **Business case or feasibility study** The business case is a project manager-owned artifact, often part of the Charter. A feasibility studies analyze observations over time to determine whether there are sufficient resources (given what is known and available) to complete the project at all). Not all project require feasibility studies, and in an open source system the processing is done via an open control protocol.
- 4. Project coordination plan An overarching (project and technical) project planning document that is typically tasked to compose by an executing project coordinator. The project coordinator develops a plan to <u>have all functions</u> <u>of a project fulfilled</u>. In a socio-technical system, this plan should involve active participation by socio-technical systems teams for those items of technical interest, finance for those items of financial interest, supply chain for those items of procurement interest, manufacturing for those items of production interest, and all of the support functions for an integrated project view.

The equivalent plan for the technical aspects is the systems engineering coordination plan (a.k.a., systems engineering plan or technical plan) that expressly plans the technical design of the solution itself by subject matter expert-calculations (experts) within the given unified system.

- 5. Work breakdown structure (WBS) In an open source system, everyone is a potential contributor, and therein, project coordinators break down problems into issues and how they can be resolves with a series of tasks. Some of these tasks exist at a high level and are called the society's Habitat Service Systems.
- 6. **6. Responsibility assignment matrix (RAM)** The work breakdown structure is progressed from the product breakdown into activities, tasked to individuals assigned to the InterSystem Team. The WBS is tightly coupled with the RAM, requiring the project coordinator to account and monitor who is assigned to the team, which work they will be performing, when, and its resulting orientational quality. Systems engineering is a major contributor, although not the only function involved.
- 7. Change control plan the project coordinator visualizes a change control plan, that provides the reasoning for the selection (i.e., the methodology) of the project, and how access is decided[to be used/enabled] when processing changes to project information. On the subjective-level, this is called, an 'authority', and on the objective-level this is called, an 'open-source protocol'.
- 8. **Communications plan** description of how stakeholders are notified of tasks and/or changes.
- 9. Risk and opportunity coordination plan The Risk and Opportunity Management Plan provides risk and opportunity oversight for the project manager, but is commonly managed by systems engineering for system-based development. Both disciplines are trained in risk (and in some cases opportunity) management, only using different terminology and slightly different methodologies. This is an area that should be agreed upon up front across all disciplines employing a common language if the organization's processes are not clear.
- 10. **Risk register** Some organizations limit the Risk Register to technical risks. Others identify separate registers for technical and business risks. In some cases, the technical risks bubble up to business risks. The project coordinator needs to be aware of both, just as the SE needs to be aware of both.
- Issue log (action item list) A monitoring service for the schedule. These documents are often created in multiple instances and even formats,

dependent on the functions or projects capturing the issues and actions. Coordination of these items is most efficient and effective at the program level, in one format (language), with metrics in place to observe consistent issues across projects. All actions in one place (i.e., in a unified space) seems to make sense, when a project is driven to ensure timely action item closure.

- 12. **Resource coordination plan** The project coordinator is accountable for obtaining the required resources for the project, which are decided upon in a temporal-priority technical resources matrix organization.
- 13. Project schedule The Schedule, whether or not it is for the project or program, is processed via the project coordinator (for large projects/programs, the actual hands-on creation and analysis of the schedule is performed by sub-coordinating schedulers often a separate planning and control group). Technical schedules, at a lower level, feed the Project Schedule including the integrated, unified Societal Schedule (SS). The intersect is not only the "milestones", but also, other "critical path elements".
- 14. **Project status report with monitoring procedures** – Project status is provided via a project information visualization tool (dashboard).
- 15. **Lessons learned (from mistakes)** Learning (integrating) from experience is a critical effort, not only for the project of interest. Future projects can benefit from feedback.
- 16. **Stakeholder analysis (re-evaluation of impacted)** – Systems engineers identity every human and non-human system involved in the project (a process of information collection and coordination).
- Document control Configuration and data control through approved documentation [is a function of the project coordinator, because documentation is coherent social-communication]. The documentation of control is otherwise known as a 'protocol', synonyms of which include: contracts and procedural tasks (a.k.a., procedures, orders, instructions, etc.).
- Task completion observation and survey (e.g., meeting minutes, video and audio recording, transcription) – for project meetings, the PM owns them. For systems engineering meetings, systems engineering owns them.

6.9 [Project] Plan process group deliverables

1. **INITIATION (PROCESS GROUP, PHASE)** - issue presence and recognition.

A. Project request (activity) - issue inquiry

- A project request is usually the first attempt to describe, document, and estimate the project purpose, benefits, costs, and timeframe.
 Project estimating is an iterative process that begins at a high level with the project request.
 If the project request is approved, then more detailed estimates will be developed in subsequent project phases as a more thorough understanding of the project becomes known.
- B. Review project requests (activity) effectiveness inquiry
 - Regardless of the organizational context, the review process involves decisioning to reject or postpone some project requests, and then to prioritize those requests that the user group approves (possibly, through a protocol). The decision unit essentially "draws a line" (a threshold) based on what is possible. Those projects above the line are authorized to begin (or even continue), and those below the line are placed on hold until such time as what is necessary is available. The approved list of project requests will likely change over time as new ideas surface and priorities shift.
- C. **Project control (activity)** parallel control inquiry, project control decisioning
 - Approval and prioritization decisioning of the project request by the project coordinating unit.
- D. Selection of project coordinator (activity) (i.e., project manager)
 - The project coordinator unit is selected, and/or designed and selected.

E. Project charter (activity)

- 1. Goals and needs
- 2. High level project description
- 3. Measurable project objectives
 - In a general sense, an objective is a description of what will exist at the end of a project, expressed in a SMART way.
- Project scope defines the work to be included (in scope), the work not included (out of scope), assumptions, and constraints.
 - i. For planning purposes, an assumption is a factor considered to be true, real, or certain.
 - ii. A constraint is a restriction or limitation, either internal or external to the project, that will affect the performance of the project. This section provides the

opportunity to document constraints, such as:

- *Schedule* project must be completed by a specific date in order to avoid [financial] penalties.
- *Cost* funding is limited and cost overruns are not an acceptable alternative.
- *Human Resources* system architect is available only at x time.
- 5. Initial high level project planning It is recognized that planning is an iterative process that becomes increasingly precise as detailed information becomes available. High level planning usually has a fairly large margin of error. Again, the project request information is a good place to start, but the charter provides an opportunity to provide additional detail and rationale for the following estimates:
 - i. Resource requirements, including the types and quantities of resources needed to perform the in scope work
 - ii. Project budget, including the cost of resources (human, hardware, software, other products and services) to perform the in scope work
 - iii. Benefits
 - iv. Scheduling dates, including anticipated start date and target completion date
- 6. Project authority Most, if not all, projects require decisions to be made to keep the project on track. The project charter defines the authority of the individual or organization initiating the project, limitations or initial checkpoint of the authorization, control-oversight of the project, and the level of decisioning of the project coordinator (authority of the project manager).
 - i. Decision control (Approval authority) identifies the project initiator by name and title, ensuring that the individual has the authority to apply project resources, expend funds, make decisions, and give approvals.
 - ii. Project coordinator (Project manager)

 identifies the project manager by
 name and defines the individual's level
 of authority. A project manager should
 be given authority to plan, execute, and
 control the project. For example, the project
 manager may assign resources in a matrix
 organization, authorize overtime, conduct
 staff performance appraisals, and take
 appropriate corrective actions that do not

increase schedule or cost. However, scope changes must be escalated to the project sponsor.

- iii. Effectiveness inquiry decisioning
 (Oversight-steering committees) describes societal (agency management) control over the project. Within the project, internal control is commonly established to control the day-to-day activities of the project. The project coordinator (manager) should manage internal control. External oversight should be established to ensure that the organization's resources are applied to meet the project and organization's objectives. Also identifies committee members and contact information.
- 2. PLANNING (PROCESS GROUP, PHASE) The purpose of the planning phase is to define the course of action necessary to accomplish project goals and objectives. This course of action is typically called a project ("management") plan. It addresses all aspects of project management and includes scope, time, cost, guality, communications, human resources, risks, procurement, and stakeholder engagement. Development of the project management plan is iterative, as new information and changes occur throughout the project lifecycle, which require revisiting one or more components of the project plan. Actual coordination of the project, which occurs in the execution and control phases, is the process of doing what was described in the project plan. Project planning is not a single activity or task, it is a the Primary phase of the whole project-oriented process:
 - Project coordinators are responsible for developing the project plan (as an information set). Wherein, planning is an information processing unit responsible for ensuring the coordination of information such that planning requirements are fulfilled.
 - The project plan is the deliverable of an information set through means of a project coordinator. The project plan is itself a subsystem of a larger and more unified societal system, which is itself, operated as a projected system.
 - Project planning defines the project activities that will be performed, end products that will be produced, and describes how all these activities will be accomplished.
 - The Project (Management) Plan (the planning deliverable) sub-views into a

whole project, contained within a larger societal, unified information space. A project (management) plan provides a foundation for all coordination (management) efforts associated with the project. Development of the project (management) plan begins after formal approval of the project charter, which indicates completion of the project initiation phase. The project (management) plan is a document[ed information set] that is expected to change over time. The assigned project coordinator (manager) creates the project (management) plan. The plan should be as accurate and complete as possible without being several volumes in length.

- i. Project Summary
 - 1. Statement of Work
 - 2. Project Deliverables
 - 3. Project Approach
 - 4. Project Results/Completion Criteria
 - 5. Critical Success Factors
- ii. Project Schedule
 - 1. Purpose
 - 2. High Level Milestones
 - 3. Detailed Schedule
- iii. <u>Human Contribution (Resource</u> Management) Plan
 - 1. Purpose
 - 2. Project Team Functional Roles
 - 3. Project Team and Cost Estimates
- iv. Project Budget Estimate
 - 1. Purpose
 - 2. High Level Budget
 - 3. Detailed Budget
- v. Communication Management Plan
 - 1. Purpose
 - 2. Communication Matrix
- vi. Change Management Plan
 - 3. Purpose
 - 4. Change Management Roles and Responsibilities
 - 5. Change Management Governance
 - 6. Capturing and Monitoring Project Changes
 - 7. Communicating Project Changes
- vii. Quality Management Plan
 - 1. Purpose
 - 2. Acceptance Criteria
 - 3. Quality Assurance Activities
 - 4. Project Monitoring and Control
 - 5. Project Team Quality Responsibilities
- viii. Risk Management Plan
 - 1. Purpose
 - 2. Risk Identification Techniques

- 3. Risk Assumptions
- 4. Timeframes
- 5. Risk Ranking / Scoring Techniques
- 6. Risk Thresholds
- 7. Risk Response Approach and Risk Action Plan
- 8. Risk Tracking Process
- ix. Issue Management Plan
 - 1. Purpose
 - 2. Issue Log
 - 3. Relationships Among Issues, Risks and Change Requests
- x. Approval Information
- 1. **The Project Plan Summary** a project summary is a simplified view into the system and could include a high-level description, objectives, and scope, information flows, and control.
 - i. Statement of work
 - ii. Project deliverables
 - iii. Project approach
 - iv. Project results/completion criteria
 - v. Critical success factors (effectiveness inquiry)
- 2. **The Project Schedule** The project schedule is the roadmap for how the project will be executed. Schedules are an important part of any project as they provide the project team, participants/sponsor and stakeholders a picture of the project's status at any given time.
 - i. Objective to deliverable mapping ("highlevel milestone") - A milestone is an event with zero duration and requires no resources. A milestone is an event that receives special attention. It is used to measure the progress of a project and to signify the completion or start of a major deliverable or other significant metric.
 - ii. Detailed schedule A detailed schedule is developed, maintained and tracked in a unified information space. This electronic schedule constitutes the project work breakdown structure (WBS). Detailed information on project estimating and WBS development is included in the appendix.

3. Human contribution (resource management) plan

 Project team functional roles - a project team matrix/database/chart is identifying functional roles and responsibilities, matching degrees of responsibility to processes, phases, or activities.

- ii. Identification of required skills and available contributors. It is helpful in the planning process to develop a list of skillstasks required, which may then be used to determine the type of contributor-system required for the task.
- 4. **Project budget estimate** a view into the project that relates a current project's predicted expenditure of resources to on past similar project's expenditure of resources. In a unified decision space, budgeting is control.
- 5. Communication coordination (management) plan - formalizes communications protocols for communication within the plan. The interface and interoperability of an openly unified system with the project space, and all communications within that space.
 - i. How information will be collected and updated.
 - ii. How information will be controlled and distributed.
 - iii. How information will be stored.
- 6. Change control (management) plan an information view into the project that describe the process involved with identifying, escalating, and controlling (managing) project changes. A project change is defined as something that is outside the documented and approved project scope or is a change to project requirements, project schedule or project cost (including resource effort). How is a required change [to the project] identified and escalated? A project change requires protocol-approval for additional resources, funding or modifications to the project schedule. The change (management) process defines how to handle project changes that present either a negative or positive impact on deliverables, schedule, budget and/or resources. The unified societal system is the repository for all project changes.
- 7. Quality (management) plan The purpose of the quality (management) plan is to describe how quality of the project will be controlled (managed) throughout the life-cycle of the project. It also includes the processes and procedures for ensuring quality planning, assurance and control processes are all conducted. All stakeholders should be familiar with how project quality will be planned, assured, and executed (Read: decisioning). The quality (management) plan establishes the activities, processes and procedures for

ensuring a quality system-product is delivered upon the conclusion of the project. Here, verification and validation require acceptance criteria for quality. Herein, what activities will be done to ensure (have measured to be accurate) required qualities are expressed throughout a project?

- 8. Risk (management) plan The purpose of the risk (management) plan is to specify the processes used to identify, predict and mitigate (manage) risk. The risk (management) plan addresses both internal and external project risks associated with the project. As the uncertainty declaration of a project plan, risks are events or conditions that may occur, and whose occurrence, if it does occur, has a positive or negative effect on the project. Exposure to the consequences of uncertainty constitutes a risk. Although by definition risk planning may include risks that will have a positive impact on the project, the focus is typically on risks that may negatively impact the project.
 - Difference between risks and issues: If something is definitely going to happen or has happened, then it is an issue. If it is something that might happen, whether that is very likely or very unlikely, then it is a risk.
 - Risk ranking / Scoring techniques (such as prioritization ranking): for example, low to high, or 1 to 5. 5. Risk thresholds trigger action. Effectiveness inquiry is largely composed of risk thresholds that trigger action taken on a project because of organization/societal level risk thresholds. Disaster recovery and restorative justice is risk response. There is an active recognition of what to avoid in order to reduce risk. There is an active recognition that transferring a risk does not eliminate the risk. Some risk can be mitigated against (constructive action taken) to reduce the likelihood of the actual expression of the risk. Contribution is risk acceptance (for example, an astronaut today, or whenever), accepts a level of risk. In a coordinated information space, that carries an action plan in order to reduce the consequences should the risk even occur. When risks are specified, risk action plans.
 - Risk mitigation necessitates: Identifying the risk(s), evaluating the risk(s), and defining a resolution method for the risk(s).
- 9. Issue (management) plan The purpose of

the issue (management) plan (Read: issue tracking) is to specify the processes used to identify and manage project issues. The issue management plan addresses both internal and external issues on the project. The societal (enterprise) issue tracking system is used to enter, track and report issue activity. Both the issue (management) plan and the issue log will be reviewed regularly throughout the project to monitor existing issues and to identify new ones.

- 3. EXECUTION Project "execution" begins immediately after the project (management) plan is approved by the project creator(s). The execution phase essentially involves carrying out and controlling (managing) all the activities described in the project (management) plan. A decision is taken, at the project-level, and it is acted upon by some entity. A baseline is present, and then a change is observed. Project coordinators monitor and control all phases of a project in order to report accurately.
- 4. **MONITORING AND CONTROLLING** the collection of new project data by comparing planned and actual performance, analyzing variances and trends, identifying and assessing potential improvements, and recommending corrective action as required. Monitoring and controlling project performance enables accurate assessment of project progress, which in turn increases the likelihood of meeting user expectations.
 - Change control is itself is a process executed through the monitoring and controlling of changes.
 - A baseline A baseline is defined as the original plan, for a project, a work package, or an activity, plus or minus approved changes. A modifier (e.g., project budget estimate, schedule baseline, performance measurement baseline) is usually included.
 - A baseline is a ruler A baseline provides the "ruler" by which a project can be evaluated, statistically.
 - Baseline changes variance identifications.
 - Baseline control change control, decisioning protocols with thresholds. Scope is controlled through execution upon decisions [related to project information sets].
 - Project change control action types:
 - PREVENTATIVE ACTION (A.K.A., PREVENTATIVE "MEASURE", PROACTIVE) - to prevent a problem's occurrence, or to ensure a problem doesn't continue to occur.
 - CORRECTIVE ACTIONS (A.K.A., DEFECT

REPAIRS) - to fix something currently being done that is not being done correctly. Change or introduce something to prevent the appearance of a potential problem.

5. Closeout (approval) - The last major phase of a project's life cycle is project closeout. Project closeout is performed after all defined project objectives have been met and the user has accepted the project's service-product (schedule, budget, change, quality, risk and issue, human contribution, organizational structuring, communications coordination, user feedback, and feedback-integration with adaptation.

7 [Project] Imperative

A.k.a., Specified project direction, directive, vision, mission, goal, objective, purpose, need, imperative, desire, problem, ideal, aim, intention, expectation, impact, benefit, output, result.

An imperative is the input of a desired output, causing the formation of a project to resolve the output into existence. Project [strategic] imperatives are specific and measurable, though not directly actionable.

NOTE: In common parlance, the conceptual boundaries among strategic directions, goals, objectives, needs and requirements are often vague. An objective in one context or organizational level may be a goal in another. The following is intended as a rough guide to understanding project imperatives.

Imperatives are dependent and interconnected, and hence, they can be arranged in a hierarchy with parent node imperatives following second level imperatives. Here, an imperative tree (a.k.a., objective tree) is a visualization of the hierarchy of imperatives.

QUESTION: *How is a project's [planned] direction specified?*

The directionality of a project can be sub-composed into a variety of possible informations sets, including but not limited to goals, purpose, and objective(s).

7.1 Intention (conscious directive)

A [conscious] intention is an act or instance of determining mentally upon some action or result. In application, an intention is an aim that guides action.

7.2 Vision (imagine the vision)

Vision refers to a commonly held visualization (description) regarding the direction, goals and values, of a project or team.

7.3 Mission (define the mission)

A.k.a., Mission objectives.

Mission objectives are statement(s) that clearly document the goal(s) and constraint(s) of the mission. Constraints are pre-imposed limitations on the project. The mission objective follows from the stakeholders and their expectations.

Note: *Mission environment must be included* (communicated) because it does affect the design.

7.4 Purpose (state the purpose)

Purpose is a compelling reason to do something. Purpose is a life aim that stimulates and motivates behavior.

NOTE: In terms of humans, purpose sends signals to the body. When someone is motivated by a purpose that is greater than themselves, then competition disappears and collaboration starts to emerge.

7.5 Goal (identify the goal)

A goal is a non-specific description of an outcome (the aim of an action), continuous or temporary. Temporary goals have a specified time limit. A goal is a specific target or direction, an end result or something desired. It is a high-level, broad, non-specific, and long-term definition of what is to be accomplished. Goals are not measurable, and several discrete projects may be needed to achieve a larger project goal. Goals are highlevel, general statements about the aims of the project. A goal is some result (output) to be achieved (completed) by an action (process). Action planning is necessary to complete all goals.

CLARIFICATION: In a business, project goals are influenced by business goals. In community, project goals are created by humans for human, and they are not influenced by market-State goals (because those concepts are not encoded, conceptually or technically). And, in engineering, goals focus on problems to be resolved.

Setting a goal is setting a directive (i.e., an imperative or possibly even intention). It's the first step or movement toward a desired, designed change. An operational project, there is a necessity for two types of goals (operational requirements:

- **Product (system) goals** typically, associated with functionality and quality (i.e. functional and non-functional) requirements.
- **Planning (process) goals** typically, associated with schedule, resources, risk, team effort, and in the market, cost.

Thus, the first, core services enter into existence as that of information and materialization:

- The first core information service is planning.
- The first core material[ization] service is production.

7.5.1 Action planning

A.k.a., Goal execution planning.

The purpose of action planning is to select actions, and order relations among these actions, to achieve

specified goals (objectives). Logic must be applied to select [optimal] actions given an probability-based environment.

Goal representation has the following essential criteria:

• A goal (G) is achieved in a state (S) if all the propositions in G (called, sub-goals) are also in S.

Action representation

• An action A is applicable to a state S if the propositions in its precondition are all in S.

Different patterns can be planned through intentional action toward a goal. Here, a pattern is the result or is itself, a rule (a process fractal is a pattern) of logic[al information processing].

7.6 Project charter (document the reasoned overview)

A.k.a., Introduction, overview, or high-level concept of operation.

A project charter is the first documented view through which the organizational case for a change is translated into project planning. Here, a project and its plan may be summarized or described with a linguistic and visual overview.

IMPORTANT: *The project charter is the first planned deliverable.*

In general, project charters include:

- Project title (project unique categorization and identifier) Project coordinator ("manager")
- Users/stakeholders (who)
- Project description (what)
- Project timeframe, start/end (when)
- Project justification (why)
- Project deliverables (how)
- Constraints (optional)
- Assumptions (optional)
- Risks (optional)
- Approvals (optional)

Common supplemental information includes:

- Definitions and linguistic clarifications to ensure effective communication and efficient understanding.
- Imperative statement(s) hierarchy A project comes into existence because of a stated imperative, which represents a direction with a problemsolution space. Wherein, the project itself becomes part of the solution space.

7.7 Project scope (identify the work)

A.k.a., Project scope of work, project scope statement, project definition, project mission, project vision, etc.

The scope of a project, also known as the project scope or the work scope, is all the work that must be done in order to meet the deliverable requirements or acceptance criteria agreed upon at the onset of the project. Sometimes the scope includes the identification of work that need not be done. Hence, completely, a project's scope is a definition of the elements that are included in a project, as well as what is not included. Broadly speaking, a project scope is the part of project planning that involves determining and documenting a list of specific project goals, deliverables, tasks, costs and deadlines. The documentation of a project's scope, which is called a scope statement, terms of reference or statement of work, explains the boundaries of the project, establishes responsibilities for each team member and sets up procedures for how completed work will be verified and approved.

NOTE: It is important to clarify here the terms 'charter' and 'scope'. The term 'charter' is a market-State term, meaning "by contract". The term 'scope' is an optical sighting device (based on a refracting telescope); wherein, everything "in scope" is within the desired direction for the project -- the "on targets" are numerical values to be met (metrics). In this sense, an explicit written scope becomes a "contract" between the project and the participants.

7.8 Objective (define the objective)

A.k.a., Goal, outcome, result, key results.

The objective states the ultimate goal of the project. At the societal-level, typically, an objective expresses a human need and the long-term condition that is to be achieved when the project is complete. Objectives for which a solution (system) is needed; these are often described as project objectives. Objectives are the outcome(s), the key result(s).

predetermined An objective is а effort result which towards (action) is [to be] directed. Key results quantify the success/completion of each objective in a given time period (the objective may span multiple result periods). A key result is the outcome by which success/completion is measured. In application, an objective is a specific intention expressed in measurable terms to achieve a goal (i.e., direction). Objectives may be defined in terms of outputs, results, outcomes and/or benefits (or similar intentional/directional language). More completely, an objective is the described result of the completion of effort toward a direction of intent. An objective is a the linguistic absolute description of a result (output or expectation) to be satisfied at successful completion of effort, within a certain period of time and by means of access to certain resources.

Objectives provide an individual or social organization with clarity on intention, focus, and direction in an uncertain environment. Every objective has a purpose (cause, constructor) that defines the *what* and the *why* of its instantiation.

In concern to teamwork, objectives localize to (i.e., become associated with) *nouns* (objects, physical or digital resources) and *verbs* (functional service operations, processes or protocols) of a given team.

NOTE: Real world human objectives are also known as: human needs and human requirements.

Influenced by goals, a project objective is a detailed description of the specific and measureable outcomes desired from a project. A project objective describes the desired result of a project (tangible product or intangible service). Objectives are detailed statements about what the project should accomplish. The project and its objectives must always contribute to the goal, otherwise the project is not being pursued (or, should not be attempted). Objectives document a project's value for the end user. Therein, activities, and most likely deliverables, will contribute to achieving the objective.

All planning and strategic activities occur to resolve objectives, as well as to quantify a level of performance for their resolution.

Objectives express the following characteristics:

- An objective is specific and measurable.
- Describe the [business] value of the system and help prioritise features and requirements based on their value.

Project objectives:

- Are a more refined version of the goals (outcomes and expectations) of the project.
- Are what must be achieved (in existence, function, status, or state) to consider the project complete.
- Refers to what the project aims to achieve; a strategic vision.
- Are a part of the description of the project. Project requirements are derived and created from the requirements of the user and/or system.
- Different from project coordination/management objectives.

Objectives and key results (OKRs) commonly include:

- Mission and vision (scope)
- Goals (delineated scope)

- Objectives (delineated goals)
- Results (impacts)
- Tasks (activities)

In written form, key results are generally syntactically composed of:

- Verb (e.g., reduce)
- Specific noun (e.g., time to service)
- Key result (e.g., elapsed time from first call to service)
- Target (e.g., 16 hours)
- Date (e.g., 12, April, 16:45)

Project objectives may be prioritization. Per the language of the existing societal specification, in the case of humans, there is a priority of needs from life support (survival), to technical support (technical services), and facility support (leisure services).

From an action-oriented perspective, an objective is a measurable target that specifies when a problem is resolved. Every objective has a success or completion metric.

Clarification: In business, project objectives describe the business value of the system. What is the value of the produced system to business interests, and hence, based on its value, what is the priority for requirements and features, materials and motions? In community, project objectives describe the human need for and community value of the system. What is the value of the system to human interests, and hence, based on its value, what is the priority for requirements and features. Also, there is a set of pre-defined values that facilitate this process.

Among community, the desired outputs of the societal system are derived from the effective needs of the users, which are continuously prioritized. The language of the outputs should be more precise than that of the needs, and should reflect what the system does or provides in response to the eliciting needs.

An objective is a description of what will exist at the end of a project. Generally, objectives are written as linguistic statements. In the statements there are nouns, and those nouns are the project's deliverables, which are listed in the deliverable diagram (a.k.a., work breakdown structure, WBS). The deliverables and outcomes come from objectives.

For example:

• OBJ-001: Develop a design to identify the components and costs for the gardens.

Every project will have several layers of objectives, which are necessary in order to complete a project in the real world. Some objectives are common to all projects, and others are only relevant to the a specific project. There is an absolute *objective* to fulfill human need on some cyclical basis. In order to engineer a resolution to the *objective* problem, there are multiple types of engineering requirements that must be defined:

- **Process requirement** to identify human issues (needs, wants and preferences).
- **Non-functional requirement** to fulfill needs in a specifically assimilated/assembled way.
- Availability requirements for resources and people when will the process be operated?
- Functional [capacity] requirements how many times do they operate the process per day?
- **Reliability requirements** do the users really need the process and data to be available 100% of the time?

7.8.1 Characteristics of objective(s)

In a dynamic system, in order for information to be useful it must maintain the following objectives (which are the characteristics of useful information):

- **Definable (conceivable)** can be described and easily understood by the population of contributors.
- Manageable (organizable) a meaningful unit of information where specific responsibility and access can be assigned to an accountable actor, and where monitoring and tracking is possible.
- **Predictable (Attainable)** sufficiently understood that planning is possible in time with resources.
- Estimateable (specific) duration, time-frames, and resource usages can be estimated to complete the project.
- Integratable (Specific) integrates with other project work elements at a higher project [system] level.
- **Measurable (Quantifiable)** can be used to measure progress; has start and completion dates and measurable interim milestones.
- **Adaptable** sufficiently flexible so a change in social intention can be readily accommodated into the project's directive.

The primary measurement creation quality objectives (quality goals) are (SMART):

 Table 3. Measurement quality objectives list.

Letter	Meaning/Purpose
S	Specific - Is the objective clear in terms of what, how, when, and where the situation will be changed?

Letter	Meaning/Purpose
М	Measurable - Are the targets measurable? For example, how much of an increase or reduction is desired? How many items should be produced, or how many people will be trained?
A	Action-oriented - Does the objective specifically state what actions are required to achieve the desired result? In some cases, the A refers to "attainable." Is the objective something that can be reached by the performers?
R	Realistic - Are the desired results expressed in a way that the team will be motivated and believe that the required level of involvement will be obtained? Is the description accurate?
Т	Time-bound - Does the objective reflect a time period in which it will be accomplished (e.g., end of the first quarter or by end of year)?

- (S) Specific and clear goals What is to be done or realized?
- (M) Measurable How will it be measured?
- (A) Achievable Is it feasible, viable?
- (R) Relevant and recorded Is the goal recorded and relevant to a larger direction?
- (T) Time-bound What is the timeframe?

7.8.2 Real-world objectives

Every project is itself an information system with a real world directive. In order to maintain alignment with the real world, information in a project must be processed into three systems-level objectives, which are common to every project:

- Develop an accurate model of the world from which to work (Read: science) - This becomes a universal information set common to all projects. Science creates a societies common knowledge base from which to create systems into the material world.
- 2. Design an accurate model of the system to be constructed into the real world (Read: engineer)

 This is a model unique to each project. Design creates a specification to be constructed.
- 3. <u>Construct the model of the system into the</u> <u>real material world through (Read: hardware</u> <u>production and software programming)</u> - This is a material creation unique to each project. *Construction creates the materialized creation that humans must live with.*

In order for information to be useful in a project, it must have some sensibly aligned relationship with the

real world. In order to design a system which may be effectively constructed in the real world, it is essential to have an accurate model of the real world, informed by logical systems processing, scientific research, and artificial sensors. This model should be as accurate ("lossless") as possible, because it will be used to inform design and final, real world product.

In concern to modelling the real world, the goal is to compress all the data associated with the real world, optimally, into a computational representation (a.k.a., model) of the world with which individuals, and together, everyone, can work on human projects (and at a societal level, on projects that ensure human fulfillment and planetary ecological regeneration).

7.8.3 Project-level objectives

CLARIFICATION: Project objectives go by multiple different names depending on context; other common names for a project objective include, but are not limited to: strategic direction, strategic imperative, mission, vision, goal, purpose, endeavour, target, etc.

Every project has a top-level [project] objective to complete the project. This project objective may be subdivided into a set of [project] sub-objectives related to the categories of material realization. These material realization categories are sub-defined within the project in terms of information flows, tasks, resources, and time (a schedule), and budget (*in the market*).

At the project sub-objective level, objectives are orientational. Project sub-objectives delineate and define what is to be delivered and how it is to be produced.

The objective of a project (which exists as a conscious intent outside of the project). The project's [systemslevel] objective(s) is the tangible end product or result that the project team must produce and deliver. The projected systems-level objective is an objective description of what is to be produced and delivered. These objectives state what the project will accomplish in terms of the user's intended value to be achieved.

NOTE: *The term "charter" is sometimes given to the document that lists the full set of project systems-level objectives.*

8 [Project] Deliverable

A.k.a., Work products, work outcome, change deliverables, project outputs, resulting usable objects, work or task output.

A deliverable is anything produced or provided as the result of a process (i.e., service, operation, etc.). A deliverable is a pre-defined, tangible work product (i.e., the output of time working). A deliverable can be informational and/or material. More generally, a deliverable is an output, something produced or provided as the result of a process. Process is another word for task or action. A work product is any tangible item that results from a project function, activity, or task.

When there is any change, there is an event, and a result. Deliverables are the output/outcome of activities (which complete to produce the deliverables). Deliverables must be aligned to objectives (intention). Deliverables are linked to the tasks (work) that produce them. A deliverable is a grouping of project work elements (tasks, actions, activities, executions, etc.) shown in graphical display to organize and subdivide the total work (as a visual information "scope" of a project). A deliverable involves the reducing of work into tasks, and ultimately, scheduled state changes in the extant, real world. A deliverable is a tangible or intangible (or service, combination) output of a project.

At the societal-level, there are two main project-related deliverable life-cycles:

- 1. **The project life-cycle:** There are <u>project-level</u> (information) deliverables, specified by information standards and practices.
 - Project coordination deliverables (Read: the project's information-level)
- 2. **The product life-cycle:** There is <u>the project's</u> <u>deliverable(s) specified by a user in relationship to a</u> pre-existing environment that an InterSystem Team sustains.
 - Product deliverables (Read: the system under project development)

8.1 Project deliverable diagram - Work breakdown structure (WBS)

A.k.a., Work process organization.

A project deliverable diagram (and list) is also known as a work breakdown structure (WBS). A work breakdown structure (WBS) is a key project deliverable that organizes a team's work into coordinated sections work coupled with a deliverable. The work breakdown structure visually defines the scope into categories that a project team can understand, as each level of the work breakdown structure provides further definition and detail. An easy way to think about a work breakdown structure is as an outline or map of the specific project. A work breakdown structure starts with the project as the top level deliverable and is further decomposed into subdeliverables, which are the output tasks (work). A project team/coordinator creates a project work breakdown structure by identifying the major functional deliverables and sub-dividing those deliverables into smaller systems and sub-deliverables. These sub-deliverables are further decomposed until a single entity (person or machine) and all necessary resources can be assigned. At this level, the specific work packages required to produce the sub-deliverable are identified and grouped together. The work package represents the list of tasks or "to-dos" to produce the specific unit of work represented as a deliverable on the work breakdown structure diagram.

A project deliverable diagram describes (visualizes and lists) the specific activities (delineated into tasks) that must be completed for the project to be complete. More simply, a project's work is broken down into a visual structure -- a project's work is broken down into a usable structure. The WBS is a hierarchical arrangement of major tasks that need to occur in/during the project. Within each of these major tasks there are typically a number of sub-tasks that describe the major task in more detail. These sub-tasks can have their own lower level sub-tasks, and this can be broken down to multiple additional levels depending upon complexity (requirements).

Work breakdown structures are typically visualized as hierarchy diagrams. It is common practice to include time (and in the market, cost) estimates in the WBS diagram. It is important to number the diagram with each sub-task as a decimal integer of the whole number primary task (e.g., 1.0 > 1.1 > 1.1.1 > ...). These numbers are used for: InterSystem team task selection/divisioning and accountability; monitoring activities and schedule alignment; and allocating resources (in the market, allocating budgets). A work-breakdown structure (WBS) in project management and systems engineering, is a deliverable-oriented breakdown of a project into smaller components. A work breakdown structure is a produced information set that hierarchically (by priority) lists all deliverables. A deliverable is an outcome or a result of something. A deliverable provides some value to the project [service] users.

A work breakdown structure identifies all the work (i.e., task, action, doing, activity). A work breakdown structure is a top-down decomposition of deliverables into work packages, which are made available to community contribution.

The work breakdown structure (WBS) represents 100% of the deliverables (given current knowns). A project work breakdown structure may be visualized as a hierarchy chart (of work/task/action packages). The work breakdown structure visually defines 'outputs' of the project at a sub-project level. A work breakdown structures states that the project will produce the worked deliverables in the visualized structure. The WBS provides a hierarchical depiction of all the work outcomes. It is created through progressive elaboration (i.e., it is a "living" document). 100% of what makes up the outcome of the project is listed in a hierarchical chart known as the work breakdown structure.

The WBS, on the other hand, is agnostic to timing, effort, and costs. It only represents what needs to be produced as a result of the project and it.

• **Deliverables** all start with <u>nouns</u> (things to be produced as part of this project) - these are associated with the 'work breakdown structure'.

CLARIFICATION: Work deliverables (WBS) are described via nouns, whereas schedule activities are described with verbs.

The WBS tool functions to:

- Interface: Deliverable-oriented view of the project work list and visualize deliverables.
- Organization: Hierarchical grouping of the work outcomes required to meet project objective. In other words, a hierarchical list of project deliverables (outputs).

Type of WBS (always represents tangible deliverables to be produced):

- **Project WBS (product deliverables or projectlevel deliverables**, specification or blueprint) - all of the components of a product being developed. Projects are initiated to produce specific, unique outcomes based on specific, unique needs. That intention and need must be expressed (delivered) in some tangible form, whether it's a system, a product, a process, an object, a plan, a rule, or some other outcome.
- Service WBS (service deliverables or operations deliverables, specification or blueprint) all of the components of a service provided to a user.
- Process WBS (process deliverables or method of delivery, mechanistic deliverables, specification or blueprint) - all of the components of a process or methodology used to coordinate work to provide service to a user [in the form of a product]. All work goes through a set of organizational process, conveying the conditions of being planned (planning), scheduled (scheduling), executed (coordination and monitoring), and assessed (assessing).

For example, a project to produce a bicycle may have the following WBS:

wheels, braking system, shifting system, project integration)

3. The 3rd level systems (e.g., frame set - frame, fork, handlebar, seat; crank set - pedals, chain; project integration - prototype approval, product test, quality sign off, project management; etc.)

8.2 Product breakdown structure (PBS)

The product breakdown structure (PBS) is a tool for analysing, documenting and communicating the outcomes of a project, and forms part of the product based planning technique. The PBS provides an complete, hierarchical tree structure of deliverables that make up the project, arranged in whole-part relationship. In other words, a product breakdown structure is a hierarchical structure of deliverables that the project will make or outcomes that it will deliver; it decomposes a project product into its constituent parts in the form of a hierarchical structure.

- 1. The top level of the system (e.g., a bicycle).
- 2. The 2nd level systems (e.g., frame set, crank set,

9 [Project] Task

A.k.a., Activity, event, action, job, work, process, procedure, instruction, energy.

A task is some amount of work that must be completed within a defined period of time, or by an output date. Tasks exist due to conscious imperatives or automated directives. A "work instruction" describes how to perform a task within a process, which is a more detailed portion of a procedure. Here, task designation is the systematic and purposeful allocation (assignment) of tasks to individuals and groups within an organization. Task-based models chunk effort into short "doable" segments. The purpose of anything (humans, any organism, machines) results in tasks. A new form creates a new task[ing] space.

NOTE: Tasks are associated by project.

Tasks that machines carry out are human tasks and not machine task. Machines do not and should not carry out tasks for their own sake. All tasks are human tasks, and machines are extensions of humans that carry out human tasks. As machines become more self-aware, the distribution of all [human] tasks will likely happen more autonomously and intuitively. Over time, humans have increased the number of machines they use, thus extending their circle of tasks (i.e., expanding human task ability).

NOTE: All work requires tasks. Multiple parallel tasks require coordination processing: [en]rolling and scheduling of tasks.

Tasking terminology includes, but is not limited to:

- A **process** states what needs to be done and why. A process is any activity or set of activities that use resources to transform inputs into outputs.
- A **procedure** states how the process needs to be done. A procedure is a uniform method that outlines how to perform a process.
- A **work instruction** explains how to carry out the procedure. A work instruction describes how to perform a task within a process.

9.1 Task analysis

A.k.a., Analytical task granularity, activity analysis.

The standard definition of a task is "a piece of work to be done". In more complex terms, a task is a package of information, that when acted based upon by an actor, together produces some qualitative or quantitative result in the status (or state) of a system.

Through project coordination a task analysis becomes

a work order (work package), which enters wider scheduling.

APHORISM: It is when we choose to resolve existence, as a whole, that sufficient information becomes available to see how we can live together in fulfillment.

In this project plan, task analysis is one deliverable (i.e., element/component). Task analysis is

- A formal method of describing and analysing actions performed by people and/or systems.
- The analysis or a breakdown of exactly how a task is accomplished, such as what sub-tasks are required.

In concern to tasks, there are two types of task analysis:

- Task analysis (high-level) the work needed to accomplish a large goal broken down into subgoals and major tasks.
 - Procedural analysis (low-level) the specific steps and decisions the user takes to accomplish a task.

A task analysis aims to understand at least these three elements:

- The users (the creator of the issue)
- The tasks that are performed (to resolve the issue, activities)
- The environment (in which the tasks are performed)

Tasks typically involve:

- A clear start and finish (e.g., requirements and requirements review)
- Involve discrete steps (e.g., task breakdown)
- Result in a change of status (i.e., they require energy, work, effort, action, motion, change, etc.)
- Are specific to clearly defined circumstances (e.g., sufficient unification for situation awareness)

Task analysis data is collected, integrated, and then visualized in a hierarchy.

The purpose of task analysis is to analyze how the user interacts with the space system and to define the tasks, which direct design concepts and decisions. Task analysis is a methodology used to break an event down into tasks and break tasks down into components. A task analysis identifies system-level and subsystemlevel tasks, to determine operator needs for established mission objectives and concepts of operation. It is used to understand and thoroughly document how tasks are accomplished. The focus for the analysis may be on how a human(s) perform tasks, how a machine(s) perform tasks, or a combination of both. Task analyses should be performed for all functions for the established system objectives, scenarios, and ConOps. Task analysis is an essential component of human-centered design, focused on providing usable systems for humans throughout a system's entire life cycle. Task analysis is a fundamental design activity necessary for implementing many human system requirements. Task analysis refers to a family of techniques that involve the systematic identification of the tasks and subtasks involved in a process or system and the analysis of those tasks (e.g., who performs them, what equipment is used, under what conditions, the priority of the task, and dependence on other tasks).

An iterative approach to task analysis enables the identification of current and future task demands that can aid in decisions, such as which tasks should be allocated to a human or to an automated system, or how system components should be used. Task analysis also results in the identification of critical team tasks, which are tasks that are absolutely required and necessary for team to successfully accomplish operations and meet project (service or mission) objectives. Critical team tasks that are essential to team health or, if done incorrectly, may lead to loss of life, loss of project, or undesirable habitation states (through to, loss of habitat).

NOTE: Identifying these tasks early, can enable efforts to be made to implement designs that reduce the probability of mishaps or errors and allow crews to perform tasks within expected time limits and environmental conditions.

Task definitions should evolve as the system capabilities, including the user, become better defined through the conduct of activities in the iterative human-centered design process.

In the context of a human user, it is possible to define the physical and cognitive tasks that must be accomplished, and to describe pertinent task attributes such as:

- 1. User roles and responsibilities
- 2. Task sequence
- 3. Task durations and frequencies
- 4. Environmental conditions
- 5. Necessary clothing and equipment
- 6. Constraints or limiting factors
- 7. Necessary user knowledge, skills, abilities, or training

The process of conducting a task analysis commonly involves:

- 1. The associated decomposition of physical and mental (i.e., cognitive) activities
- 2. Activity frequency and duration
- 3. Task allocation
- 4. Inter-task dependencies
- 5. Task criticality and complexity
- 6. Environmental conditions
- 7. Necessary hardware, software, processes (e.g.,

clothing and equipment)

8. Any other unique factors involved in or required for one or more people to perform a given task.

9.1.1 Polymorphic task hierarchy

In a polymorphic task hierarchy, the root represents design abstractions, while leaf nodes represent concrete interaction components. Polymorphic decomposition leads from abstract design pattern to a concrete artefact.

Need > ability (requirement) > concrete interaction (design)

9.2 Tasking

A.k.a., Task prioritization (task triage).

It is possible to intentional design the next expression of a system to meet a set of desirable conditions (conducive of fulfillment). And, those conditions that remove the likelihood of fulfillment, when included as data, set up a task/time/resource prioritization hierarchy, commonly known as 'triage'. As a continuous systems or a systems level process of prioritizing task systems (tasks, supra and sub).

At a high-level, tasking involves:

- 1. Identify task.
- 2. 2. Identify task completion date.
- 3. 3. Duration (as a probability) is assigned to each task.
- 4. Resources (as a probability) are assigned to each task.

9.2.1 Task dependency

A task 'dependency' is when one task cannot start or complete until another one has been finished, because the later requires (relies on) a resolved output from the earlier task.

9.2.2 Milestone

A 'milestone' is a 'task' with zero hours and zero duration, used to mark an important 'event' or 'accomplishment'. In relation to a project's direction, a milestone is a significant advance that must be made or taken (enacted). The milestones for a socio-technical society system are individual (that become social) and technical.

Because there is only consciousness, there are individual self-awareness advances, and there are material-technical advances (Read: consciousnessphysics advances, a.k.a., mental-astral physics advances).

The difference between an individual consciousness

advance, and a social advance, in 'conception', is:

- For the individual, the recognition that "we are all one" becoming an integral part of self-conscious awareness, and thus, the urge to resolve social issues in some way other than by killing each other and artificially limiting access to planetary resources (i.e., these ways of deciding become obsolete).
- For the social, there is, for example, 'social mobility', and 'no war'.

10 [Project] Activity

An activity is a distinct, scheduled portion of work performed during the course of a project. An activity is a task that is identified, assigned, executed and controlled as part of a project. Activities are work packages available for contribution.

Temporally associated tasks are known as activities. The activity is what is done to achieve the objective of the task. An activity can be a specific action or a process (it is another word for a task), and many activities will likely be involved to meet project objectives. Activities contribute directly to achieving the objective, and thereby the goal [of the project].

Activity diagrams shows the activities involved in each project coordination process (activities are tasks).

Activities include:

Requirements coordination (issue coordination)

- The objectives of requirements management activities include collecting, documenting and organizing the requirements, linking requirements to software items, tracing requirements to all development artifacts, and tracking and communicating this information to all stakeholders. This is necessary to ensure that the basic requirements and their evolution are properly handled throughout the project life cycle.

10.1 Tasks and activities

Generally, in project management, the term:

- 'Task' is associated with the input 'requirement'.
- 'Activity' is generally associated with output 'schedule' (as in, the time-binding of tasks).

In this sense, activities are [tasks that are] time-bound within a schedule, which is interconnected (i.e., flows) to a requirement-bound deliverable structure.

10.2 Time

Time is the universal matrix of experience and activity. Time is an open matrix of possibilities for present action. In community, people decide what to do with their time together, to express their highest potentials and values. What is the experience of time, when labor is no longer alienated, but freely chosen? Contribution.

TRUISM: Because people can decide what to do with their time when they experience time as free, it does not follow, for a socially selfconscious person (agent) aware of his/her mortality, that any use of time s/he decides is "good", is good (i.e., actually aligned with a common value set). People through imaginative reflection and projection, distinguish themselves from the social forces acting on them and decide as socially self-conscious agents what they will do. However, just because people can decide what to do with their time when they experience time as free, it does not follow for a socially selfconscious agent aware of his/her own mortality, that any use of time s/he decides is good, is good.

10.2.1 Time duration

A time 'duration' is how long something (a task/activity) takes to complete. Duration can be visualized along a timeline (i.e., the chronological ordering of events).

10.2.2 Timing

Timing refers to performing an activity at the 'right' time, either according to a planned frequency or in response to an event.

10.2.3 Temporal-spatial coordination is scheduling

There is a requirement to identify time as well as location in environmental representation. Time is a concept perceived as the continued iteration ("progress") of existence, measured by an observer as events that are ordered relative, as "before" or "after", and which, at a given point in time, give rise to the notions of past, present and future. Time and location are often used together by an application to describe when a given condition exists or when an object was present at a given location (read: an objects epoch).

11 [Project] Work

'Work' is an 'activity' involving intentional motion in time -- work is scheduled in a time as 'activities'.

In any given human society, there are three types of real work:

- 1. Human work (a.k.a., manual work) human physical and cognitive work.
- 2. **Hybrid work** human work with complex machine work. Hybrid work refers to a socio-technical system composed of humans, information, hardware, and software.
- 3. Machine work (a.k.a., automation work) hybrid hard-soft machine work.

11.1 Work packages

All tasks and activities are "work packages" run from within projects. Work is done to output (produce) a deliverable through requirement associated tasks and time associated activities. Work packages are assigned to teams who are accountable for the completion of work. In specific, work packages can be assigned to humans, machines, or a hybrid combination.

Visualization of the work package, includes:

- Deliverables are listed (visualized) in a 'project deliverable structure' or 'work breakdown structure' (WBS).
- Activities are listed in a 'project schedule'.

Work packages describe

- The what Work
- The who Who the work is assigned to.
- The when Within what time-frame.
- The where Location, position in space-time.
- The how The information, tools, techniques, and -ware systems necessary to complete the work.

11.1.1 Work package details

A.k.a., Work load, task set, action.

Common work package details include, but are not limited to.

- Objectives what is to met, maximized or minimized.
 - Overarching objective -
 - Primary objectives A statement of purpose expressing a desired satisfaction of required capability; related to why a system is wanted. (No numbers or values)

- Define a set of measures (or metrics) for each objective.
- Objectives state definable characteristics.
- Objectives describe what a system should do (function) and why the user needs it (to fill a defined need or gap)
- Constraints what are the boundaries.
- Functions what does it do. What is its behavior.
- Access (Means) by means of what does it do what it does.
- Skills (human translation)
- Number of humans involved as contributors

11.1.2 Work decisions

Common work decision in a conceptual-spatial system include:

- WHAT: Define the work (e.g., concept of operation, statement of work, etc.).
 - How much: Solution resource requirements.
- WHEN: Schedule the work.
 - **To whom**: Schedule assignment matrix of human and machine systems.
- WHERE: Allocate resources to the work.
 - To whom: Accountability assignment matrix.
 - For what access: Work-service access-decision effectiveness control.
- WHO: Contribute "your" time and conscious bodily effort.
- How much: Work contribution.
- **CONDITIONS**: Assigned role in InterSystem team.
 - How much: Individual and team capability
- UNDER WHAT: Environmentally situational conditions.

11.1.3 Work execution

The interface between plan and work (a.k.a., "job dispatching" or project execution) is the allocating or assignment of tasks (jobs) to systems, teams, and machines (by a central coordinator).

11.1.4 Work-ability

A.k.a., Workable?

For a system to be 'workable', it must be capable of being coded ("changed"), and possibly, executed ("run") by another system.

Both human and machine systems can work the real world environment:

- Information can be re-coded and executed upon by information (cognitive and computing) systems.
- Materiality can be re-coded and executed upon by

12 [Project] Stakeholders

APHORISM: May we all live in honor of one another's potential to contribute [to bettering the self and others].

Historically, the term stakeholders was applied to 3rd party individuals or organizations that held a financial wager (i.e., held a "stake" in a financial exchange). Some stakes are bigger than others. Anyone with an interest, a metaphorical "stake" or interest in the success of an organization or action. In concern to the financial origins of the term. Project stakeholders are entities that have an interest in a given project. The project stakeholders include:

- Those who actively participate in a project.
 - Those who can determine the course of action, the plan, of the project.
 - Those who take action based on the plan of action.
- Those who are influenced/affected by a project (or project process).

In practical societal-service, the common stakeholders include:

- Users Human individuals using the service.
- InterSystem Team Engineering developers and engineering operators of the service; those who develop and operate the service (Read: those who co-operate to create and continue the service).
- Planetary population All beings that may be fulfilled or may suffer.

CLARIFICATION: Not all project stakeholders may be co-operating as working on, and using the result(s) of, a project. A given project may or may not consider a population that is impacted/ affected by the project, but not deciding or enacting a project. There is a social organization internal (in affect) to a project, and there may be a social organization external (in affect) to a project. A project that does not account for some *influentially affected population [by the project]* in decisioning and action upon the project is said to have 'externalities'. It is the case that some societal configurations have the [fulfillment and suffering of the] planetary human population, and the population of other species on the planet, as externalities.

When the project is in service of the market-State [incentive structure], the common stakeholders include:

- Users Customers.
- Employers Businesses.
- Employees Project team members.
- Citizens taxable (extractable) human base.

• **Planetary population** - All beings that may be fulfilled or may suffer.

The socio-technically conceived project stakeholders are:

- End Socio-Technical Users as people (citizens, customers, individuals among community) using the project-generated and project-operated service system.
 - The Community of individual users.
- Operational Socio-Technical Users as people (citizens, employees, individuals among community) operating the project-sustained system.

• The InterSystem Team of contributors.

- User Socio-Technical Developers as people (citizens, employees, individuals among community) using the operational system to develop new systems.
 - The InterSystem Team of contributors together with the Community of individual users, where the InterSystem Team of contributors is accountably tasked to develop the controlled habitat service system (HSS).

12.1 What is a stakeholder

A "stakeholder" is anyone who has an interest ("stake") in the outcomes of any decisioning or action in relation to a project. Identifying, mapping, and prioritizing [the flow of information to] stakeholders are important first steps in coordinating the communications for a project. Projects can only be considered successful (complete) when their stakeholders acknowledge that they are a success (validation and verification).

In concern to stakeholders, there is a need for collaboration among:

- Those who design systems.
- Those who operate the systems.
- Those directly served by the operated systems (directly affected).
- Those affected by the outcome of the operated system, but who are not directly served by the outcome (indirectly affected).

12.1.1 Personal validation

Personal validation is how facts that are possible to be verified are done so by individuals. In a participatory project, any action taken in the project is based on decisioning, and decisioning is transparent to all stakeholders.

12.2 [Project] Stakeholder register

The following table is an example register within a market-State organization (note that a community team register will have different:

Table 4. Project Approach > Stakeholders: Table shows	
stakeholder data interrelationship categories.	

Stakeholder interrelationship data category	Description
Position	A unique ID for the Stakeholder
Description	A fuller description of the Stakeholder (Additional information that supplements the Name)
Influence_Power (market- State only)	High, medium or Low
Disposition	Positive, neutral, negative
Requirements	Project objectives as seen by the Stakeholder (what the Stakeholder wants to benefit from the project)
Impact on project	Project concerns that could arise due to the influence of the Stakeholder.
Strategy	Project action plan to ensure the objectives of the Stakeholder are met and that the potential Project Concerns are minimised.

A real world example of a stakeholder registry is a 2012 mapping of project stakeholders for a Kazakhstan gas plant [order-efficiency.com]. (Winter, 2012)

13 [Project] Team

A.k.a., Contributors, stakeholders, engineers, operators, personnel, crew, staff, members, participators, point-of-contact, servers.

A team is a group (as in, population, organization, structure) of people actively engaged in developing any service or system. A team is a small group of people with complementary skills who are committed to a common purpose, performance goals, and approach for which they hold themselves mutually accountable. In a sense, a team is a human system of organization, of individuals, with the same intention for change to materialization. In application, a team may, or may not, include those using any service or system. A team exists to do work [action in time]. Teams use tools, techniques, and resources to do their work. Tools include, but are not limited to methods, rules, procedures, protocols, practices, standards, materials, visualizations, diagrams, etc. In order [for a team] to do work, there must be the communication of information. A team carries out a multiple related tasks.

A team is a collection of individuals working toward a common purpose through a similar structure. Teams of individuals "manage" themselves. Systems exist to coordinate their activities. Problems are settled through transparent, root level processes. This is rational selforganization; examining information accurately and using a solution orientation to seek the alignment of a decision with a particular direction.

Those who apply effective communication may be said to have internalized two statements that express the two axiomatic team cooperation-oriented principles. The following axiomatic team-orienting [in alignment] statements are written in natural non-formalized, and then semi-formalized, language:

Team statement 1: Nothing is done until the paperwork (documentation, logging, record keeping, etc.) is done. All teams require the return of data from an acted upon environment.

Team statement 2: All team contributors share access to resources through a controlled and coordinated procedural information set.

Team question 1: Can these personnel with this equipment and training perform their tasks to a specific standard under planned conditions?

A'project team' is those humans (and other information processing -ware systems) that are internal, in affect, to a project. The 'project team' does the 'work' (of actually developing and operating) a project.

In societal application, the 'work' always includes engineers (developers and operators). In Community, sometimes the 'work' includes the Community end-users themselves. 'Team members' are always 'stakeholders', but 'stakeholders' are not always 'team members'.

NOTE: A list of labels of anyone who could be

considered internal to a project can extend from the 'complementary' (e.g., contributor) to the 'disparaging' (slave). In other words, the work on a project may be done willingly, or not (e.g., through force and coercion).

Continuous projects at the highest societal-level are sustained, developed and operated, by InterSystem Engineering Project Teams. The highest societal-level continuous projects are the (i.e., at the level of a human habitat networked-service system):

- · Life support Human core survival project.
 - [Human core] Life-support service system and sub-systems.
- **Technical support** The human-interfacing -ware (Read: hardware and software) structure.
 - [Interfaceable structure] Technical-support service system and sub-systems.
- Exploratory support Support service to facilitate exploration and discovery.
 - [Human developmental] exploratory support service system and sub-systems.

13.1 Team-based lateral approach

QUESTION: What organizational work structures are there other than teams?

A team based lateral structure is an organizational structure that groups individuals working within the organization into teams that perform specific job functions. As the individual team member's abilities increase, so does the performance of the entire team. Being a part of an inter-disciplinary team means you are willing to fulfill your designed, selected, and assigned responsibilities.

A team-based lateral organizational structure is similar to a traditional lateral structure, in carrying less overhead management to cause delays in decisioning and implementation of best practices or new ideas. With no need to climb a lengthy chain of command to receive approval for ideas or changes to the operations model, a team-based lateral structure can make necessary changes on the fly and allow for rapid response to different conditions.

By spreading the responsibility among team members rather than having a single individual in charge of decision-making or management, decisions are arrived at and action can occur rapidly as team members can be assigned to research areas of need, implement changes, or work on other problems while other team members continue to focus on the current situation. Decisions arrived at by a team are sometimes better thought out and more effectively implemented than decisions made by a single individual. This is why the team exists, because everyone in the can work a specialized problem and trust that the others are working and taking decisions effectively in their specialized areas. A teambased organizational structure can eliminate traditional scalar chains of command, which can cause delays, frustration, and can limit an individual's choices due to a fear of reprisal.

13.2 Contribution support

A.k.a., Personnel administration.

Contribution is voluntary activity of interest toward the continuation and betterment of our community. In an extrinsic oriented society the motivation to do things is about money to provide more than destitution, to provide safety, and perhaps even, to provide luxury.

TEAM SELF-AWARENESS STATEMENT:

Good grooming can enhance self-image, improve morale, and increase the comfort and productivity of the team. An aesthetic surrounding can enhance nature connection, improve morale, and increase the felt well-being of everyone.

Because people sign up, instead of having someone assign them, management-type work is highly reduced if not eliminated entirely. In community, skills needed for a teams will be commonly available. People interested in the job can sign up to work on the team. Here, there is careful coordination between people, time, resource, and purpose.

Commonly required team skills include, but are not limited to:

- Interpersonal Skill Is aware of, responds to, and considers the needs, feelings, and capabilities of others. Deals with conflicts, confrontations, disagreements in a positive manner, which minimizes personal impact, to include controlling one's feelings and reactions. Deals effectively with others in both favorable and unfavorable situations regardless of status of position.
- Team Skill Establishes effective working relationships among team members. Participates in solving problems and resolving decisions. Identifies where and when action is needed, is willing to make decisions, render judgments, and take action. Accepts responsibility for the decision, including sustaining effort in spite of obstacles.
- Continual Learning Grasps the essence of new information; masters new technical and knowledge; recognizes own strengths and weaknesses; pursues self-development; co-operates well, seeks feedback from others and opportunities to master new knowledge.

In concern to integrity,

- Personal integrity taking care of your physical and mental health. Personal integrity is interconnected with social integrity.
- Social integrity working for the sustainment of the community, reducing conflict and power structures, establishing trust, and engineering and operating services.
- Ecological integrity ensuring the integrity of our ecological resources and cycles, together.

13.3 Accountability

A.k.a., Responsibility.

Accountability of tasks involves four categories of communicable information:

- 1. Responsible:
 - A. Identify who (the role that) takes the action.
 - B. If leader and follow action scenario, then decide who leads and who follows.
 - C. An entity responsible for taking action (i.e., completing an activity).
 - D. Responsibility level is determined by individual who is "accountable".
- 2. Accountable:
 - A. An entity with objective decision authorization (authority).
 - B. An entity accountable to an objective.
 - C. Generally, only one per goal.
- 3. Consulted:
 - A. Notified (kept "in the loop").
 - B. Person consulted for input, information, insight and perspectives before a final decision is resolved.
 - C. Two-way communication.
- 4. Informed
 - A. One-way communication.
 - B. Normally after activity has been performed or a decision has been taken.

The accountable person may, or may not, also be the responsible person.

13.4 Individual status

Under appropriate procedural conditions, team members are monitored (where appropriate) for their performance, which is operationalized through (note, this monitoring generally only occurs in high-risk team situations; e.g., astronauts); however it is good for any contributor to know their limits (and necessarily, the categories), thus making the team safer overall:

- 1. Physiological status (and, % remaining)
- 2. Cognitive status (and, % remaining)
- 3. Psychological status (and, % remaining)

4. Are team members alive, healthy, and happy?

Individual utilization metric & design efficiency:

- 1. Ratio of [self-]resources used per task (and, over total duration)
 - A. Use of physiological resources (and, resources used/total number of tasks)
 - B. Use of cognitive resources (and, resources used/ total number of tasks)
 - C. Use of psychological resources (and, resources used/total number of tasks)

It is clear the metrics that are needed must measure the physiological, cognitive, and psychological state of the an appropriate team member (here, "appropriate is dependent on role/context).

13.5 Team decisions

Teams arrive at decisions the same way proposals are taken for changes to the kernel; the same way the decision system resolves decisions. Each proposal (i.e., solution, decision) is given a numerical score (measurement); supplementary measures are calculated. The criteria lead to the ranking of solutions. A threshold may exist beyond which a solution is acceptable and/or is not acceptable. Team members are trained to follow procedures. Machine team members are operated to follow instructions. Some procedures are more open ended in their separation of conclusions between team members decisions (i.e., the team members will reach different conclusions to the same decision), and others are more closed ended (i.e., the team members will reach the same conclusion). The intention is always closed ended solutions (of 99% certainty at its greatest).

13.6 Team indicators

Team task indicators:

- 1. Achievement is progress toward a set goal.
- 2. Knowledge is relevant material for a task.
- 3. Effort is time and resources used on task. Effort is time on task.

13.7 Team expectations

CLARIFICATION: Responsibility is the essence of self-direction (or self-regulation). Accountability is the essence of social-direction (or, social-regulation). To accept responsibility people have to define, understand, and take decisions. In the market-State, the tendency is for management to hand the operational people an output of redesign thinking done by others, and expect them to work it. Expecting also, the supervisors to supervise the implementation of a design

that management has completed. Alternatively, organizing for real teamwork is a process of getting everyone involved in the total systems improvement.

For every project, the team must have access to the right tools for the right problem. Understanding the context of use for a particular technology requires asking the right questions. For example:

- Why is this technology being used? What task and/ or process is it being used to accomplish?
- Who are the end users for this particular technology? What are the characteristics of the end user population (e.g., age, physical and mental capabilities, technical aptitude)?
- What are the characteristics of the technology itself? What are its component features? Is it fixed or portable?
- When is this technology used? What triggers the process/task the technology is used to carry out? At what point in the process/task is this technology used? How frequently is this technology used on an hourly, daily, monthly, etc. basis?
- Where is the technology used? Are there any environmental characteristics – such as dust, lighting conditions, or noise – that may impact the functioning or effectiveness of this technology?

Define what is expected in terms of performance early and clearly and then support adaptations toward appropriate means by which the group can achieve ends. However, do not over-specify -- this is an adaptability principle, which recognizes that we are designing living systems rather than machines. With living systems, the same ends may be reachable by different means.

There are a lot of ways to solve problems and meet a user/community needs. What is critical here is the definition and understanding of the end goal. The "what" is to be highly specified. The "how" is open to local decision and initiative. This enables learning and an increased sense of "efficacy" on the part of team members. Efficacy is the sense that "we" are effective as a team that we can make a difference and do the work well. Efficacy is "fragile" and needs to be supported by continuous learning and improvement.

Teams have to be deeply involved to determine what and where information is needed for self-direction. There needs to be a societal (Read: community) commitment to provide information and resources for task performance and learning. Information has to be provided where it is needed for self-direction, learning, and task improvement. Control has to be subordinated to achievement.

13.7.1 Expected team requirements

To operate effectively, teams require social and or

technical ability and access, involving:

- 1. Knowledge (concept memory)
- 2. Skill (behavioral memory)
- 3. Technology (useful material composition)

13.8 [Project] Team standards

APHORISM: A group of people who correct one another can help one another.

Even when internal standards are well designed, they can break down. Personnel may misunderstand instructions. They may make judgment mistakes. Or they may commit errors due to carelessness, distraction, or fatigue. Temporary personnel executing control tasks for sick personnel might not perform correctly. System changes may be implemented before personnel have been trained to react appropriately to signs of incorrect functioning.

13.9 [Project] Team categories

Any given Project Team may be assumed to be composed of all of the following three identity categories (colloquially called, "stakeholders").

Any given Project Team is composed of those individuals and systems:

- 1. <u>Who are impacted by the work</u>?
 - When common heritage resources and a common ecology are impacted, then the whole human-social population is impacted to some probably observable degree of 'certainty'.
- 2. Who will do the work?
 - The InterSystem Team of Habitat Service System 'Engineers'
- 3. Who have <u>user/customer expectations from the</u> <u>work</u> to be, or being, done?
 - The two accessing populations:
 - 1. The population of individuals, individuated units of human consciousness. Individuals among the community population.
 - 2. The population of engineers that coordinate and operate the materialized habitat service system. InterSystem Team members (Read: contributing individuals).

For any team structure, there are categories of organization:

- 1. **Manpower (humans)** refers to the number and type of personnel who operate, maintain, support, and provide training for systems.
- 2. **Personnel (skills)** refers to the human aptitudes, skills, and experiences required to perform the jobs

of operators, maintainers, and support personnel.

3. Training (education) prepares personnel to perform the tasks necessary to meet the mission or goals and objectives of the system. Development of training requirements, methods, curricula, and training system design are important parts of the overall system design process. The length and intensity of training depends on the background, ability levels, and learning styles of the personnel in the training class; the complexity of the system; and the level of skill and knowledge needed to ensure the desired level of performance speed and accuracy. Some training is designed for individual task performance: some for team or unit-level performance. Note that an important input to effective training is a task analysis that identifies the skills and knowledge needed for acceptable performance. Inadequate training can result when work and task descriptions are outdated. Training deficiencies may also result from failure to allocate the necessary training time and budget, lack of flexible training schedules needed to meet learning requirements, and lack of useful proficiency criteria.

Manpower, personnel, and system design decisions should take into account the level of training needed and the feasibility of delivering that training in the allowable time frame.

A team has two fundamental skill-sets:

- 1. Practical skills (do work)
 - A. Practical skills, capabilities and knowledge relevant to the task.
- 2. Communication skills (intercommunicate)
 - A. Present and receive ideas easily between team members. Ability to use a range of communication and visualization methods, and communication techniques should be well documented.

13.10 [Project] Organizational mapping

A.k.a., Organizational chartting, hierarchy chartting.

Teams belong to organizations, and both organizations and teams can be mapped/chartted. Organizational charts are the graphical representation of an organization's (or team's) structure. Its purpose is to illustrate the r relationships and chains of communication (or, command in the case of hierarchies) within a social organization. Names, roles, titles, etc. are generally depicted in boxes or circles with lines linking them to other person's in the organization. By looking at the organizational chart, people can gain a quick understanding of how the organization is designed, its number of levels, and where each person fits into the organization.

13.11 [Project] Team and group personnel selection

Project teams and working groups are composed, in part, of personnel (Read: humans). The selection of personnel involves an algorithm that is highly weighted by qualification (subject matter expertise), interest (including curiosity and motivation, and effective communication. Team and group members are individuals with a strong knowledge (and skill) in the subject matter, and also have the ability to understand and be open to multiple points of view.

In concern to qualification, a team is significantly composed of individuals using tools. If a tool user doesn't understand the correct use and safe operation of a tool, then the user can hurt themselves and others. Tools are useful to the extent that the user understands their operating capabilities and safety parameters (or, the degree to which they provide certainty and uncertainty). Any mechanic or philosopher will tell you that tools can be used in a wrong way. How a tool is used is often more determinant on the outcome than the fact that it was used.

Working groups nominate experts (or members) who have requested nomination to participate on teams. The algorithm (software), council (project coordinator team or technical council), or vote, then selects the nominees. This same process can be used for the selection of working group members themselves.

All working group and team members have the responsibility to attend working group and team meetings. A member of the public may attend and observe, but not participate, in working group meetings.

A working group may choose to invite other individuals with special knowledge and expertise related to the priority issue to attend meetings to provide information and/or advice. Advisors will be encouraged to participate in discussions, but shall not participate in the decisioning of the working groups.

"We become what we behold. We shape our tools, and thereafter our tools shape us." [The presence and use of tools and technologies affect how we look at the world and how we behave. Think about how airplanes change your perspective on distance.] - Marshall McLuhan

13.12 [Project] Team member attributes

Any given project [human] team member has the properties of personality and capability. Team member personality ("attitude") and capability ("skills") are controllable at the team level by means of team composition (Read: staffing a team with certain individuals possessing the specific personalities and capabilities desired). Education and training are self-development activities aimed at improving certain personalities and capabilities before or during projects.

APHORISM: Those who receive a service from me, receive fulfillment without lessening mine, receive light, without darkening mine (Read: a true social contribution model).

A [project] team requires individuals with intelligence and ability to compose and to operate a set of components that work effectively.

13.12.1.1 Role

A **role** is a task related to a function. A role is the continuous carrying out of specific tasks inside a temporal [project] context.

13.12.1.2 Personality

A.k.a., Intra- and inter-personal composition, attitude.

Whereas personality is all those feelings, thoughts, affects, desires, language, and ideas that expressed, or likely to be expressed, by an individual human. There are some InterSystem positions where personality type is a requirement and there are personality sub-elements (e.g., feelings and language) that are unacceptable given that InterSystem team position. For instance, a nurse must have a personality that is likely to positively influence, and unlikely to negatively influence, the well-being of someone whom they are treating. Personality is required for efficient task completion - the task is unlikely to be completed well unless the individual completing it has the desire and personality structure to do so well.

13.12.1.3 Capability

A.k.a., Skill, ability.

Team member "skills" are the requisite abilities held by individual team members, which enable them to complete their tasks within the team setting. Capability is required for effective task completion - the task cannot be completed unless it is known how to complete the task.

Teams are partly composed of individuals with capabilities:

- Technical skills (technical abilities, capabilities)
- Social skills (interpersonal abilities, capabilities/ feelings)

Social skills include, but are not limited to, the ability to:

- Perceive another's point-of-view.
- Involve others in the work process.

- Understand the technical and organizational constraints the team must confront.
- Work collaboratively.
- Follow protocol.
- Share.

13.13 [Project] Team organization

Naturally, a team [work] organization is an identity in which the activities of individuals are coordinated, motivated, and supporting between each other in order to reach some common target or goal (i.e., the completion of a set of requirements formed from objectives) that requires work and structure.

13.13.1 Team work organization

A.k.a., Team organizational structures.

The computational sub-structures of team include, at a high-level:

- Role structure people interact based in how their roles are supposed to interact as part of an explicit organization. In a role structure, people know how to interact be abuse their role and its relationship to others roles are define.
- **Team structure** the roles are nested in a team structure.
- **Organizational structure** to support coordinated adaptation.
- **Control structure** to determine how to keep this distributed set of people in sync as the plan is evolving.
 - *Use version control* to enable reconfiguration of the organizational structures:
 - Branching a branch is a copy of an organization that is referenced back to a point in time)
 - Merging a coming of two into one.

In an open and contributive organization, any member if the organization can branch, edit, and make pull requests against any organizational structure: roles, teams, tasks. Pull requests are reviewed within a core decisioning framework, and if selected (as the solution) will be merged (e.g., in GitHub through a three-way diff).

13.13.1.1 The dimensions of team organization

The common team organizational dimensions include:

- 1. Priority
- 2. Interaction patterns
- 3. Values (norms of engagement)
- 4. Decisioning logic objectives
- 5. Feedback

13.13.2 Team work co-operative organization

A.k.a., Cooperative work environments.

Access to information is available to all team members who can see the same instance of information as other team members, provides a single, unified source of awareness with which to engage together.

A continuous information system means that all digital data can be connected and every piece of digital content can be made aware of all other digital content. Therein, modifications can be more predictably visualized.

13.13.3 Team work **co-operational knowledge**

A.k.a., Social cooperation knowledge areas.

Project-level social coordination and collaborative action require the following necessary operations on the part of individuals whose interests and/or actions are interrelated:

- Cognition of a problem-solution, the project.
- Visualization of the [problem] situation.
- Coordination of a solution.
- **Communication** of a plan of action to execute the solution into realization (into real-time).
- **Execution** (*realization*) of the plan by means of development (design and construction); the ability to execute the task at a certain level/condition of performance/quality.
- **Evaluation** of the execution and results (accountability alignment with pre-decisions).

13.13.4 Team work recursive operations

Whereas, 'operations' means the work (or tasks) done, 'design' means the work (or tasks) to be done in a future operation. Note that this set is recursive, because doing the work of determining what is to be done in a future operation is itself work (or, a task).

In other words, the recursion (recursive reason) for understanding the Inter-System nature of the Teams that create and maintain a working human fulfillment service system is:

- Operations the work/tasks done (as visualized).
 - Operations are designed.
 - Note: the "Inter-" part of InterSystem Team.
 - A system is operated through a design.
 - Note: the "-System" part of InterSystem Team.
 - A team is operated through a protocol.
 - Note: the "Team" part of InterSystem Team.
- Design the specific[ation] plan (as visualized).
 Design is an operation.
 - Note: the "Inter-" part of InterSystem Team.
 - A system is designed through an operation.

- Note: the "-System" part of InterSystem Team.
- A team is designed through an operation.
 - Note: the "Team" part of InterSystem Team.

13.13.5 Team work **planning activities**

The project team has responsibility for conducting project activities, which may be viewed from the 'work' perspective (information set) through two methods:

- The checklist [method] to visualize ("tell") the team member, *what to do*.
 - Identify tasks [through tasking, as in, the accountable itemizing of a 'work' function].
- The schedule [method] to visualize ("tell") the team member, *when to do it*.
 - Relate tasks to time [through scheduling].
- **The plan** [method] to visualize ("tell") the team member, *what 'it'* (*i.e., that with shape*) *is*.
 - Relate objective to task and time [through planning].

Team members have a continuous interest in observing the state of the project. Therein, team members have (or are likely to have (because, they have an interest in the project): 'ls' questions about their project, such as:

- Who is asking for the project?
- Why is the project asked for?
- What is the expected outcome from doing the project?
- Who is affected by doing the project?
- · When is the project being done?
- How is the project to be done?

These 'is' questions comprehensively relate the project objective to the task (work) and time, and are thus, inquiries that compose the information space/set of a 'project plan'.

13.13.6 Team work communication structure

In a contribution-based team setting, a 'hierarchy' is having a centralized point of communication between systems -- out of all possible entities that could communicate, one is selected for efficiency. A complex system is one that has multiple levels in a hierarchy of systems, with each level being composed of sub-systems that may themselves be further decomposed into subsub-systems; herein, a common team communications structure becomes a requirement for optimality.

Systems teams, in concern to their communications structure, can be identified as being:

- Simple For example, the InterSystem Team runs all societal-level operations.
- · Complex For example, the system teams, of

which there are three core, each with multiple sub, operate an information and material network.

Complex adaptive (complex adaptive system, CAS)

 For example, the InterSystem team operates
 a second-order cybernetic information system
 (closed-loop control), which integrates issues and
 feedback while continuously resolving the most
 up-to-date information and material system. All
 living organisms and ecosystems are complex
 adaptive systems. Complex adaptive systems are
 represented by genera (species evolve within), the
 human being as structuring societal organizations
 (such as, habitat service systems and corporations).

13.13.7 Team work influences

The most common influences on a work team (e.g., the InterSystem team) are:

Individual influences:

- Attitude/feeling change
- Salience
- Elaboration
- Priming
- Knowledge and skill acquisition (training)
- Behavior change

Interpersonal (social) influences:

- Reasoning (justification, logic)
- Protocols (societal protocols and social norms)

Societal (individual and interpersonal) influences:

- Organizational structure (unified information system structure)
- Protocol and structural change (decisions)
- Diffusion (of information)
- Access (to resources, services, goods)

13.13.7.2 Manipulation

Common methods of manipulation, of which team members should be aware, include:

- Logical fallacies (spurious reasoning)
- Thought-stopping
- Goalpost-shifting
- Double bind
- Idealisation
- Intimidation
- Shaming
- Isolation
- Repetition
- Denial
- Infantilization

Demonization

The usage of a method of manipulation, itself, does not mean that the information attempting to be propagated is false.

13.13.8 Team work structure

INSIGHT: There is a lot to being a person and there is a lot to being a person who contributes to society; which needs guidance.

Common team structures include development and operations:

- Project development work structure
 - Traditional development life cycle
 - Critical development (i.e.,traditional development sped up)
- Project operations work (system operations life cycle)
 - Centralized the primary InterSystem team members are on the same work team (e.g., responding to an incident).
 - De-centralized the primary InterSystem team members are on different work teams (e.g., maintaining a routine energy system) .
 - Specialization how specialized is the work group (degree of specialized skill set and variability among group members)?

13.14 Team coordination

Team coordination and collaborative action require the processes of forming, executing, and dis-forming a team involves, and involve:

- Planning human contribution
- · Planning resource availability
- Acquiring a project team
- · Coordinating a team effort through time

Functions of the team coordination (management) process are:

- 1. Coordination of information Coordination of information is the fundamental concept of acting upon information.
- 2. Identification of information Identity is the fundamental concept of uniquely identifying an object (person, computer, etc.) within a context.
- 3. Authentication of information Authentication is the process of objectively ensuring trust and accountability (i.e., gaining confidence) in a claimed identity. Once identities are issued, whenever they are used, there is the requirement that the person using the identity is the person that is qualified to use it. This process minimizes decision violations

(i.e., in this case, identity "theft").

- A. Revocation is the process of rescinding (i.e., "withdrawing") an identity that has been authorized. This is a process that must be properly recorded for accountability (i.e., transparency/audit) purposes. All systems and processes with which identity has been established must now be notified that that identity was revoked. This is required to prevent continued use of the identity under potentially false and insecure contexts.
- B. Authoritative [control] source(s) An authoritative controlling source exists in an organization to resolve the problem of authorization (i.e., identity formation). From a best practices and manageability perspective, it is important for an organization to make one authoritative source the main source of identity information.
- C. Authorization is the category (label) to which a person or an operational entity is assigned, having gained access (i.e., authority or permissions) to do an operation or task (with a set of resources and tools). Authorization is the name of the process where requests to access a particular resource are granted (0, "go", True) or denied (1, "no go", False). An authorization is where the system controller (e.g., administrator or protocol) translates a user's (or a specific group or class of users) request to access a designated set of system resources into a resolved decision. It should be noted that 'authorization' is not equivalent to 'authentication'. Authentication is providing ["me"] and validating ["me"] identity. Authorization includes "me" as a variable in the decision resolution logic (i.e., execution rules) that determine what access systems the user may access, ensuring the accurate decisioning of access after authentication is successful. Service applications need access controls to allow users (with varying privileges) to use the application.
- 4. Provisioning of users.
 - A. Account provisioning (a.k.a., user provisioning)
 identity-related information associated with individuals in the unified system.
 - B. Provisioning has two functions (i.e., functional processes):
 - C. The process of modifying (i.e., assigning, granting, changing, or removing) user access to systems (applications and databases) based on a unique user identity by creation of user accounts on target systems.

- D. The process of providing users with accounts, the appropriate access to those accounts, all the rights associated with those accounts, and all of the resources necessary to manage the accounts.
- E. Adding an identity: Initially, the identity may never have existed. As credentials of the identity are known and collected, the identity is then added, checked against the authoritative source, and the identity is then provisioned to required systems and services.
- F. Modifying an identity: When an identity exists within an organization in which it has been provisioned and a change (e.g., merger/ acquisition) occurs, the identity's credentials may require review and adjustment in light of changes to the provisioning system's workflow.
- G. Deleting an identity: Covered under De-Provisioning below.
- H. Account de-provisioning, which deals with the termination of access rights to systems and services and re-allocation of those systems and services The de-provisioning of identity is the termination of the identity that had been provisioned to services and systems. De-provisioning is critical for organizations to review and assess because accounts that are not de-provisioned in an accurate and (especially) timely manner, lead to considerable risk.
 - 1. Password coordination [management]
 - 2. User access reviews
 - 3. Analytics and reporting
 - 4. User provisioning
- Suspending an Identity: Suspending the identity basically represents the temporary halt of access to systems and services provisioned to an identity. The identity(s) are then suspended, thus suspending access to respective systems and services.
- J. Resuming an identity: Once the identity comes back the identity's state will be resumed and appropriate resources will be reassigned.
- 5. Provisioning of resources.
 - A. Resource provisioning assets such as computers, databases, and applications and the management of permissions associated with those assets. Resource provisioning is the provisioning of identities to systems and services that the identity has the approved access to use.
 - B. Resources may be classified as the following types of systems (and services, in the HSS context):

- C. Material (i.e., habitat, physical environment)
- D. Non-material (i.e., digital, informational "abstract" environment)
- E. Computing (i.e., computational)
- F. Non-computing (i.e., non-computational)

Examples of computing systems and services include disk space on a file server, electronic mailboxes, HR system access, and so on. Examples of non-computing systems and services may be anything from provisioning identities (e.g., employees) to physical assets (e.g., desk, telephone, mobile phone, laptop).

13.14.1 Team work tasking coordination

Teams complete tasks by coordinating among the factors of:

- Accountability
- Communication flow
- Priorities

Team coordination, thus concerns:

- Identity coordination (management)
- Access coordination (management)
- Schedule coordination (management)

The coordination of individual team members, their authentication, and access occurs within the habitat service system, across [Inter]system boundaries InterSystem Team [service] work positions involve:

- Service role
- Service responsibilities
- Service tasks

Here, a 'work package' is the logical package that makes up work, as a task(s), to be complete.

13.14.2 Team work **monitoring and** evaluating

A.k.a., Tracking team work.

Tracking and analysis of team work

- Obtain physical % complete for each task
- Calculate EV for each task.
- Sum up EV for all tasks as project EV
- Calculate actual expenditure for actual work complete during the period.
- Compare the cumulative EV to actual expenditure.

13.14.3 Team work task dispatching

A.k.a., Job dispatching

Dispatching refers to process of entering a task for the purpose of execution. Job dispatching is a procedure that uses logical decision rules to select a job for processing on a machine that has just come available. Dispatching consists of two elements:

- Decision (for selecting task for a workstation from those predefined tasks that are ready for execution),
- 2. Communicating the assignment (or authorization) to the workstation.

In the case of project coordination, the decision is largely taken care in planning , and thus dispatching is reduced to mere communication of the notification to start work.

13.15 What is 'optimal performance' as part of a team?

Optimal performance is highly qualified and contextual (individual, time, place, and situation). Optimal performance is doing activities "you" (Read: the individual doing the activity) have first deemed intrinsically worthwhile. Continual (or regular) improvement is almost certainly part of optimal performance, but continuous doesn't mean regular, it means incessant. The blind pursuit of continuous improvement can often result in restlessness and inefficiency. Optimal performance requires the alignment of desire, ability, and opportunity towards an optimal goal - a goal whose value is recognized and embraced by all involved.

The three social organizational characteristics (values) of optimal performance:

- 1. Effectiveness services, products, and individuals are effective if their task (activity, job) is completed as functionally and non-functionally required (as expected).
- 2. Efficiency services, products, and individuals are efficient if tasks are completed within the pre-determined boundaries of time, resource, personnel, and systems.
- 3. Sustainability services, products, and individuals are sustainable if they can continue to do tasks as required (or, expected).

Note that these values are described in greater length in the Social and Lifestyle System Specifications.

The two core performance questions are:

- 1. Desire
 - What is needed to be done; what is the objective, given what is known?
- 2. Ability

• What can be done; what is possible, given what is available?

The three social organizational questions for performance are:

- 1. Goals
 - What is required to be done?
- 2. Skills
 - What are the individuals trained to do?
- 3. Systems
 - What are the organizational systems set up to do?

13.15.1 Individual, personal accountability

As part of the InterSystem Team, there is individual, personal accountability. When an individual, as part of the Team agrees to do some task, s/he is held accountable to doing it, as agreed upon by the work package and scheduling (registry) of his/her identity. It is the scheduling of identity into the "block chain" to complete some task of benefit in service to everyone, that generates societal accountability. In other words. to work on the habitat service system, "you" must be a part of the InterSystem Team, for which "you" will join a sub-team of your choice constrained by the task's requirements, and "your" own physio-cognitive set. The scheduling of "your" identity as part of an InterSystem Team involves the association of several [technical-value] attributes, most notably, 'accountability'. When active as part of an InterSystem Team "you" become accountable for your behavior and its timing to the totality of society. Some cultures might find this thought appealing and others horrifying; nevertheless, it is a requirement for fulfillment, because it is a requirement for monitoring progress toward the fulfillment of a given need or other objective. A transparent society, when oriented in an independently experienceable way toward fulfillment, may be shocking to consider, but its experience is the expression of the fulfillment we all desire. Hence, "you" become accountable to the community, for "you" are working on some aspect of everyone's fulfillment service system. And, you are working as part of a project team that, because "we" all are interested in the project, have the degree to monitor its progress. InterSystem access is available as 'read' access to everyone in the community. Sensors are used here to monitor activity; this includes inquiry sensors (i.e., surveys and "senses", which are surveys of a humans senses). This includes humans and instrumentation.

13.15.1.1 Role accountability

A.k.a., Service roles.

There is purpose for the existence of anything [in the habitat service system for human access fulfillment] - from the purpose of human life together, to the purpose of any service. Purpose typically derives from tasks that something is carrying out. The continuous repetition of

carrying out a certain task results in the attribution of a role (or program, in software; mechanism, in hardware). Within society, the inheritance of a role over time is accepted as part of someone's personality.

The model of role can be applied correspondingly to machines. For example, the purpose of the machinetype 'refrigerator' is to keep food freshly preserved; its purpose in not to cool-the purpose is to keep food fresh. Everyone who eats wants their food to be kept freshly preserved. The purpose of the refrigerator of keeping food fresh derives into the task of maintaining food at a lower-relative temperature, which keeps food fresh, and is the purpose of refrigerator.

Activities based on tasks can result in needs (i.e., additional or secondary requirements). The need of a refrigerator is keeping its door closed in order the keep the temperature at a set level, efficiently. Another need is staying connected to the electrical power to keep its compressor running.

In terms the larger societal information system, an accountable person is accountable to monitoring and controlling some formalized aspect of a [service] system. There is the ability for humans, when adopting roles, to have specialty information and/or ability.

For example:

- Geologics someone skilled in geological systems.
- Biologics someone skilled in biological systems.
- Mechanics someone skilled in mechanical systems.
- Electronics someone skilled in electronic systems.
- Informatics someone skilled in information systems.

13.15.1.2 Test engineering

Test engineering (test engineers) test is to check whether something will work or not. A test should be done to prove that something will work. To test a hypothesis is to check whether it is true or not. Some 'test engineers' may specialize; for example, some may be skilled in geologics, where they design and test (by role) mostly geological sub-systems, other 'test engineers' may be skilled in several fields and be capable of designing and testing more integrated supra-systems. Note here that scientists require more specialization than engineers, because the engineers are applying (a horizontal calculation approach), versus scientists who discover and understand the whole reality information system in order to do all engineering safely.

13.15.1.3 Accountability assignment matrix

A.k.a., Accountability visualization.

An accountability assignment matrix is otherwise known as a responsibility assignment matrix. This matrix is simply a table for which one axis is the project's Work Breakdown Structure, and the other axis is the project's organizational breakdown structure. Each point at which these two structures intersect becomes a work execution element, and an individual or system is identified who is responsible for executing the work. If desired, each intersection can also identify the value of that specific element of work in terms of information and physical resources, time (hours), and financial resources (cost).

As a tool, the Accountability Assignment Matrix maintains the following service goals:

- It serves as input for identifying, planning, progressing, and reporting (recording) work.
- It serves as input for developing budgets, schedules, and milestones; tracking costs and spending; and preparing progress reports.
- It identifies individual work responsibility.
- It controls the release of access to resources by Inter-System Team Contributors.

Human limitations:

- Humans have very limited short-term memory: 5–7 items.
- Humans make mistakes, especially under stress.
- Humans have widely varying capabilities, both physical and mental.
- Humans have widely varying personal preferences.
- Humans brains organise their perceived world differently.

Society requires a functional [accountability] matrix organization structure for the InterSystem Team organization. An inter-system team structure necessitates a unified matrix-type organization of effort-accountability.

13.16 Functional teams, functional information society

In a functioning societal information system, societallevel projects are organized by function -- by functional InterSystem Team organization and the solution's expression as a functional habitat service system (Read: network of cities) In its principal application within the habitat service system, functions are called operational processes or [service] procedures (both are equivalent).

The functional groups responsible for the fulfillment of societal-level organizational requirements include:

- A system development group (strategic planning; organizational project plan decisioning)
- A system realization group (engineering development)
- A system operations group (engineering operations)

- An information system [operations] group (information service engineering operations)
- A material system [operations] group (material service engineering operations)

The system realization group is divided into a hardware- and a software branch, which are subdivided into development teams, each responsible for a set of modules. The organization has defined roles responsible for each module. These persons work with function groups during specification and development teams during implementation.

13.17 Societal InterSystem team

A.k.a., Societal interdisciplinary team.

InterSystem teams have accountably tracked access to the engineering system of society. In order to trace access to the engineering system, the whole, unified information and material system must be indexed and searchable; if it can't be indexed or searched, then it doesn't exist.

The value of interdisciplinary teams has long been recognized in many fields, including particle physics, astrophysics, and other "big science" disciplines. Interdisciplinary team systems science broadens the scope of investigation into problems, yields fresh and possibly unexpected discoveries, and gives rise to new inter-disciplines that are more analytically sophisticated.

In concern to the interdisciplinary nature of societal operations, to cut off a single field, any field from the rest of cognition, is to drop the vast context that makes that field possible and which anchors it to reality. The ultimate result, as with any failure of integration, is floating abstractions and self-contradiction, and social conflict. Potentially generating a form of compartmentalization with respect to values, desires and logical self-interest, by the compartments of personal and political life. Instead, relating one context of knowledge to another is necessary for integration. Reality must be viewed as a whole in the formation of concepts that indicate aspects of reality. Percepts are basically self-evident, things that we do not choose to integrate or not. They are just there. The process of reasoning is taking those percepts and integrating them in concepts to delineate things, to find distinguishing characteristics in reality. This is not an arbitrary process as the subjectivists contend, which undermine our ability to comprehend things objectively.

NOTE: In community, there is an emphasis on InterSystem (interdisciplinary) understanding, as if all fields are connected.

In InterSystem Team operations and in engineering in general, there should be no subjective interpretation of words or phrases, particularly in specifications, as this can cause major issues. If subjective interpretation is possible, then sufficient reasoning should be present to ensure that qualifications reduce interpretation to satisfactory levels.

Second only to the abilities and collaborative nature of the people in a group is the goal of the group. It is important for the group to have a common, wellarticulated, and meaningful goal. This goal can range from a relatively narrow and finite objective, to a broader, longer-term goal. The actions of forming, discussing, and refining the goals of the group help the team create an identity, foster participation by team members, reinforce the participants' desire to contribute, and ensure that individual efforts are aligned.

It is necessary to differentiate an overall sense of teamwork from the task of developing an effective intact team that is formed to accomplish a specific goal. People confuse the two team building objectives. This is why so many team building seminars, meetings, retreats and activities are deemed failures by their participants. Leaders failed to define the team they wanted to build. Developing an overall sense of team work is different from building an effective, focused work team when you consider team building approaches.

Some InterSystem teams may be self-selected, and others may be selected and organized by a Central Selection Program, based on what they have acquired as skills, or already contributed to the system. This is a true "election", based on what a person has done (contribution and education), and not what they say they will do. For example, some randomly selected team in the power service system may be self-selected by its team members, but the first team to pilot a craft to Mars will be program selected based on profile and skill. When there is team selection present, selection is always based on what a person has done, not what they say they will do. It is not everyone's input that is desirable, but rather the input of those who have proven their skills and expertise in some way that would lend solution to the given problem. Under program selected conditions, selection is based on what a person has done, not what they say they will do (too many contributions necessitate filtering and selection of candidates).

An environment of mutual tolerance is critical for an interdisciplinary team to be highly functional. In particular, when a team comprises diverse levels of expertise and many different disciplines, it is essential that all team members are comfortable raising issues, questioning ideas, and fully participating in discussion without fear of being ridiculed or having their ideas discounted. Only when open communication and a high level of respect are present do all of the team members feel comfortable freely sharing their ideas. The leader of a great interdisciplinary team also has to earn the respect of the members, and the team expects their leader to be absolutely trustworthy where the project is concerned. The stronger the culture of mutual respect, the higher the likelihood that everyone will thrive. Another result of mutual respect is that it helps to reflect the value of each team member of the group, regardless of their level of responsibilities or experience. Members of a group who feel valued are more likely to be committed, creative,

and contributory, and a group in which each member is respected and valued is much more likely to produce great work.

A team can only function optimally if the members can effectively communicate among themselves, especially under potentially stressful conditions. Sub-teams exist to address the critical pieces of a system. Crucial to the sub-team development and individual staff is the clear delineation of roles and responsibilities within the team. With good communication skills team members are able to define and negotiate (Read: arrive at a consensus) with other team members the roles that each are expected to fulfill within the team context. Team members are asked to write their own role description and bring it to the larger team for discussion and negotiation. Providing an environment where these roles are continuously reviewed and re-negotiated is understood to lead to higher satisfaction, and, likely, more efficient and effective decisions.

Teams use a Team Measure (unpublished, in development) survey instrument to measure team attributes and provide "teamness" feedback. This measure has helps to understand that team attributes are clustered around four domains of team development that appear to have a developmental or hierarchical structure. These domains are cohesiveness, communication, roles clarity, and goals-means clarity. The team attributes within these domains have consistently been observed as the teams develop. Providing feedback to the team on their level of development has allowed them to strategize about how they might improve team processes.

Because of the complexities of the conditions of a society, numerous processes are needed to support that operation, the sub-teams address the critical pieces of the operational process expressed in the material form of a service. In addition to sub-teams based on system/ discipline, such as wiring technicians, physicians, and ancillary services, specialized sub-teams exist.

Teams can be formed for various purposes. The purpose of the team can often impact the way in which the team is structured.

Team human factors include, but are not limited to:

- 1. Personnel humans with capabilities and demands.
- 2. Tasks work to be done.
- 3. Equipment tools used to do the work.
- 4. Environment where the work is to be done.
- 5. Schedule when the work is to be done.
- 6. Specification what the work is to be done.
- 7. Procedure how the work is to be done.
- 8. Effort time (and/or resources) on task.
- 9. Effectiveness inquiry (global decision system inquiry) safety of task.

Team structural elements include:

- 1. Communication
- 2. Boundary maintenance
 - A. For material systems: Aside from possible internal ware, the boundary between the system and its environment often degrades quickest.
 - B. For team systems: A team exists for a purpose and must maintain its boundary its purposeful boundary to ensure it remains efficient and effective toward its purpose.
- 3. Systemic linkages and internal dynamics
- 4. Standardization and procedures
- 5. Social coordination
 - A. Intra
 - B. Supra

What are the 'resources' the InterSystem team has access to, and potential control over?

- Intermediate economic services ("goods") may be resources.
- The basic resources such as materials and energy are taken from nature.
- Human effort, as contribution, could be a resource. Resources human physiological energy energetic component.

The InterSystem Team must have significant depth and breadth of technical expertise to review, evaluate, and operate a significant majority of design considerations. Areas of technical expertise necessary for proper Habitat InterSystem operation include, but are not limited to:

- 1. Human factors and human engineering (including crew workload and usability, human-in-the-loop evaluation, and human error analysis)
- 2. Human health and restorative measures
- 3. Environmental health
- 4. Safety
- 5. Systems engineering
- 6. Human functions and habitability functions (including nutrition, acoustics, water quality and quantity, etc.; i.e., the subsystems themselves architecture, fabrication, computation, etc.)
- 7. Human interfaces and information systems
- 8. Maintenance and housekeeping
- 9. Materials cycling
- 10. Exploration operations
- 11. Mentoring and training

A project's view of society as a habitat service system may include:

1. Project team size

A. The team is composed of x members.

- 2. Project duration
 - A. The total duration can range from [identify on

schedule], if the information is known.

- 3. Project requirements
 - A. The total (or evolving) set of requirements to be completed by intersystem team human members and/or machines.
- 4. Early termination of project
 - A. The project can terminate when the lowest level of project success criteria is met.
- 5. Role of habitat service support operations in project
 - A. The habitat is a controllable, real-time sensitive operational potential. It is the role of intersystem teams to coordinate the real-time controlled operation and coordination of the global habitat service support system.
- 6. Human habitation
 - A. Human habitation capabilities include the multipurpose, integrated habitat service module (i.e., A city) duplication and operation.
- 7. Sample return
 - A. All monitoring for demand or hazard must be performed transparently.
- 8. Project team timeline

A. The timeline and schedule for a project.

13.17.1 Socio-technical contribution

A.k.a., Contributor, technician, engineer.

An 'InterSystem Project Team' is a project team because they have the knowledge and skills, and have been contributively assigned accountability for some particular role.

There are two general types of socio-technical contribution:

- Technician scientists (sometimes technicians, sometimes not)
- Technician operations (technicians)

Any contributor on an InterSystem Team is a technician/engineer. However, technician scientists can also be open source contributors anywhere within the Community, and not part of the InterSystem Team engineering-technicians service.

In Community, there is an integrated socio-technical team to coordinate, develop and operate, the societal system. That team of consists of individuals (who may at the base level be considered 'designers', the human InterSystem Team) and computers (who may at the base level be considered computational InterSystem Team service support systems). The team optimizes their environment (mostly, cities) through intentional algorithmic thought (i.e., through the intentional design of a socio-decisioning protocol).

13.17.2 Socio-technical team viewpoints

For any coordinated socio-technical, there are multiple viewpoints (information sources) through which work is coordinated.

The three team-oriented views in community are:

- 1. **The community user's view** the view of any given individual user of services in the community.
- 2. The InterSystem team's view (technicians, engineer's view) - the view of any given contributor, who is part of the InterSystem team, and developing or operating a community service(s).
- 3. **The unified information systems view** the view of the whole, unified information system (i.e., the view of all information sets, as much as possible).

There are four project deliverable (work output) viewpoints (information sources):

- Time view what is ∆t for actions in planned sequence (i.e., has temporal possibility for experience?).
- 2. **Location view** what is physical coordinates for time-bound actions with resources (has material possibility for experience).
- 3. **Resource view** what is material composition for physical-bound objects (has touch, interfaceable?).
- 4. **Service view** what is functional usage for objectbound relationships (i.e., real world entity-objects; has shape?).

There are three project deliverables (output information sets) for any socio-technical system:

- 1. **Project [information set] viewpoint** the relationships between operational and capability requirements, and the various projects being implemented. The project information set visualizes dependencies among capability and operational requirements, system engineering processes, systems design, and services design within time.
- 2. Services [information set] viewpoint the design for solutions articulating the expressed system (including: actors, controllers, performers, activities, services, goods), and their input-output resource transfers between systems, all of which provides for supporting operational and capability functions.
- 3. **Systems [information set] viewpoint** the design for solutions articulating the [service] systems purposeful[ly expressed] existence, their composition, interconnectivity, and context providing for or supporting operational and capability functions.

- Technical standards view (TV, knowledge data added) - a set of deliverables (information sets, products) that define technical standards, implementation conventions, rules and other prototypical criteria for the design and/or operation of systems. Note that when a technical standard is applied to operations (to be executed at some time), then it is generally called a 'protocol' or 'procedure'. Protocols and procedures are perceived within this view. Known safe ways of designing and constructing systems.
- Operational view (OV, time data added) a set of deliverables (information sets, products) provide descriptions of the tasks and activities, operational elements, and information exchanges required to accomplish the intended direction [of change]. Standardized ways of co-operating [service] systems.
- 3. **Systems and services view** (SV, location data added) a set of graphical and textual deliverables (information sets, products) that describe systems and services and interconnections providing for, or supporting, directional functions.

In a community-type society, the principal systems and services view is that of the local habitat service systems (cities), which form a globally network habitat service system (Read: city network). SV data focuses on explaining (reasoning/justification) how the purpose for specific actualized systems with specific physical and/or digital (hybrid) locations is met by objects and relationships (often through UML). The relationship between data elements across the SV to the OV can be exemplified as systems are developed and operated to support individuals and organizations (their operations).

The unified project-engineering viewpoint:

• **All view** - a view that provides a unified, integrated, whole, overarching description of the life-cycling system (i.e., the whole, socio-technical, information-material life-cycling system).

The common supplemental viewpoints that ensure an accurate alignment of understanding include:

- 1. **Capability viewpoint** articulates the capability requirements, the delivery timing, and the deployed capability.
- 2. **Data and information viewpoint** Articulates the data, data relationships, data alignment in a structural format that expresses content for the capability and operational requirements of a system through system engineering processes, and systems and services tools and techniques.

The engineering viewpoints on a project are:

13.17.3 [Societal] InterSystem team work rotation

A.k.a., Individual rotation, team rotation, etc.

When there is intention and consequences, then there is a team [of "stakeholders"]. Teams work with information and material that are integrated into a materially extant system in which 'life' exists (i.e., living organization occurs -- there are living systems). Components of the living organization come together to form a team organization [to most effectively and efficiently fulfill]. The team has the potential [capability] of recognizing the discoverable information-base of existence. The team then has the potential of optimizing the organizing its societal information construction system for highest fulfillment of each and every individual. Within any given organization, work is scheduled out to project teams.

Project teams deliver projects.

NOTE: *Teams function optimally when they do the right then at the right time.*

13.17.4 [Societal] InterSystem team work effectiveness

A.k.a., Team effectiveness.

In order to be effective at scale, and hence at the societal InterSystem level, teams must have the following:

- 1. A shared understanding of the situation.
- 2. A shared direction.
- 3. A shared orientation.
- 4. A shared approach.
- 5. A shared informational environment.
- 6. A shared material environment.

Fundamentally, in order for teams to execute solutions effectively, the two team must work off of a single specification for the work.

13.17.5 [Societal] InterSystem team work roles and responsibilities

A proper functioning socio-technical system requires the co-ordination of the actions of all roles involved in operation.

The core InterSystem team organizational (structural) role is:

• Technician (a.k.a., socio-technician, engineer, operator) - a technically skilled contributor.

The primary roles involved in operations are:

1. InterSystem contributing teams (technicians, engineers) - assigned work for the coordination,

development, and operations of the whole societal system through individual contribution upon an InterSystem Sub-Team. There are three conceptual dimensions of contribution to an InterSystem Team; three separately together functional roles. Coordination is an operation that sustains all development and operations. Coordinators coordinate the optimal allocation and timing of all resources and access. Developers test and develop the next iteration of the whole societal system. Operators execute upon the selected societal solution, to either implement a new solution or serve some humane function within the societal service system.

A. Coordinators

• Socio-parallel [project] decisioning - coordinate societal resource access decisions in alignment with a value orientation.

B. Developers

 Socio-technical [solution] decisioning - design societal service systems composed of resources in alignment with optimal sociotechnical safety standards.

C. Operators

- Socio-technical [solution] executioning (Read: execution decisioning) - operate service system for user through a standardized optimal procedure.
- Recursive (all roles are sources of 'operator' information).
- 2. **Individual human accessors** selectively access services (and service objects) as the outputs of InterSystem Contributing teams.

A. Users (the Community of)

• Usage of end service, or service object [as designed and operated].

13.17.5.1 Professional team roles and responsibilities

The common "professional" roles and responsibilities of teams designing, developing, and operating integrated service systems include at a high-level, but are not limited to:

- **Issuing entities** The individual(s) with an issue that instantiates the requirement for a project.
- **Developers** The individual(s) whose responsibility is the development of the system for the project.
- **Information analysts** The individual(s) skilled in resolving [societal] information inquiries being used in the project.
- **Definition analyst** The individual(s) skilled in the development and definition of the computational controls of the project environment.

- **Leads** The individuals accountable for all aspects of the system design and construction.
- **Subject matter expert (SME)** The individual(s) and system(s) who have the knowledge and skills necessary to implement the project.
- **Project coordinator** The individual(s) responsible for all activities of a project. The project coordinator plans, controls, and coordinates a project.
 - Quality assurance analyst The individual system who audits and approves project deliverables from a QA perspective. Reviews plans and deliverables for compliance with applicable standards. Provides guidance and assistance on process matters and defining standards. Primary focus is on defect prevention.
 - **Quality control analyst** The individual system responsible for checking the product or service after it has been developed. Primary focus is to find defects.
- **Training coordinator** The individual system who is the key person and point of contact, interface, for all training required for the project.

13.17.5.2 Trainee team role

A.k.a., Apprenticeship, mentorship, internship, residency.

The trainee team role is that of someone who is training upon an InterSystem Team.

13.17.5.3 Hazard isolation roles

Because life-threatening failures may occur when working with existent systems, humans must design their systems so that hazards can be isolated and systems can be restored. In concern to materials, for example, remote placement of hazardous materials, redundant containment, and clean-up material are a few options for reducing risk. An emergency shower will, for example, isolate dangerous chemicals into a liquid contain from a contaminated human. Every InterSystem Team should be able to avoid or secure hazardous systems with which they work.

Additionally, the concept of hazard isolation applies to the encoding of the value of 'justice' in any society. When a human becomes a "hazard" (danger, risk) to others, they "isolate" that human. The concept 'isolate' carries two orientations -- an orientation that restores fulfillment relationships, and another orientation that does not -- isolation from presenting a danger to society, by means of:

- 1. Isolation from supportive and restorative relationships (as in, restorative justice), and hence, isolation from structural feedback.
- 2. Initial isolation for physical safety, with the application of supportive methods and restorative relationships so that the self-organizing entity

can re-orient itself toward fulfillment, releasing its societal requirement for any core form of isolation.

In early 21st century society, police take the role of law enforcement and are the represent the service that physically isolates hazards to society. In a market, society is structurally composed of 'property' (an abstraction), and thus, a core part of the role of the police is protection of 'property' from hazard. In community, there are individuals trained and accountable for isolating both technical and human hazards in the environment. At the human level, however, the concept of 'police' does not precisely apply, and their role as isolators of individualhuman hazards to society, would be accounted for by medically trained personal, who are more like EMTs (emergency medical trained) personal who also have training in detaining humans), versus the conception of 'police', which entails politics, jurisdictional laws, authorities, property, psychological combatant training, jail, prison, etc. (none of these exist in Community as they are commonly defined in market-State societal configurations).

13.17.6 [Societal] Intersystem team work tasks

A.k.a., Intersystem team work/actions.

Societal design is the accountability (responsibility) of the community, and therein, the InterSystem Team:

- Habitation-related tasks includes tasks associated with sustaining and evolving the services provided by the controlled habitat system. These tasks are divided into a priority matrix between sub-system service and operational process priority. Tasks that are directed at the long-term viability and ultimate fulfillment of humanity.
 - Automation and maintenance Automating routine habitability tasks, while still allowing for InterSystem intervention, will be a high-priority development capability for all of these systems to allow a reduced human workload. This would free up human time for higher-priority tasks, while yet retaining the ability to control systems as needed in the event of problems.
 - **Redundancy** Redundancy management (RM; monitoring) will be employed in the selection of backups to replace failed or degraded systems, or to manage the rotation of redundant systems to equalize hours of operation. Some systems will have one or more identical backup units, ensuring physical redundancy. Other systems, for which there are no physically identical replacements, may have their functions assumed by non-identical systems, ensuring functional redundancy.

- **Operating** Doing any job in any habitat as part of a contributor to the InterSystem team.
- Scientific discovery endeavours/tasks includes field and laboratory tasks associated with answering the principal scientific questions.
- **Skill areas** These functions include command and coordination, routine, and contingency operations. Specifically, coordinating (piloting and navigation), system operations, system maintenance, repair of systems, and upgrade of system).

13.17.7 [Habitat] InterSystem team work service structure

The intersystem team habitat service structure:

- Habitat service system design open source and collaborative
- Habitat service system selection preference criteria based on local population (cannot modify base functioning) customized layout, aesthetic, subservices, timing, type and availability per demand and localization (location + control of location).
- Habitat service system integrated and selected for design actualization. The solution inquiry process resolves

Habitat services are, in significant part, formed from human needs; and hence, they are met continuously through a network of habitat service systems, which in and of themselves, have operational [InterSystem] deadlines (as in, the priority scheduling of tasks) in order to maintain themselves and adapt. In community, if "we" don't adhere to the deadlines "we" set, then our own services will likely fail.

13.17.8 [Inter-societal] InterSystem team work roles and responsibilities

The structural organization of human relevant roles and responsibilities may be relationally visualized through an organizational "breakdown" diagram on the part of an InterSystem project coordinator.

Due to the societal spanning nature of this project, its organizational structure necessarily interfaces separately with each type of society: the market-State and the community. Additionally, due to the presence of a larger global audience and the necessity for maintaining contractual agreements in the market-State, there is an Executive Steering Committee. In order to coordinate between these three divisions, a Main [Project] Coordinator (or, coordination system) exists.

The main societal coordinator is responsible for coordinating the flow and integration of information and materials between the three organizational divisions:

13.17.8.1 Division 1: Executive steering committee

The Executive Steering Committee is responsible

13.17.8.2 Division 2: Market-State interface structure

The interface with the market-State society is an active societal construct engaged with on behalf of the Community (via this project) through project coordination. The market-State is interfaced with through electronic-jurisdictional contracts. The market-State must be complied with in order to access resources only available through the market-State.

13.17.8.3 Division 3: Intersystem team structure

Work upon the societal community system is organized through an InterSystem Team structure. The InterSystem Team structure is divided by three different primary system processes (coordination):

- Design (Informational specification and standardization) Responsible for the specification deliverable.
- Implementation (Material operation) -Responsible for the operational deliverable.
- **Social (Awareness and Sharing)** Responsible for the social population deliverable.

14 [Project] Scheduling

A.k.a., Time planning, plan timing, project timing, task timing, time logistics, the scheduling problem, time coordination, time management, time mapping, calendar mapping.

Scheduling is the process of deciding (and otherwise, coordinating) which of a given operation set gets performed, and when, on a given system set. To schedule is to setup a specific time when some event will occur. Scheduling is the process of coordinating (arranging, controlling, and optimizing) work and workloads in a production process. Scheduling is used to allocate resources, plan human contribution, plan production processes and acquire materials. Scheduling is an assignment over time of operations to systems, called a schedule. A schedule is the output of the scheduling process. More simply, scheduling is the process of coordinating work schedules (of humans and machines, a socio-technical system) to meet human requirements expressly input as deliverable activities.

Within the planning process, scheduling is the process of determining when tasks must be completed; when they can and when they must be started; and which tasks are critical to the timely execution of the project. A complete schedule is a function of total effort and resource allocation.

Scheduling (and the resulting schedule) are often considered a tool that defines what tasks are to be done, when, and by whom. Schedules define and track the progress and completion of a project.

A project timeline is most often called a Gantt chart. It is possible to add any schedule/time associated project variable to a project timeline; however, project timelines most often identify project milestones and tasks. Progress bars are included in timelines to identify the progress of a task(s) to a milestone(s).

The quality of any schedule is measured by its principal objective function:

- The operational [project] completion function Is there the state of 'completion' of the last operation (i.e., is the last operation complete)?
 - There are # of tasks to be scheduled. Each task consists of one or more operations (processes). These operations must be scheduled on # of systems. The completion time of a task is the first point in time at which all of its operations are completed. The objective function (of scheduling) as an optimization function, involves minimizing either the completion time or the number of machines required to complete all the tasks by some specified deadline.

When working in a material environment, there is timebased information: • Scheduling [a time-planning solution] is the process of calculating and assigning an arrival time for each deliverable (stop, output, etc.), with workers (transfer entities, contributors, etc.) being assigned time-bound roles (shifts) that adhere to working hours.

When scheduling in a material environment, there is also a location-based scheduling structure:

- Routing [a location-planning solution] is the process of mapping out the unique paths (ways) that one or more transfer entities will take while they deliver or collect resources from each of their stop (deliverable) points. This involves considering the sequence of stops (deliverables), and the ways (approach, method) that will be taken by each transfer entity to successfully achieve this outcome.
 - **Route optimization** follows logic steps, and is the process of analysing the projected routes and refining them to be more (or, most logically) efficient. This can be achieved by taking all physical and temporal relationships and locations into account and calculating an optimal path, given extant conditions.

NOTE: Takt time describes pacing work to match the user's demand rate. Takt time planning then, is one method for work structuring around a set pace of work.

14.1 Deliverables-based project schedule

A deliverables-based project schedule facilitates the process of a project system:

- 1. Definitions
- 2. Work-deliverable breakdown structure
- 3. Schedule tasks
 - A. Enter all tasks
 - B. Determine predecessor tasks
 - C. Estimate the work
 - D. Estimate the duration
- 4. Assign resources
- 5. Add constraints
- 6. Identify and operationalize contributing entities

A spatial-temporal view of a set of operations for scheduling must include:

- 1. Set time, date, and location (1 operation)
- 2. Reschedule operation
- 3. Postpone operation
- 4. Change location operation
- 5. Delete operation

14.2 Computing and scheduling

Computers and scheduling are closely related in two dimensions:

- 1. Assignment of operations on a machine is called a schedule.
- 2. Coordination in a multi-variate environment is more efficient and effective using computers do scheduling via computation more efficiently and effectively than humans do scheduling via cognition.

Additionally, there are three essential information characteristic sets associated with schedule computing:

- 1. Task characteristics (job characteristics)
- 2. Mechanism characteristics (machine characteristics)
- 3. Objective function characteristics (process characteristics)

The performance of a scheduling solution will likely fall into one of a number of possible categories, the most optimal of which is, generally:

- An optimal solution in an amount of time proportional to a polynomial of the problem size.
 ≤ Kn^k
 - Wherein, n is the problem size, and there are constants K and k, which are independent of n (given, the problem is solvable in time).

There is a class of problems that can be solved in polynomial time (P, time-determined problems), and the superset of this class of problems non-deterministic problems (NP). NP is bound by a set of problems that can be solved by search or enumeration of a tree whose depth is itself bound by a polynomial in the problem size. (Lagerholm, 1998)

INSIGHT: *Time could be viewed as that which is universally scarce.*

14.3 Schedule (timeline)

A.k.a., Gantt chart, project schedule, project timeline, calendar, project calendar, timeline, task-time network diagram, timetable, itinerary, time plan, planned time.

A schedule visualizes activities in time; laying out the work and its phases on a calendar, mapping time-relevant items onto a calendar. All schedules are schedules of activity (as any action, task, work, deliverable, etc.) with all associated time information. A schedule is used to account for working, together, with real-world [resourcebased] systems through time. A 'schedule' lists all project activities in time. Activities all start with <u>verbs</u> (what is to be done as an action). A [project] schedule is all project activities, dependencies and resources associated with time. The system records and tracts time, resources, and effort on the project. A schedule coordinates between time, activities, and a projects the resources (people, equipment, location) required to execute project tasks. A schedule is a "living" interface for coordinating and estimating work together.

A project schedule (a.k.a., gantt chart) visually combines project information essential to the coordinated execution of the tasks in time and space, with people and resources (and in the market, money). A Gantt chart is one type of organizational chart which could be used to convey the Action, Time and Finance plans of and between workgroups. Once the work is broken down by tasks and sub-tasks (i.e., the WBS is delivered), the project coordinator will [process information to]:

- Arrange these tasks in temporal order.
- Schedule them out to InterSystem Teams and HSS service systems.
- Identify dependencies (inquiry: does the start of one task require the completion of another task).
- Highlight the completion points [on the diagram] of critical tasks (a.k.a., "milestones").

Scheduling involves the relating future events (activities, tasks) in the real world to some linearly sequenced coordinate system called 'time'.

Generally, a schedule lists the following work data:

- 1. Activities (tasks, work)
- 2. Deliverables (outputs, outcomes, products)
- 3. Phases (milestones, stages)
- 4. Time points and durations (start and finish dates)

A schedule may visualizes (at least) the following (i.e., the following are mapped onto a calendar):

- 1. What are the deliverables.
- 2. What are the tasks (work items to produce deliverables).
- 3. Where are the completion/integration sign-offs for the deliverables.
- 4. Who is responsible.
- 5. Who is accountable.
- 6. Who is consulted.
- 7. Who is informed.

In concern to work, a schedule visualizes:

- 1. The current activities and future activities on the timeline.
- 2. The current status of a project.
- 3. All other projects that any given project relates to.
- 4. All work packages in a project that have a time reference, such as phases, tasks, and milestones, as well as, relationships between them (i.e., all work

packages, phases, milestones, tasks, and bugs/ issues in a timeline view). Phase is a label for a set of linearly related tasks (e.g., development or planning).

- A. The work packages can have a start date and due date.
- B. Milestones may only have a due date.
- 5. All preceeds and proceeds between different work packages.

Any schedule is necessarily associated with data on users [of the schedule, contributors] and resources [accessible via the schedule]:

- 1. Contributed accountability coordination (worker identity)
- 2. Available resources coordination (resource identity)

A schedule is a type of chart that involves time:

- 1. A chart is a visualized display of data-base[d] information.
- 2. A schedule timeline ("gantt" chart) displays tasks as horizontal bars across a calendar (time-cycle), creating a visual representation of the project schedule, and other time-relevant.

A complete schedule may be calculated as a function of total work and available resource allocation. The schedule for a project is the timetable that specifies when each activity should start and finish.

An effective schedule is:

- Understandable (visual)
- Sufficiently detailed
- Highlights critical tasks
- Flexible
- Based on reliable estimates
- Conforms to available resources

14.3.1 Process for creating the schedule

The most common process for creating the schedule is:

- 1. Enter all the tasks (and sub-tasks) as associated with the identified list of deliverables (from requirements document, WBS, etc.).
- Determine predecessors (determine dependencies)

 as the tasks that legitimately belong linked in an order (resource availability, decisions, outputs).
- 3. Estimate the work as who will do the work, and when will the work be done by (accountability and completion date).
- 4. Estimate the duration of the work (timeline of activities).
- 5. Assign execution (team availability).

6. Assign resources (resource availability).

14.3.2 Project scheduling time-frame

A project may be a unique (one-time) endeavour, or it may have an ongoing and continuous objective. To some relative degree, of course, all processes (phases, stages, whole projects) have a specific time-frame, or finite lifespan, to some situationally relative degree.

14.4 Schedule/-ing coordination

Aphorism: Plan the work, work the plan.

Schedule coordination includes the processes required to ensure timely completion of the project. A Schedule is created using a collaboration-driven estimation method; the reason for this is that a schedule itself is an estimate -- each date in the schedule is estimated, and if those dates do not have the people and their agreement, as those who are going to do the work, then the schedule will be inaccurate. Once the scheduling is in process (for it is continuous throughout), then project coordination involves monitoring the progress of the project and revising the schedule were required.

Schedule coordination consists of a series of tasks and steps designed to help manage the time constrains of the project, the steps are:

- Defining the Schedule
- Publishing the Schedule
- Monitoring the Schedule
- Updating the Schedule

Schedule inputs:

- Work breakdown structure contains a detailed list of all project activities and tasks.
- Historical information from similar projects and their lessons learned.
- Calendar information other commitments and calendar events.
- Resource planning planning for the collection, integration, and cycling of resources through a system.

Schedule progress conditions:

- Plan define activity sequence and duration, develop the network diagram and gantt chart.
- Do communicate and update schedule progress.
- Check monitor schedule variances.
- Adapt update the schedule.

Schedule outputs deliverables:

- Project schedule baseline.
- Schedule variance report.
- Schedule updates.

14.4.1 Scheduling 'state' status

In some cases, the values of quantities included in scheduling have, or have not, been confirmed and are designated as:

- **To Be Confirmed (TBC)** details may have been determined, but are subject to change.
- To Be Determined (TBD) or To Be Supplied (TBS) – the appropriateness, feasibility, location, etc. of a given event has not been decided (known, but not yet available).
- **To Be Resolved (TBR)** used when there is a disagreement on the requirement between technical teams.
- **To Be Announced (TBA)** details may have been determined, but are not yet ready to be announced. Note: This Does not apply in community, because the societal system is open source and transparently generated by the community.

14.4.2 Schedule delays

The whole project [completion timeline] will be delayed if task-deliverables and/or resources are delayed:

- Schedule **critical path (tasks-deliverables)** If anything (e.g., any task or deliverable) along this path (timeline) gets delayed, then the whole project will get delayed.
- Critical **resource chain (resources)** If those resources which are required are not available (i.e., not present when they need to be) and/or the quality of the available resources is not sufficient, then the whole project will be delayed

14.4.3 Principal schedule constraints

There are three schedule constraints that 'control' when *an activity starts or finishes*:

- 1. An activity must be completed by no earlier than a specific date - an activity may occur at any time after a specified date, but no earlier then the given date.
- 2. An activity must be completed no later than a given date.
- 3. An activity must be completed on a given date, no earlier or later.

14.4.4 Schedule modifications

A.k.a., Schedule timing, schedule alteration.

There are several common ways in which a project's schedule [timing] may be modified:

- Add more resources to shorten the time it takes to complete a scheduled activity or event (i.e., "crashing").
- Do more actions perform more activities simultaneously (i.e., "parallelization" and "FastTracking").

14.5 Scheduling system and user interface

A complete scheduling system and interface must meet the following criteria (i.e. the schedule coordination process must visualize a project schedule that meets the following criteria):

- Complete the schedule must be capable of representing all the work to be done. This is why the quality and completeness of the total information system, and its architecture, is so important.
- Realistic the schedule must be realistic with regard to time expectations and the availability of human and system contributors.
- Accepted the schedule must be acceptable to (have identifiable agreement from) the individual user.

14.6 Scheduling contribution time

To the InterSystem Team of a community-type societal system, at the highest-level, 'timing' refers to contribution as the selection and follow-through of [a] work [package]:

- 1. <u>When (time point)</u> the communication of an extant work package is distributed to the Community (for community and InterSystem Team contribution)?
- 2. <u>How long (i.e., duration)</u> the work package will take to complete (as whole and/or cycle)?
- 3. When (time point; a.k.a., "milestone") the work package is required to be complete (as whole and/ or cycle)?

14.7 Schedule model

A schedule model involves all project information in association with a specifically applied scheduling method(s) and scheduling tool(s).

In application, a societally coordinated schedule likely consist of a series of synchronous tasks (and sub-steps) designed to coordinate [between] the time constraints of any societal-level project.

14.7.1 Scheduling method

I.e., How will control over a schedule occur? Plan the control through the selection of a method.

A scheduling method is a formal procedure that can be applied to any instance of a scheduling model in order to obtain a feasible schedule (i.e., schedule aligned with objectives). A scheduling method solves a scheduling problem. A schedule method is a procedure that takes an instance of a scheduling model as an input in order to produce (At least) one schedule as an output, given a real world situation.

There are a variety of possible scheduling algorithms for scheduling [a set of project] activities [visually] in time. The following are methods for planning schedule control:

- Program evaluation review technique (PERT; a.k.a., Critical path method, CPM) - Using the data below, CPM calculates the longest path of planned activities to logical end points or to the end of the project, and the earliest and latest that each activity can start and finish without making the project longer. This process determines which activities are 'critical' (i.e., on the longest path), and which have 'total float' (i.e., can be delayed without making the project longer).
 - List all activities required to complete the project (typically categorized within a work breakdown structure).
 - Identify dependencies between the activities.
 - Visualize the relationship between all activities in a precedence diagram.
 - Identify logical end-points, such as, milestones or deliverable items.
 - Assign time (duration) that each activity will take to complete.
 - The PERT (PERT chart creation) procedure is:
 - 1. Tasks (activities) represented as arrows (a.k.a., activity-on-arrow diagram).
 - For example, "Collect project data".
 - 2. Milestone (major completion stage, phase, min-max version save) are represented as nodes (Read: circles).
 - For example, 'No project data' (start node, date) and 'submit all project data' (end node, date).
 - 3. Estimate of duration of time it takes to complete the activity.
 - For example, The time duration between start and end nodes that is entirely encompassed by the arrow that represents the task (activity).
 - 4. Package PERT (i.e., PERT applied) for selection by contributing users and habitat service systems.
 - For example, The 'instruction' to 'investigate' an 'issue' in a building within 10 minutes in order to prevent a building evacuation.
- **Critical chain method (CCM)** After the critical path(s) is determined (Read: calculated with

software), resource information is added (also calculated) to produce a resource-optimized schedule, with a resource-constrained critical path.

• Determine resource availability - associate resource information, including a resource-precedence diagram, with the critical path.

CLARIFICATION: Though confusingly named, 'critical path' is the sequence of project network activities which add up to the longest overall time duration (i.e., the activities that create the longest distance between the start and the finish of a project). The critical path is the longest path through the schedule with either zero or negative total float.

14.7.2 Schedule estimating

In a sense, every applied input could be viewed as a probability (or, "estimate") of potential input:

- Contribution availability estimating
 - Probability of meeting contribution requirements, given that which is available and known (where, human contribution is the input).
- Resource availability estimating
 - Probability of meeting resource requirements (where, real-world resources are the input).
- Financial budget estimating
 - Probability of meeting financial requirements (where, money or trade is the input)

14.7.3 Scheduling tool

Project scheduling software can perform the scheduling method calculations (e.g., can perform CPM on a data set). A schedule tool is an information function that provides schedule component names, definitions, structural relationships and formats that support the application of a scheduling method (calculation).

Scholarly references

- Framinan, J.M., Leisten, R., Garcia, R.R. (2017). *Manufacturing Scheduling Systems - 2014*. Springer, London. DOI: 10.1007/978-1-4471-6272-8
- Fanchiang, C. (2017). A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization. Aerospace Engineering Sciences Graduate Thesis & Dissertation. Aerospace Engineering Sciences. University of Colorado, Boulder. [scholar.colorado.edu]
- Lagerholm, M. (1998). Resource Allocation with Potts Mean Field Neural Network Techniques. Lund University: Department of Theoretical Physics. Thesis for the degree of Doctor of Philosophy. [pdfs. semanticscholar.org]
- Lewis, B., Deatrick, J., Johnson, H. (2016). Project Planning. Region 4. U.S. Environmental Protection Agency Science and Ecosystem Support Division. Athens, Georgia. SEDPROC-0160R5 [epa.gov]

 State of Michigan Project Management Methodology. Michigan Department of Technology, Management & Budget. 2014, May, Ver. 4.0. [michigan.gov]

Book references

- Belzer, J. Holzman, A.G., Kent, A. (1979). *Computer Science and Technology, Vol. 13, Reliability Theory to USSR, Computing in.* Marcel Dekker, Inc. New York and Basel.
- Daylio, R. (2017). Principles: Life and Work. Simon & Schuster. [principles.com]

Online references

- Brautigam, B. (2017). Living Machines: Design Paradigms for Self-Aware Machines. Medium. [medium.com]
- Integrated Project Deliver: A Guide. Ver. 1. (2007). The American Institute of Architects. [info.aia.org]
- ISO 9001:2015 Requirements for a Quality Management System. (2015). [the9000store.com]
- Winter, D. (2012). *Project Stakeholders Gas Plant Kazakhstan*. [order-efficiency.com]

THE PROJECT APPROACH

TABLES

Table 5. <u>Project Approach > Coordination</u>: Project coordination and control tools. These essential tools represent the source of information and thought processes that are needed to effectively plan and execute a project.

Tool	Description	Value	Application
Project charter	Initializes project	Provides integration of project into society	Projects interface
Project definition documentDefines project purpose, objectives, deliverables, completion criteria, and scope of work to be completed, explains project type		Provides boundaries and communicates understanding	Project interface
Requirements	Defines the specifications for the product/output of the project	Provides tracing of actionable information	Requirements interface
Project schedule	Shows all work efforts, properly estimated, with logical dependencies assigned to responsible resources scheduled in a calendar	Provides for coordination of the execution of activities with objects in time	Schedule interface
Status reports	Periodic or continuous reviews of actual performance versus expected performance	Provides feedback to allow for timely and appropriate identification of performance variances	Control interface
Key event chart (Milestone chart)	A summary of the detailed project schedule showing progress against key events in time	Provides a high-level project progress report on one page	Control interface
Project organization chart	Shows all project associated individuals and the working relationships among them	Provides a source for identifying the organizational structures, dynamics, and project roles	Control interface
Responsibility matrix Defines all roles and indicates what responsibilities each role has		Provides a source of coordinated expectations, and tool for establishing and accountability	Control interface
Communication plan	Defines the how, what, when, and who regarding the flow of project information	Provides a tool for effective communication among working [team] members	Communications interface
Logistical coordination plan Lists how project resources and humans will be acquired, when they are needed, how much are needed, and how long they will be needed		Provides for scheduling	Resources interface
Quality assurance plan Defines the approaches and methods that will be used to resolve the quality levels of project processes and results		Provides a tool for reducing uncertainty the results of project execution	Reasoning interface
Risk coordination planList each identified risk and the planned response procedure for each		Provides for the communication about potential issues in advance, is a proactive measure to reduce impact to a project	Risks interface
Project plan Formal, programmed data structure [document] used to coordinate project execution and control		Provides for an whole, unified directional information set	Plan interface
Deliverable summary Defines and lists all deliverables to be produced by the project		Provides visibility, tracking, and reporting of deliverables	Deliverable outputs interface
Project log Records essential information for each project risk, issue, action item, and change request		Provides visibility, tracking, and reporting of items impacting the project	Log interface
Change request form Records essential information for any request change that impacts the scope, schedule, or resource requirements (budget)		Provides for the proper assessment and communication before a change action item is taken	Change interface
Project repository	The location where all pertinent project information is stored	Provides a single source of reference for all project information	Project database and search
Project interface (notebook)	Software tool used by a project coordinator and by project contributors to record and interface with a project	Provides the interface	Software

TABLES

Table 6. <u>Project Approach > Coordination</u>: Project management standard differences.

	РМВОК (2016)	ISO 21500
Process groups	Initiating Planning Executing Monitoring and Controlling Closing	Initiating Planning Implementing Controlling Closing
Knowledge areas (subjects or activities)	10 Knowledge Areas (KAs)	10 Subjects

Table 7. Project Approach > External Standards: Popular established references by development category.

Development Category	Description	Popular standard or reference
Product standards or guides	Characteristics related to quality and safety	ISO 9001 Quality Management Systems
Process standards or guides	Conditions under which products and services are produced or packaged	ISO/IEC 15288 systems and software engineering – system life cycle processes
Project management standards or guides	Helps organizations to manage their operations or project	РМВоК

Table 8. <u>Project Approach > Contributed Deliverable Project State:</u> Project state variables. There are 4 variables that describe the current state of each project: Version (∞ potential values): the released version accessible to the public. Stage (4 potential values): the level of readiness/completion of the current version. Status (4 potential values): the type of activity for the current stage. Dependency (2 potential values): is development blocked by one or more dependencies.

Version	Description
0	No released version.
1	Initial version release.
2n ∞	Subsequent releases/updates.
Stage	Description
Development (Dev)	Active development/work of current version is underway.
Alpha	Early testing of current version is complete.
Beta	Early testing of current version is complete.
Production (Prod)	Full production release of current version is ready.
Status	Description
Todo	Current stage not yet started.
Active	Current stage under development.
Under Review	Current stage read to be reviewed for editing and/or testing.
Done	Current stage is complete.
Status	Description
Blocked	Development is blocked by a dependency.
Ready	Development is ready to continue.

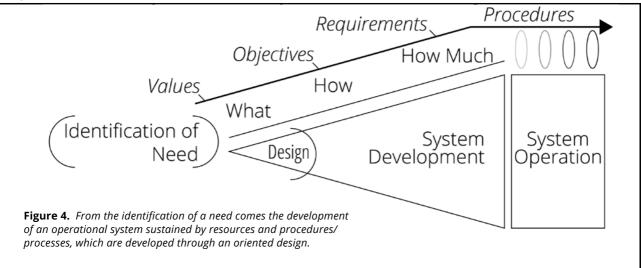
THE PROJECT APPROACH

The Engineering Approach

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com

Version Accepted: 8 June 2020


Acceptance Event: Project coordinator acceptance Last Working Integration Point: Project coordinator integration

Keywords: engineering approach, engineering management, engineering coordination, engineering planning, engineering operations, technical development, technical operations

Abstract

Engineering means working to develop a specification, and then, working from that specific specification to construct and operate. In other words, engineering means to work to develop, and then follow, a single (unified) work plan. In general, engineering also carries the connotation of doing 'useful' work (as opposed to doing 'unnecessary' work). Engineering works outward from given goals and specifications, and proceeds systematically. An engineering/-ed system, is a system designed, realized, and operated through real-world process (by engineers) to achieve a particular purpose. Society may be viewed of as an engineering process and resulting deliverable (Read: societal engineering). If society is to be engineered through cooperation and contribution, then it must identify its alignable life-cycles, its life-cycle processes, its means of design and development, its fundamental[ly encodable] system conceptions, its requirements, its construction, its informationbased, its informatics base, and its methods of layering and associating societally relevant information. To produce real world useful operations it is necessary to use a system of design and operation that can separate and combine conceptual and spatial information.

Graphical Abstract

1 What is engineering?

A.k.a., Unified development life cycle approach, societal designed operations approach (a.k.a., organizational design, enterprise design, business design, ...), the in[ter]-system service development approach, the construction service approach.

Engineering means working to develop a specification, and then, working from that specific specification to construct and operate. In other words, engineering means to work to develop, and then follow, a single (unified) work plan. In general, engineering also carries the connotation of doing 'useful' work (as opposed to doing 'unnecessary' work). Engineering works outward from given goals and specifications, and proceeds systematically. An engineering/-ed system, is a system designed, realized, and operated through real-world process (by engineers) to achieve a particular purpose.

Engineering is the application of the principles of science and mathematics to develop effective solutions to socio-technical problems. In society, engineering is a purposeful activity directed toward the goal of fulfilling human requirements through socio-technical [service] design; particularly, those needs that can be met by socio-technical composition. As a project cycles from an idea to the implementation, delivery, and operation of a product or service, engineering links logic and scientific discoveries to functional applications that meet individual and societal needs.

Technology (and its operation) is the direct result of engineering. However, scientific inquiry and engineering, together, are the basis for all technology. Useful categories of objects (or systems) constructed and/or operated by engineering are called 'technology'. Technology (and its operation) is the practical application of engineering knowledge including procedural (informed by scientific inquiry).

Engineering, as an approach, is:

- A real world, technical, problem solving activity that uses data, knowledge, and tools to materialize systems. In this sense, engineering is the materializing and materialized aspect of a societal information system.
- The knowledge required, and the process applied, to conceive, design, make, build, operate, sustain, and/or recycle a system of technical content for a specified purpose (e.g., a concept, a model, a product, a device, a process, a system, a technology, etc.).
- The application of knowledge and tools in the form of a process to solve discrete problems in the real world (i.e., engineering is concerned with real-world processes using scientific knowledge).
- The design, production (development), and

operation of systems that must work as expected, and hence, engineering is concerned with observable (or experienceable) outcomes (Read: knowledge applied to develop a technical solutions to a discrete problems).

• Methodically (and systematically) conceiving and implementing viable solutions to existing problems.

Engineering outputs should maintain and/or improve the quality of life among a community of [technical] users. Typically, the conduct of engineering leads to systems that enable and enhance the capabilities of humans, while also responding to the needs and constraints of humans. Therein, engineering is responsible/ accountable for the design, implementation, operation and maintenance of a real-world system.

To the user [of technical systems], engineering represents a technical, knowledge using, life fulfillment support process.

Engineering necessitates organizational understanding -- the ability to organize information for a purpose. In engineering, organizational engineering requires an understanding of how to extend (i.e., enhance) the capabilities of the whole, while attempting to better understand the relationships and interactive effects among the components of the organization, and with its environment.

Engineering is composed of (i.e., involves):

- The process(es) of designing and operating systems based on logic and scientific principles (i.e., scientific knowledge). And therein, the processes of developing and operating technology, and coordinating information.
- At a societal level, engineering is the processes of designing, operating, and cycling service systems and their productions through a habitat, forming a habitat service system (i.e., city) that fulfills human needs.

1.1 The core engineering processes

Engineering consists of two primary processes, each of which has multiple sub-processes:

- 1. **The development (including design) process** the step-by-step development of a service or object.
- 2. **The operations process** the step-by-step operation of a service or object.

The complete systems engineering life-cycle contains both a system development life cycle and a system operations life cycle. In terms of physicality, a core engineering system must account for:

1. **Flows** of physicality and stocks of physicality. A flow is a variable that measures a quantity per time

period. The motion of objects.

2. **Stock** is a variable that measures a quantity per point in time. The repository of objects.

1.1.1 The development (including design) process

Engineering to create future systems that operate in real-time. In concern to the design (and development) of systems, engineering is a design process, combining knowledge of the properties of materials, models that predict how these materials behave, and systematic thinking, to create solutions to human needs in physical matter reality (i.e., in the real world).

Early in the system development activity, a system is conceptual in nature. A system may consist of several levels where each element at each lower level may by this definition itself be considered a system (i.e., a subsystem of a large system may itself possess all of the attributes of a system).

Engineering will define:

- The technical specification of the projected system.
- The technical specification for the system's complete delivery, including integration and eventual de-integration.
- The method of technology involved in executing the project.

1.1.1.1 Engineering design de-composition

The axiomatic dimensions of real world engineering (Read: development and operations of a system) by means of a project structure must account for that which existence is composed in order to bring something new (or a change to) systems in existence.

In the real world, a project has 4 axiomatic dimensions:

- 1D memory (knowledge)
- 2D direction (adds objective)
- 3D spatial construction (adds resources)
- 4D schedule (adds time)

In the market[-State], a project has 1 additional axiomatic dimension:

• 5D - transaction cost (adds market expense)

In the community, a project has 1 additional axiomatic dimension:

• 5D - environment (adds probability)

Combination:

- 1D + 2D => information model
- Information model + 3D (space) => physical model

- Physical model + 4D (time) => service model
- Service model + 5D (cost) => profit model
- Service model + 5D (environment) => probabilities model

Herein, a material[-ized] service system is made up of software, hardware, and data that provides its primary value by the execution of a service for its users.

INSIGHT: To build something from the ground up "you" have to understand it in a way that "you" may not have to understand when "you" are looking at something that is already built.

Different societal configurations have different interfaces. In the market-State, the following interfaces are required/present, which are not required/present in a community-type configuration.

State interface requirements:

- <u>Contractual agreements</u> with an authority (jurisdictional or otherwise).
- <u>Financial exchange</u> of currency.

Market interface requirements:

- <u>Contractual agreements</u> with competing market entities (and an authority to enforce contract with punitive/retributive damages).
- <u>Financial exchange</u> of currency.
- <u>Demand and delivery</u> of object(s) or service(s).

1.1.2 The operations process (as engineering)

Engineering upon created system that operate in realtime. Note that engineering operations my involve engineering design and development. Ensuring that the [physical] behavior of the various components of a system are coordinated as required, to ensure a proper functioning of the whole system.

If there is engineering development, then there is:

- 1. <u>Development</u> of a new system, or
- 2. <u>Modification</u>, upgrade, change, iteration to existing system/product.

If there is engineering operations, then there is:

1. <u>Operating</u> an actually measurable system, that can be monitored, and possibly, controlled.

1.1.3 Measurement and engineering

Engineering measurement can be categorized in two ways:

1. Direct measures - measures of the engineering

process (e.g., effort, resources, and cost applied) and product (e.g., produced, lines of code (LOC), etc.).

2. Indirect measures - measures of the product (e.g., functionality, quality, complexity, etc.).

Engineering measurement requires normalization of both size-oriented and function-oriented metrics:

- Size-oriented metrics (a.k.a., size-oriented key measures)
 - For example, lines of code (LOC) can be chosen as the normalization value:
 - Errors per KLOC (thousand lines of code)
 - Defects per KLOC
 - Cost (\$) per KLOC
 - Pages of documentation per KLOC
 - Function-oriented metrics (a.k.a., functionoriented key measures)
 - The most widely used function-oriented metric is the function point (FP). A function point (FP) is a unit of measurement to express the amount of functionality (societal functionality, business functionality, etc.) an information system provides to a user. NESMA FPA Method: ISO/IEC 24570:2005 Software engineering -NESMA function size measurement method version. Computation of the FP is based on characteristics of the system's information and physical domains, and their complexity. To determine the number of FPs, classify a system's features into five classes:
 - Transactions external inputs, external outputs, external inquiries.
 - Data storage internal logical files/objects and external interface files/objects.
 - Note: Each class is then weighted by complexity as low, average, or high. Then, the result is multiplied by a value adjustment factor (determined by asking questions based on a set number of system characteristics).
 - Object-oriented metrics
 - Number of scenarios scripts (use-cases).
 - Number of key classes.
 - Number of support classes (required to implement system, but are not immediately related to the problem domain).
 - Average number of support classes per key class (analysis class).
 - Number of subsystems (an aggregation of classes that support a function that is visible to the end-user of a system).

Systems are used by users; to be usable by a user, systems can be designed to be usable. The use of a system to is user is usability. The International Standards Organization (ISO) defines usability as "the extent to which a product can be used by specified users to achieve specified goals" (ISO-9241-11, 1998). Usability is a key element of the human-centered design (HCD) approach, and it has been shown to increase efficiency, effectiveness, and user satisfaction. Furthermore, designs with good usability can reduce errors, fatigue, training time, and overall life cycle costs. Usability is a key component of human-centered design. Humancentered design focuses on users' needs to design the system based on users' capabilities. Usability testing and evaluation methods provide user performance measures and subjective (qualitative and quantitative) comments that can be used to improve the system in question throughout the engineering design life cycle.

Usability testing and evaluation is an iterative process. Usability evaluations should be conducted several times during the life cycle of the system, and results should have a direct influence on system design, providing continuous feedback for the designers of the system. Usability should be part of the system development life cycle from the earliest stages, to make sure that users' needs, capabilities, and limitations are considered from the start of design and development.

Standards, as a control(s), make usability efficient. For example, a vehicle pedal set is standard to all vehicles. Any user can get in any vehicle and the foot pedals operate similarly, thus providing interoperability for a user.

INSIGHT: From usability originates reusability.

1.3 [Systems] Engineering

Technically, all engineering is "systems" engineering. In the past, many engineering organizations did not follow a systematic approach, and hence, the term 'systems' was added to engineering to emphasize its essential systematic approach. The word systems also connotes that engineering is an information-based process. If differentiated, then reasoning about systems (i.e., systems *reasoning*) is the essence of [systems] engineering. However, take note that in the market, the term 'engineering' often refers to discrete instances of the application of engineering, whereas the term 'systems' engineering' often refers to the oversight of engineering at the organizational (or management) level. The term system is added to the term engineering because that which is being developed and operated through engineering is a system (pattern). Herein, systems thinking is a way of dealing with increased complexity. The fundamental concepts of systems [thinking] involve: understanding how action and decisions in one area affect another, and that the optimization of a system within its environment does not necessarily come from

1.2 [Systems] Usability

optimizing the individual system components. To do system engineering, someone (or something) must understanding what a system is, its context within its environment, its boundaries and interfaces and that it has a lifecycle. Fundamentally, systems engineering is a global[ly integrated] engineering approach. Note here that because 'community' is a 'unified system', practically speaking, the terms 'engineering' and 'systems engineering' are synonymous unless specified otherwise (as would need to be specified for market-State conditions).

CLARIFICATION: Engineering complex systems necessitates a project-based approach for purposes of optimal coordination. In the [systems] engineering approach, the project, itself, is a system that applies all the principles of [systems] engineering: it has a purpose, interacts with an environment, and represents a solution to users' requirements.

All engineering (in community at the organizational level) is, technically, systems engineering. Engineering has always implicitly drawn on systems-oriented principles and practices. However, a distinguishing characteristic of systems engineering is its continual reference and orientation towards an explicitly, developed body of systems reasoning, knowledge, experience and practice. Much of this body of knowledge has come from studies in control engineering, cybernetics, information science, biology.

HISTORICAL NOTE: The term 'system' was introduced into engineering in the 1940s, leading to the rise of 'systems engineering' in the 1950s and 1960s.

Systems engineering is the engineering process to create and operate a system. It is a structured process based on data. Take note that there are a large range of accurate definitions in the literature for both engineering and systems engineering. In its most broad definition, [systems] engineering is the process of bringing into existence a functioning, technical system for some user.

CLARIFICATION: Engineering does not proceed by straightforward application of natural science. Constructions derived from scientific theory have to be tested (and usually, modified) in order to obtain practical, useful technology. Engineering must follow the natural laws and rely on the basic resources in nature such as materials and energy. In science, there is a discoverable, initial whole. In engineering, the whole (design-solution) does not initially exist; it is constructed.

The following is a common list of definitions of the concept of 'systems engineering':

• The systematic application of science, tools, and methods to find an effective solution to a problem

using a quantifiable approach to create for the development, operations, and maintenance of systems.

- The systematic application of scientific and technological knowledge, methods, and experience to the design, implementation, testing, and documentation of software (ISO/IEC/IEEE 2012).
- The systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software (IEEE 1990).
- The interdisciplinary approach governing the total technical and managerial effort required to transform a set of customer needs, expectations, and constraints into a solution and to support that solution throughout its life (BKCASE 2017; ISO/IEC/ IEEE 2010).
- The interdisciplinary approach and means to enable the realization of successful systems. It focuses on defining user needs and required functionality early in the development cycle, documenting requirements, then proceeding with design synthesis and system validation while considering the complete problem (BKCASE 2017)
- The integration of disciplines into a team effort forming a structured development process that proceeds from concept to production to operation. (INCOSE 2012).
- A disciplined approach for the definition, implementation, integration and operations of a system (product or service) with the emphasis on the satisfaction of stakeholder functional, physical and operational performance requirements in the intended use environments over its planned life cycle within cost and schedule constraints. Systems engineering includes the engineering activities and technical management activities related to the above definition considering the interface relationships across all elements of the system, other systems or as a part of a larger system. (NASA Systems Engineering Handbook SP-601S).

In the context of the engineering approach, systems engineering is:

- The coordinated design, development, and operation solutions that retain optimal systemslevel performance for specified objectives. Therein, in order to develop and sustain optimal performance, systems engineering uses information from a whole/unified information system.
- The iterative and interdisciplinary processes of designing and developing new [systems] solutions to complex real-world problems by transforming requirements into operational systems.

Systems engineering is composed of (i.e., involves):

- A set of procedures (i.e., practices) that rely on enabling competencies (knowledge sets) and structures (organizational and procedural) at individual, team, and organizational levels to coordinate the design, development, and operation of solutions that maintain optimal systems-level performance.
- The processes of designing, developing, and operating a system(s) embedded within a life-cycle. Thus, systems engineering is, in part, focused on the long-term and life cycle of a system, necessarily taking into account the cradle-to-grave (or, cradleto-cradle) life of the system.

NOTE: In the market, systems engineering is defined as part of a continuum of business processes. In community, systems engineering is defined as part of a continuum of organizational processes.

In general, the output of [systems] engineering entails two interrelated viewpoints:

- 1. The system as a created product, which is used by users.
- 2. The system as a delivered service, which is serviced by technicians.

The term [systems] engineering can be applied to:

- 1. **The system (i.e., the solution, itself)** The [design and life cycle of the] system to be developed and operated (i.e., the technical system itself).
- 2. **The decision system** the decisioning and organization that brings the system, itself, into existence. The system that controls and coordinates (i.e., decides, "manages") the development of the technical solution-system.

In general, [systems] engineering must account for:

- The whole [systems] development process.
- Integration of a new system (or system's state) into an environment of existing systems.
- The life-cycle of the new system in an environment of existing life-cycles.
- Planning the operation of, and the actual operation of, the system.

QUESTION AND ANSWER: What is [always] in operation? A developing system is [always] in operation.

The word 'systems' in the term 'systems engineering' implies, in part, that the systems engineering approach is (i.e., the [systems] engineering approach maintains the following characteristic -- in order to enable the realization of successful, optimal systems, systems engineering is):

- Interdisciplinary / multidisciplinary engineering has access to all available "branches" of knowledge.
- <u>Holistic / unified</u> engineering has access to all available data and information while considering the full system, including any number of performance criteria, as well as potentially nontechnical concerns related to human factors or societal impacts. Engineering has access to all relevant information to the problem, context and situation.
- Integrative (integral) engineering combines all available information, including that which is learned during the engineering process itself, into an optimal solution. Engineering requires the integration of multiple views and information sets. Engineering accounts for the whole, as well as the parts that makeup the whole).
- <u>Completeness</u> engineering completely satisfies the problem with a solution.
- <u>Procedural (documented and planned process/</u> <u>method)</u> - engineering requires identification, documentation, and improvement upon a method/process. Engineering defines methods of specification, prediction, and control.
- <u>User-/Value-driven (utility)</u> engineering considers the needs and interests of all users and stakeholders (of everyone impacted by the system).
- <u>Collaborative</u> engineering involves working with other teams and systems in a sufficiently open information space to produce a safe and reliable system. Systems are developed by teams of engineers, and everyone must be able to understand one-another's work (Read: readability/ understandability).

[Systems] Engineering enables (or, brings) to an organization the following [value] alignment characteristics:

- <u>Correctability (correctness or correct alignment)</u>

 the system is capable of adjusting action and information to a direction, standards, or need. All actions/decisions are correct according to the organization's direction. The system ensures that the correct [technical] tasks get done during development and/or operation.
- <u>Validity</u> the system is capable of taking decisions and actions that are correct and relevant to the problem-requirement. Given a relevant direction, every action should relate to that direction.
- Relevancy the system is capable of measuring the

of pertinence to context, problems and needs.

- <u>Consistency</u> decisions and actions are consistent with other decisions and actions, and the organization's direction.
- <u>Minimality</u> the system is capable of meeting requirements exactly.
- <u>Extensibility (adaptability)</u> the system is capable of adapting to changing requirements.
- <u>Flexibility</u> the system is capable of integrating new information flows.
- <u>Non-redundancy</u> the system is capable of informing and acting without unnecessarily repetition.
- <u>Value</u> the system is capable of delivering the intended benefit to individuals and society.

[Systems] Engineering must necessarily account for:

- <u>Complexity</u> the interrelationship between multiple, seemingly separate, information sets (and viewpoints, which requires multi-view analysis).
- <u>Uncertainty</u> during a system's design, there are unknowns; and during a system's operation, there may be unknowns.
- <u>Potentiality</u> that [dimension] from which [axiomatically] systems ("things") can emerge.

CLARIFICATION: In some engineering design cases, given what is known and available, subsystems and component designs may need to be sub-optimal in their designs for the who system to be optimized.?

An organization's [systems] engineering capability may be equated to its ability to dependably conduct activities that traceably flow from a/an:

- Knowledge base [documentation base]
- Experience team base
- Competent team base
- Enabling systems [a set of relevant organizational assets]

There are [at least] three ways that humans can be involved in engineering systems:

- Being the designer/developer of the system (e.g., design/development engineer).
- Being an operator within the system (e.g., technician engineer).
- Being a user (i.e., requirer) of the system.

Fundamental inputs of an organization's [systems] engineering capability are:

- Information systems (organizational, decisioning, etc.)
- Human systems (personnel with abilities)

• Equipment systems (tools, facilities, etc.)

Engineered systems (or engineered specifications) may change given:

- 1. New scientific/engineering knowledge.
- 2. New problems/requirements.
- 3. New technologies (i.e., new systems).

NOTE: There is no need to put the term 'evidence-based' in front of 'engineering', because it is assumed.

1.3.1 System of systems engineering

There is the concept of 'system of systems engineering' (SoSE), wherein, the term "system of systems" (SoS) is somewhat problematic. From a cybernetic perspective, a SoS is a meta-system, an integrated system composed of other systems. Thus, the concept of "system of systems" is tautological, since systems themselves are considered to be comprised of sub-systems, and therefore, a "system of systems" is itself just a system. In general, the term meta-system and system of systems, specifically, refers to a system with multiple embedded and inter-related autonomous complex sub-systems. These sub-systems can be diverse in technology, context, operation, location/geography, and conceptual frame. These complex sub-systems of a meta-system must function as an integrated meta-system to produce desirable results in performance and to achieve a higher-level purpose (mission, etc.) subject to constraints. In other words, a system of systems or meta-system is generally defined as an assemblage of components, themselves considered as systems, with the added distinction of coordinated and operational independence of components.

A SoS brings together systems in order to perform a higher level mission/purpose of which each member system plays an integral role. An SoS is a 'complex system', and as, such exhibits dynamic and emergent behavior and requires engineering to design and operate.

Common definitions of system of systems engineering (SoSE) include:

- The design, deployment, operation, and transformation of a [meta]system that must function as an integrated complex system to produce desirable results.
 - The integration of multiple, potentially previously independent, systems into a higher level system (meta-system).
 - The functional design of a SoS that generates capabilities beyond what any of the constituent systems is independently capable of producing.

It is important to note that when previously independent systems are integrated (i.e., at the time of integration)

that there exists some degree of constraint imparted by their part/position in the larger system (i.e., in the metasystem).

1.4 [System] Engineering control

Organisms must be able to keep the conditions inside their bodies stable, even when conditions in their surroundings change significantly. For example, human body temperature stays relatively steady despite changes in the environmental air temperature. The maintenance of a stable internal biological conditions is called, 'homeostasis' (also sometimes, and more accurately, known as 'homeodynamics'). Similarly, societies must be able to keep the conditions inside their habitat stable, even when conditions in their surrounding environment change significantly. At the societal level, this [ability to] control comes from specificationing and planning. For example, your access to food stays steady despite changes in the food condition of surrounding nature during winter when food is scarcer in nature. The maintenance of a stable internal economic-access condition is 'econostasis' (also sometimes, and more accurately, known as 'econodynamics'). Econostasis/dvnamics are terms used to describe an access protocol that accounts for a knowable (in this sense, static) and changeable (in this sense, dynamic) environment. All access protocols are engineered, and are forms of control. Together, through openness (Read: open source), humankind can study and develop economic access protocols that facilitate and optimize the condition of complete human need fulfillment.

1.5 [System] Types of real world engineered control

There are [at least] three types of real world (sociotechnical) systems, all of which may be engineered:

- 1. **Social [organismal] systems** the behavior of organisms.
- 2. **Technical hardware systems** (a.k.a., material [information] systems) the behavior of material technology.
- 3. **Technical software systems** (a.k.a., digital [information] systems) the behavior of digital technology.

HISTORICAL NOTE: The concept of software engineering emerged with the development of computing and information sciences (in its modern meaning) around the 1960s.

Technology is a result of engineering - the extending of human mind-body function. Technology is the result of applied [scientific] knowledge and engineering processes. Technology refers to the technical systems that engineering designs, builds, and operates. Technology is:

- The useful (practical) application of knowledge.
 - In this sense, technology is engineering operations; it describes the product of engineering.
- Technology is a capability/function provided by the useful (practical) application of knowledge.
 - In this sense, technology is engineering design and development; it describes the engineering process itself.

1.6 [System] Engineering development levels

The development of engineered systems takes time and work. One framing of the engineering process delineates that which is being developed to be used into levels of developmental usefulness. The following categories classify technology (Read: technology products) thusly.

1.6.1 Technology readiness levels (TRL)

A.k.a., Technology maturity modeling, technology development levels.

In engineering there are technology readiness levels. Generally, there are nine [levels] of them. Technology Readiness Levels (TRL) are a type of measurement system used to assess the maturity level of a particular technology. Here, maturity is a synonym for development or readiness. Each technology (as a project) is evaluated against the parameters for each technology level, and is then assigned a TRL rating based on the projects progress. In general, a technology project is only moved to the next readiness level when the relevant environmental validation is complete for that level.

1.6.2 Level of development (LOD)

A.k.a., Level of detail, level of information detail (LID), amount of information.

Level of development (LOD) is a measure of the level of development by an object (system or element). It is not necessarily a measure of the amount of information, although there must be enough information to satisfy the LOD level of the object itself. LOD is also not a measure of the accuracy of information. Generally, the term LOD is used to refer to elements (i.e., sub-parts) of any single technological system, which itself will have a technological readiness level (TRL). LOD is a measure of "progress", which each level containing a set of parameters.

NOTE: "Objects" only exist as information (Read: exist as concepts), before they come into being [real] 'objects' through engineering, at the expense of energy and area (Read: light and matter). A common level of development (LOD) scale is (the object, 'chair' as the family-type, is incorporated below as an example):

- 1. **LOD 100** there is an <u>object</u> (Read: something that has shape and can be pointed to; a thing, product, system), a 'chair'.
- 2. **LOD 200** there is a product (object) of specific <u>dimensions</u> -- a chair that has nominal space requirements of 400x400 units.
- 3. **LOD 300** there is an object with stated <u>functions</u> <u>and options</u> -- a chair with arm rests and wheels.
- 4. **LOD 400** there is an object that is <u>numerically</u> <u>identifiable</u> among other types of its object, and there is a process for producing that specific subtype of object -- there is a model number for the chair, <u>and a production process</u> for that specific chair.
- 5. **LOD 500** there is an object number, a production process for that specific object, and a decision to produce one (or more) of that specific object -- there is the chair's model number, the production process for the chair, and an ordered demand to produce one (or more) of that chair.

There may also be sub-levels:

- LOD 200 final object specification defined.
- LOD 290 preliminary construction defined.
- LOD 292 checked for functional requirements in construction.
- LOD 294 checked for justice-value requirements in construction.
- LOD 296 checked for freedom-value requirements in construction.
- LOD 298 checked for efficiency-value requirements in construction.
- LOD 300 final construction specification defined.

There are multiple ways of visually representing LOD information. For example (i.e., one way), an LOD numerical identifier structure, such as, "XXXX" where each digit "X" corresponds to a piece of information in the table (e.g. Description, or Width, or Height, etc...) and each of these digits would take a value between 0 and 5 (or 0 and 9 if one needs more granularity). The result would be (taking the 0 to 4 scaling):

- "0000" means 0% information (with 0% certainty).
- "1111" means 100% information but with low certainty/development.
- "5550", "0005" or "5050" all mean 50% information with 25% overall certainty, BUT with clear distinction on the pieces of information that are known and to what level.
- "9999" means 100% information with 100%

certainty/development.

1.6.2.1 Level of development (LOD) subcategorization

In concern to objects and technology, the idea of a "level of development" can be de-composed into two indices, which together represent a selectable solution:

- 1. Level of Information Detail (LID) what level of information is present to [have the ability to] materialize the object?
- 2. **Degree of Certainty (DoC, Level of Certainty, LoC)** - how certain is the execution upon the information to produce the expected result? In other words, how certain are "you" that upon execution of the information the result will be as expected (predicted/specified)?

1.6.2.2 Level of uncertainty

The concept of a 'level of uncertainty' may be generally sub-divided into:

- Level of Incompletness (Lol) a measure of incompleteness.
- Level of Availability (LoA) a measure of what and how much information is available.

1.6.3 Level of design (LOD)

A.k.a., Level of detail (LOD).

There are several commonly identified levels of design:

- Semantic description of system concepts (a.k.a., paper-based product concept) - these are sketches, narratives (user cases), annotated drawings, graphics, or other concept descriptions that can enable initial explorations of ideas on system functionality to be made, important usability characteristics to be identified, or walk-through studies of protocols.
- 2. Part prototypes or simulations Part prototypes are used to simulate specific functional attributes of a design. They might be mock-ups of physical form, scale or mass, mechanical models, static, or animated graphics that enable people to interact with them. The prototype may look nothing like the final design, but will accurately represent those aspects under investigation.
- 3. Experience prototype these are representations in any medium that help people to appreciate experiential issues beyond the purely functional attributes of a design. They are designed to include contextual and affective qualities conveyed through a relevant subjective experience.
- 4. Full prototypes Full prototypes perform as the

final product is intended to perform an incorporate the complete functionality and appearance of the product.

 Complete product - complete products enable the complete user-interface to be examined. This opens the possibility of carrying out field investigations, comparative studies with other products, in-service studies, etc.

1.6.4 Level of accuracy (LOA)

Level of accuracy refers to the level of accuracy that must be achieved between interoperating models; for instance, when models are created based on a laser scan, what is the level of accuracy that the deliverable model must achieve? For instance, if a beam is (to be) warped in reality, what is the level of accuracy the model needs to achieve, can it just look like a normal beam, does it need to be need to be warped, with what precision does it need to matcb the real world object?

• Measurement of accuracy (MOA) - how accurate is the scan data that is being started with? This relates, in part, to the measuring tool (for example, measuring tape is less accurate than a laser).

1.6.5 Social readiness level

Just as technologies have a development readiness level, so do social [mental] models and methodologies. Today, humanity now has access to the systems methodology, and a unified, systems-based (real world) social model for iteratively integrated socio-technical design, construction and operation [of society].

In order to understand and operate complex real world systems, their methodologies (Read: the selected methods that structure the formation of complex systems) must be understood. When a population starts to view society as information, then data and processes start to structure the formation of real world systems, which may be viewed as they are, unified. Socio-individual viewpoint could be considered a new "level" of self-awareness - individuals have access to a unified information system that is pre-configured with data and processes, which are accurately alignable and intentionally programmable to complete in the iterative formation of a material hard-/soft-ware [information] system that fulfills all individual human need, which are never fully known (i.e., there is always more to know). System modeling now exists to assist us in visualizing together so that we can understand and perceive impacts of models, decisions, and actions in our common environment. In this environment, an information environment, all data is fit into a structure (e.g., data model, database) upon which processes may operate. The operation of processes on data requires a control structure to coordinate and control all data and processes. This control structure is "like" a

platform, operating system, decision system, protocol, algorithm, ect. (named differently depending upon what level or scale the [whole] society is being viewed from). That control structure can be openly designed and programmed by contributing individuals (you become the ultimate relationship management site, because their reputation on their is ultimate that they would contribute freely, so greatly, which doesn't mean you can't have a secondary pay operation also, it is to say that there are multiple valuable databases here, free though, so no good, well you as source of information as value) or it can be programmed in secret.

1.6.6 BIM readiness levels

BIM readiness level (as model cooperation visualization levels) can be generally separated into:

- 1. Level 1 BIM is CAD separated files.
- 2. Level 2 BIM is 2D-3D CAD separated files.
- 3. Level 3 BIM is CAD with unified file directory revisioning.
- 4. Level 4 BIM is CAD with life-cycle integration through a unified file directory.
- 5. Level 5 BIM is data and process simulation, and unified directory file revisioning.
- 6. Level 6 BIM is societal level development and operations unification.

At the 5-6 BIM levels, the highest level societal services are: "architecture", "structure" (infrastructure), and "MEP" (maintenance, engineering, and planning) may become one integrated systems team sharing a common set of data and process, for example, as separate government and industrial entities, or local habitat subservices entities (the later is strange to say, because it presupposes a unified system, the habitat).

One would likely rather have a proactive asset and building coordination and control system at all scales of society (like Community), rather than, a reactive one (like the cities and sprawls that early 21st century humans live in).

Possibly, when BIM is referred to in its level 5 context, by industry and government, they are in fact referring to planning (e.g., "public private ownership", etc.) at that level, in definition, as the merger of industry and government as an organization that coordinates the construction of all buildings through the control of design, construction and operation, of the information systems that produce and operate all building-related data and processes.

1.7 [System] Architectural clarifications

Architecture (noun) is defined commonly in several different ways:

1. The art and science of designing and superintending the erection of buildings and similar

structures.

- The creativity, heuristics and engineering practice of design and technical supervision resulting in man-made systems.
- 2. A style of building or structure
 - A recognisable pattern or pro forma of system composition and arrangement.
- 3. Buildings or structures collectively.
 - A quality or attribute of systems that conveys composition and order.
- 4. The structure or design of anything.
 - The composition and rational arrangement of a system.
- 5. The internal organization of a computer's components with particular reference to the way in which data is transmitted.
 - The information technology viewpoint of a computer described according to system form and function.
- 6. The arrangement of the various devices in a complete computer system or network.
 - The information technology viewpoint of a computer network as a system}' [Collins, 1991].

In concern to the semantics of these definitions:

- Meaning 1 confirms architecture to be a body of practice. It is applied to the design and supervision of actions of particular classes of structure, such as vessels, buildings, cities.
- Meaning 2 conveys that architecture can manifest itself as patterns of significance and value.
- Meanings 3 and 4 convey architecture to be a collective attribute of systems.
- In contrast, Meanings 5 and 6 present a contemporary information technology and software use of the term for computers (plus the software representations of data, processes and control that they host) when considered in system terms.

For systems engineering and, as the definitions above suggest, generally for the systems reasoning mind, it is axiomatic that architecture is an attribute of system that characterises a system's order. In the IPTL survey 67% spontaneously identified architecture with structure, with 50% referring to product structure and 17% translating this directly into consequent project structure.

Architecture is thus commonly understood as a description of the composition and structuring of a man-made system; of order that arises from intent and directed design. This is in conformity with the IEEE definition of 1990: 'the organizational structure of a system or component'. That is, a factual listing of parts and their organisation or relationship [IEEE 1990].

A decade later, however, the influential standard IEEE STD 1471 had evolved this definition into 'the fundamental organization of a system embodied in its components, their relationships to each other, and to the environment and the principles guiding its design and evolution' [IEEE 2000]. This definition had moved beyond an objective description of a system-of-interest, extending it to include the setting, if not behaviour, in an environment of operation. It also introduced the notion of the decision (or design) rationale behind these descriptions. In doing so, it began to equate architecture to design actions and the discipline that governs them. In ISO/IEC 15288 architecture is explicitly associated with one process: architecture design.

Architecting is an invented word to describe how architectures are created, similar to how engineering describes how "engines" and other technologies are created. Possibly, if engineering is the art and science of technical problem solving, then systems architecting occurs when the problem is not yet known. (Maier, 2009)

Yet, a systems engineering and systems architecting distinction would appear to arise partially from values, beliefs and ideas, and hence to be culturally rooted. Etymologically, the word architecture comes from the Greek word arkhitektonike, which is a combination of two words meaning 'chief' and 'builder'. Thus, the word architect derives from the Greek for "the director of works" or "chief builder" and refers to someone who is responsible for overseeing all aspects of building, and is essentially the integrator of all aspects. Hence, an architect is associated with technical leadership and connotes seniority as much as skill. Typically, it is used in the singular form and is less prominently associated with a team activity. Architecting practitioners have thus elevated the most strategic-thinking, high-level design to be architecting, relegating all else to be termed 'design' (or, engineering), which is then a subordinate/ subsequent action to that of architecting.

According to this model of architecting practice, systems engineering is concerned with the conduct of implementation-related design, and architecting with the strategic decision making across all engineering contributions. Architecting then becomes the hub of design. It is a model with seductive promise to those mired in academic complexity, but is in essence barely more than a re-titling or re-stratification of the recursive transformations described by systems engineering.

For purposes of conceptual clarification ("conceptual cleansing"), architecture may be seen as the descriptive essence of systems, and in no sense is it the system itself. Architecture could be viewed as the totality of every possible communicable view of an actual or conjectured real-world system: the summation of all possible transmissible models that inform the existence of a system as an object. It is therefore an abstract notion; a set of descriptions of the nature, arrangement, workings, holistic interaction opportunities, and additionally as preferred, the rationale for the existence of this order.

2 [Engineering] Life-cycle stages

A.k.a., The [systems] engineering life cycle, or the systems engineering method.

Each phase of the systems engineering life-cycle (process) has a similar logic[al set of objects]:

- Definition
- Purpose
- Task(s) and activities
- Outcomes

Note that the term 'requirement' is essentially the same as the term 'specification'. 'Requirements' must be sufficiently specific and detailed to allow/ensure <u>verification</u> (is the right, correct, planned "thing" being done) and <u>validation</u> (user approval).

The engineering processes of service life-cycle coordination are:

- 1. De-/construction (i.e., dis-/assembly, de-/equipping, etc.)
- 2. Maintenance (i.e., tasks that maintain a service function),
- 3. Operations (i.e., tasks that use a service function)
- 4. Monitoring (i.e., remaining aware in order to apply a control if necessary)

On-service engineering operations are systems and humans that are acting in some capacity through some task as being of service to another human or system. The incident response process, for instance, involves both data and physical incidents. When the incident response service is engaged, humans and systems become onservice to the procedural aid of other humans and systems. Maintenance is a sub-set of the life-cycle processes; it involves being of service to humans by developing and sustaining the systems that facilitate everyone's fulfillment (i.e., "service them").

The following four primary engineering process life-cycle phases:

- 1. Composition
- 2. Maintenance of composition
- 3. Operation of composition
- 4. Decomposition

2.1 Requirements of engaging in systems engineering

The primary deliverables of these systems engineering processes are/include:

1. **Requirements** engineering of the requirements specification.

- 2. System architecting a **logical systems** architecture.
- 3. System design specification (and standardization)
- 4. Integration of specification (standardization) into **habitat/information operations**.
- 5. Validation and verification of physical/ information system itself is changed as expected.

The systems engineering process requires:

- 1. Access to all available knowledge (and information).
- 2. **Defining** user needs and required functionality.
- 3. Documenting.
- 4. Design synthesis.
- 5. System validation.
- 6. While considering the complete **problem**: operations, resources and schedule, performance, support, test, manufacturing, and disposal.

Engineering sub-units include (by task category):

- 1. Scientific research
- 2. Systems design and development
- 3. Systems integration
- 4. Systems operation
- 5. System update and/or de-integration

The engineering process chain is initialized as a dynamic problem:

- 1. Measure
- 2. Identify
- 3. Analyze
- 4. Design
- 5. Execute (Act)

The engineering process chain works to materialize a solution:

- 1. Design of system
- 2. Production of components
- 3. Assembly of system
- 4. Testing of system

The modeling process for engineering a real-world system requires:

- 1. **Design** integrate the concepts, principles, data, and knowledge into a structure with a logical flow.
- 2. **Design development** = integrate the structure into the logical flow of a specified system.
- Production apply energy through a vehicle to [effectively and efficiently] modify material or digital information into the specified system. For example, use a knife to whittle wood into a "carved" implement for eating, like a spoon or chopstick.
- 4. Service integration materially or digitally connect

the sub-system to a larger/pre-existing system.

- 5. **Service operation** operate/use the system.
- 6. **Service testing** of the design occurs throughout the whole process to ensure the solution is as expected by the user (i.e., meets requirements).

The modeling process for engineering a proposed societal system requires:

- 1. Create Vision for society.
- 2. Evaluate Individual human needs.
- 3. Analyze Collect data and analyze situation.
- 4. Apply Apply decided procedures.
- 5. Understand Visualize results of action.
- 6. Update Integrate results of action
- 7. Remember Re-envision society.

2.2 The product life-cycle stages

All productions, whether they are objects or services (combinations of objects) go through the following engineered product life-cycle stages (input-outputs of a production/manufacturing/engineering system):

- 1. Product design (final service and/or object design).
- 2. Manufacturing system design (what to produce in order to produce the designed product; intermediary designs).
- 3. Manufacturing.
 - A. Production of the manufacturing system.
 - B. Production of the product from the manufacturing system.
- 4. Distribution and storage.
- 5. Product use (habitat service system operation and user access, together; intermediary and final demand).
- 6. Disassembly, reuse, re-manufacturing, and recycling.

2.3 The engineering life-cycle/process flows

There are multiple possible views into engineering as a system of processes. The engineering process can be viewed from multiple, correct perspectives. There is commonality between all of the possible perspectives on engineering. Therein, different engineering projects may modify the [unified information system's] common engineering process(es) accordingly.

These activities cover the "cradle-to-grave" or "cradleto-cradle" life cycle process associated with the major functional groups that engineering provides. The following process views are in their simplified conceptual form.

2.3.1 Technical process flow views

The following are the common technical processes (technical process flows) for the realization of a solution through engineering. Note that these view all follow essentially the space system's process; they just use different terminology to describe the same process (i.e., the same structural flow of information).

The problem-solving view of the engineering process:

- 1. **Problem input** initial requirements data.
- 2. **Analyze requirements data** obtain answers to requirement questions.
- 3. **Design solution** obtain answers to requirement questions.
- 4. **Test and validate solution** produce and evaluate the design against the requirements.

The <u>development and operations view</u> of the engineering process:

- 1. Analysis identify design problem.
- 2. Synthesis identify design alternatives.
- 3. **Prototype** build and test alternatives.
- 4. Integrate integrate the best selection.
- 5. Utilize Operate the new system.

The <u>problem-oriented cycle view</u> of the engineering process:

- 1. Have **problem**?
- 2. Collect **data**
- 3. Design **solution**
- 4. Solution **test**
- 5. Solution **feedback**
- 6. Integrate solution
- 7. Have **problem**?

The <u>engineering phases view</u> of the material system lifecycle:

- 1. Conceptual phase
- 2. Specification and Design phase
- 3. Implementation phase
- 4. Operations phase
- 5. Retirement phase

The <u>development review completion cycle view</u> of systems engineering:

- 1. **System Requirements Review (SRR):** At the beginning of the project, establishes what the system will and will not do.
- 2. **Preliminary Design Review (PDR):** At 10% design completion, is primarily to critique the architecture of the design and critical decisions made in the design.
- 3. Critical Design Review (CDR): At 90% design

completion, is primarily to make a last set of changes before the design is finalized.

- 4. Validation System Review (VSR): At 100% operational completion the system.
- 5. Verification System Review (VSR): User feedback on issue.

The inquired action view of the engineering process:

- 1. Inquire (is a change needed; is a decision present)
- 2. **Problem situation** (situational analysis; requirements).
- 3. **Solution formulation** of relevant purposeful models and activities [accordingly, scenarios] of the perceived problem (functional and physical design).
- 4. Take action [to realize formulation, reformulation of situation] in the situation to bring about improvement (implementation, material change/construction).

The serviced view of the engineering process:

- 1. Conceive (Imagine, specify, plan)
- 2. **Design** (describe, define, develop, test, analyze, validate)
- 3. **Realize** (manufacture, make, build, procure, produce, deliver, phase-in)
- 4. **Service** (use, operate, maintain, support, sustain, phase-out, retire, recycle, dispose)

The actionable phase view of the engineering process:

- 1. Initiation phase recognition of problem.
- 2. **Analysis phase** understanding of problem and context.
- 3. **Design/synthesis phase** specification of solution to problem.
- 4. **Implementation phase** solution production, testing, training, site preparation.
- 5. **Operations phase** usage of solution.
- 6. **Evaluation phase** observe and review the solution and the process that created the solution.

The problem-action view of the engineering process:

- 1. Problem identification defining
- 2. Solution abstraction modeling
- 3. Solution realization building
- 4. Solution utilization operating

The problem view of the engineering process:

- 1. Problem detection
- 2. Problem definition
- 3. Problem analysis
- 4. System design problem
- 5. System manufacturing problem

- 6. System use/service problem
- 7. System obsolescence problem

Then system state view of the engineering process:

- 1. **Problem** with world
- 2. Model current state of world
- 3. Model new state of world without problem
- 4. Construct new state of world
- 5. Evaluate new state of world

The issue view of the engineering process:

- 1. The issue problem
- 2. The research and discovery problem
- 3. The design problem
- 4. The construction and integration problem
- 5. The operation problem
- 6. The testing and evaluation problem
- 7. The maintenance problem
- 8. The de-integration problem

The <u>resource-based view</u> of the engineering process:

- 1. Survey (an environment for planning)
- 2. Plan (a system for building)
- 3. **Build** (a system for operating)
- 4. **Operate** (a system for serving)
- 5. Cycle (the evolution of the operating systems)

The strategic-evaluative view of the engineering process:

1. Planning and analysis

- A. Create project concept
- B. Generate requirements
- C. Validation
- 2. System [logical] architecting
 - A. Functional analysis
 - B. Requirements analysis
 - C. System synthesis
 - D. Validation
 - E. Verification
- 3. System [physical] design
 - A. Physical design
 - B. Composition analysis
 - C. Validation
 - D. Verification
- 4. Build* and test [the system itself]
 - A. System integrations
 - B. Validation
 - C. Verification
- The <u>algorithmic life-cycle view</u> of the engineering process:
- 1. Plan algorithmic decisioning
- 2. Design select algorithm
- 3. Implement algorithm

- 4. Assess algorithm
- 5. Monitor algorithm
- 6. Iterate algorithm

The design alignment view of the engineering process:

- 1. Requirements
- 2. Analysis
- 3. Development
- 4. Testing
- 5. Implementation
- 6. Support

The creation alignment view of the engineering process:

- 1. **Direction** put together a specification of the objective.
- 2. **Conceptualization** put together a specification of the system. Conceptualization involves the organizing and structuring of acquired knowledge.
- 3. **Implementation** implement the concept [specification] model to create and/or operate the system.
- 4. **Evaluation** evaluate by doing a technical analysis on the process and result, and correct any misalignment with objectives and requirements (system so that all information in all phases is more coherent and/or useful).

The system design view of the engineering process:

- Discover Why is "it" the "right" output.
 Research
- 2. **Define** What is the "right" output.
 - Ideate
- 3. Design Design what is the "right" output.Specify
- 4. Develop Prototype and test the "right" output.Build and test
- 5. **Deliver** Deliver, integrate and transport, what is the "right" output.
 - Implement and integrate

The system integration view of the engineering process:

- 1. Requirements
- 2. Design
- 3. Implementation, integration, transition, launch
- 4. Verification
- 5. Operation
- 6. Validation

The system generation view of the engineering process:

- 1. Conception (concept)
- 2. Development assessment
- 3. Development demonstration

- 4. Production manufacturing
- 5. System transition
- 6. Utilization (in-service operations)
- 7. Retirement (disposal operations)

The system information view of the engineering process:

- 1. Conception
- 2. Initiation
- 3. Analysis
- 4. Design
- 5. Construction
- 6. Testing
- 7. Deployment and release
- 8. Operation
- 9. Iterate and Evolve

The vision improvement view of the engineering process:

- 1. Measure
- 2. Analyze
- 3. Improve
- 4. Sustain

The vision to operation view of the engineering process:

- 1. Vision
- 2. Design
- 3. Transition
- 4. Operation

The system integration view of the engineering process:

- 1. Need analysis
- 2. Situation and concept exploration
- 3. Concept definition
- 4. Design and development
- 5. Integration
- 6. Operation
- 7. Evaluation

The solution cycle view of the engineering process:

- 1. Issue or change concept (for solution)
- 2. Development (of solution)
- 3. Integration (of solution)
- 4. Sustainment (or solution)

The planning view of the engineering process:

- 1. Plan
- 2. Develop
- 3. Test
- 4. Deploy
- 5. Operate
- 6. Support

The project engineering view of the engineering process:

- 1. Project definition
- 2. Specification definition
- 3. Conceptual design
- 4. Product design
- 5. Fabrication (manufacturing)
- 6. Assembly
- 7. Integration
- 8. Testing
- 9. Evaluation
- 10. Operation
- 11. Iteration

The object (ware) view of the engineering process:

- 1. Problem environment
- 2. Design solution concept
- 3. Design solution ware (hardware and/or software)
- 4. Construct solution ware
- 5. Operate solution ware

The structural-informational view of engineering:

1. **Problem (with environment)** - system design process

A. Requirements definition process (of system)

- 1. User/stakeholder expectations definition
- 2. Technical requirements definition
- B. Technical solution definition process (of system)
 - 1. Logical decomposition
 - 2. Design solution definition
- 2. **Solution (for environment)** system realization process
 - 1. Design realization process (of system)
 - 2. Integration process (of system into environment)
 - 3. Evaluation process (of system operating in environment)

3. Planning (of environment)

- 1. Technical planning process
- 2. Technical control process
- 3. Technical assessment process
- 4. Technical decision analysis process

The system materialization view of the engineering process (Read: Levels of materialization):

- Concept refinement phase refine the initial problem/issue/concept/situation into a direction, approach, and orientation [to the state of the environmental societal system, as the solution]. Conceive of why the system needs to be changed and what changes are required.
- 2. **System development** Develop a new system, subsystem, or capability (object or service) aligned with the direction, orientation, and approach. Develop the new system state to align with the refined

conception.

- 3. **System deployment** Achieve a transitional operation of the actual material system that satisfies the refined conception of a direction, orientation and approach (as given in the concept refinement phase).
- 4. **System operation** Execute a support program that meets operational support performance requirements and sustains the system over the time of its life-cycle.

The <u>service life-cycle view</u> of engineering (New service life-cycle phases):

1. Service need

- Concept studies
- 2. Concept definition
 - Concept and technology development
- 3. Design specification
 - Preliminary design, engineering model (final design), and technology completion
- 4. Production (fabrication)
 - Assembly, integration, and testing
- 5. Operation
 - · Operations and sustainment

The situational systems view of the engineering process:

- 1. Analyse situation
- 2. Develop requirements for system
- 3. Design system based on requirements
- 4. Build system based on design
- 5. Use and maintain system based on design
- 6. Re-cycle system based on design

The <u>constructional view</u> of the engineering process:

- 1. Informational (conceptual, object-process)
- 2. Virtual (simulation)
- 3. Live (actualized, material, physical)

The measurement view of the engineering process:

- 1. **Do a cause-and-effect analysis** to understand the current situation.
- 2. **Identify objectives** to set the purpose for changing the current situation.
- 3. **Identify requirements** to set the precise structural outcome(s).
- 4. **Quantify** to specify the precise outcome.
- 5. **Measure the build** build the precise outcome.
- 6. **Measure the result** determine if the build meets the specifically defined quantifications.
- 7. Repeat

The engineering design view of the engineering process:

- 1. Concept studies
- 2. Concept development
- 3. Preliminary design
- 4. Detailed and final design
- FAIT or SAITL (FAIT fabrication, assembly, integration, transition; SAITL - system assembly, integration, testing, launch)
- 6. Verification
- 7. Operation
- 8. Validation

The product plan view of the engineering process:

- 1. Concept design
- 2. Product development
- 3. Product production
- 4. Product utilization
- 5. Product support

The coordination view of the engineering process:

- 1. Planning
 - A. Site survey
 - B. Resource survey
 - C. Feasibility analysis/study

2. Engineering

- A. Process design
- B. System design
- C. Sub-system designs

3. Procurement

- A. Acquisition
- B. Logistics
- C. Inspection

4. Construction

- A. Construction planning
- B. Schedule control
- C. Construction tasks
- D. Construction validation
- 5. Service
 - E. Operations (and maintenance)

The <u>development view</u> of the engineering process:

- 1. **Research and discovery** (problem inquiry and situation analysis) identify a problem/issue for which a solution is to be designed.
 - A. Identify the problem
 - B. Document and analysis of problem, situation, and prior solution attempts.
 - C. Determine solution requirements
 - A. Root cause analysis (process) similar to that used in solving quality-related problems, can be used to categorize risks according to their source, to list risks in each category, and then to propose preventive actions to prevent these risks, or to develop countermeasures

or risk responses if they happen to occur. It can be used as part of brainstorming, the first technique listed, to identify risks.

- 2. **Design** develop multiple solution possibilities and through the use of feedback and data, select the best potential solution to pursue.
 - A. Generate design concept, analysis, selection
 - B. Application of STEM principles and practices
 - C. Determine design viability
- 3. **Prototype and test** create a testable prototype and unbiased testing plan based on the defined design requirements to determine the effectiveness of the solution created.
 - A. Construction of a testable prototype
 - B. Prototype testing and data collection plan
 - C. Testing, data collection, and analysis
- 4. **Evaluation of project and process** seek and document feedback.

The <u>service system existence activities view</u> of the engineering process:

- 1. **Development (design and testing)** the activities required to create/evolve the system from user needs to product or process solutions.
- 2. **Production and construction (create final solution)** the activities necessary to create the completed solution.
- 3. **Deployment (fielding of final solution)** activities necessary to initially deliver, transport, receive, process, assemble, install, checkout, train, operate, house, store, or field the system to achieve full operational capability.
- 4. **Operation (of final solution)** the user function and includes activities necessary to satisfy defined operational objectives and tasks in peacetime and wartime environments.
- 5. **Support (of operational solution)** the activities necessary to provide operations support, maintenance, logistics, and material management.
- Disposal/evolution (of operational solution) the activities necessary to ensure that the disposal of decommissioned, destroyed, or irreparable system components meets all applicable regulations and directives.
- Training (on operational solution and learnings)

 the activities necessary to achieve and maintain the knowledge and skill levels necessary to efficiently and effectively perform operations and support functions.
- 8. Verification (of operational solution) the activities necessary to evaluate progress and effectiveness of evolving system products and processes, and to measure specification compliance.

The <u>technical system design realization view</u> of the engineering process:

1. Systems design processes

- A. User expectations defined (imperatives/ objectives)
- B. Technical requirements definition (requirements definition process)
- C. Logical system decomposition
- D. Design solution definition (solution definition process)

2. System realization processes

- A. System implementation process
- B. System integration process
- C. System validation process
- D. Requirements validation process (technical evaluation process)
- E. System verification process (technical evaluation process)
- F. System transition (transition to user process)
- G. System maintenance process
- H. System disposal process

3. Technical coordination processes

- A. Planning coordination process
- B. Imperatives coordination process
- C. Requirements coordination process
- D. Resource and tool coordination process
- E. Assessment process
- F. Control process
- G. Risk coordination process
- H. Data coordination process
- I. Interface coordination process
- J. Decision analysis process

2.3.1 The basic process view of engineering

The basic process view of engineering involves an information loop:

1. Requirements analysis - Requirements analysis is used to develop functional and performance requirements; that is, customer requirements are translated into a set of requirements that define what the system must do and how well it must perform. The systems engineer must ensure that the requirements are understandable, unambiguous, comprehensive, complete, and concise. Requirements analysis must clarify and define functional requirements and design constraints. Functional requirements define quantity (how many), quality (how good), coverage (how far), time lines (when and how long), and availability (how often). Design constraints define those factors that limit design flexibility, such as: environmental conditions or limits; defense against internal or external threats; and contract, customer or regulatory standards.

- 2. Functional analysis and allocation Functions are analyzed by decomposing higher-level functions identified through requirements analysis into lower-level functions. The performance requirements associated with the higher level are allocated to lower functions. The result is a description of the product or item in terms of what it does logically and in terms of the performance required. This description is often called the functional architecture of the product or item. Functional analysis and allocation allows for a better understanding of what the system has to do, in what ways it can do it, and to some extent, the priorities and conflicts associated with lowerlevel functions. It provides information essential to optimizing physical solutions. Key tools in functional analysis and allocation are Functional Flow Block Diagrams, Time Line Analysis, and the Requirements Allocation Sheet.
 - Here, it is important to consider under what conditions an existent function may not be wanted by a user, and hence, should be disableable.
- 3. **Requirements loop** Performance of the functional analysis and allocation results in a better understanding of the requirements and should prompt reconsideration of the requirements analysis. Each function identified should be traceable back to a requirement. This iterative process of revisiting requirements analysis as a result of functional analysis and allocation is referred to as the requirements loop.
- 4. **Design synthesis** Design synthesis is the process of defining the product or item in terms of the physical and software elements which together make up and define the item. The result is often referred to as the physical architecture. Each part must meet at least one functional requirement, and any part may support many functions. The physical architecture is the basic structure for generating the specifications and baselines.
 - A. Design <u>deliverable</u> (noun) A design [specification] is a visualization (sometimes, plan) that shows (through to demonstrates via simulation) some combination of function ("workings"/mechanism), performance, and interface of future system.
 - B. Design <u>process</u> (verb) To design means the decisioning processes (groups) that model, determine, and select the function, performance, and interface to be recorded as the executable design, a valid design for

integration).

- 5. **Design loop** Similar to the requirements loop described above, the design loop is the process of revisiting the functional architecture to verify that the physical design synthesized can perform the required functions at required levels of performance. The design loop permits reconsideration of how the system will perform its mission, and this helps optimize the synthesized design.
- 6. Verification For each application of the system engineering process, the solution will be compared to the requirements. This part of the process is called the verification loop, or more commonly, Verification. Each requirement at each level of development must be verifiable. Baseline documentation developed during the systems engineering process must establish the method of verification for each requirement. Appropriate methods of verification include examination, demonstration, analysis (including modeling and simulation), and testing. Formal test and evaluation (both developmental and operational) are important contributors to the verification of systems.
 - Inspection is one method of verification.

2.3.2 The project engineering process

A descriptive view of project engineering includes:

- 1. Engineering life-cycle:
 - A. Engineering
 - B. Pre-concept
 - C. Concept
 - D. Prototype
 - E. Evaluate
 - F. Produce
 - G. Operate
 - H. Maintain
 - I. Cycle
- 2. Engineering process stages:
 - A. User need definition
 - B. System requirements definition
 - C. Detailed system design
 - D. Prototype, test and acceptance
 - E. In-service feedback
- 3. Engineering design and development process:
 - A. Needs identification
 - B. Literature/background study
 - C. Task requirements and specifications
 - D. Definition of the goal/purpose of the design
 - E. Ideation and invention
 - F. Analysis
 - G. Selection

- H. Detailed design
- I. Prototyping and testing (including validation, certification and standardization as applicable)

2.3.3 The basic concept view of engineering

A descriptive view of engineering includes:

- 1. **Conceptual design** the formal transition from the user-issue organization level to the engineering level. In other words, a decision space has now opened an engineering solution space, which the first deliverable of which includes a set of engineering requirements that align with the decision space's resolution objective(s). Traceability from the user-issue with a complete logical description of the system-of-interest into measurement statements (i.e., requirements) for designing and operating a user system without issues. This deliverable set ensures the proper definition/identification/development of the system requirements. This phase has two primary functions: (1) more likely that a solution will optimally resolve a problem; (2) more likely that effectiveness inquiry (a core decisioning process) will return an accurate result, such that HSS operational process will operative effectively due to accurate data, and unsafe projects will be correctly identified and removed from active decisioning, placing them into issue holding.
 - A. Concept stage encompasses all analysis and planning to establish the valid need for a new system. Why does the user need the new system? Establish possibility/feasibility of an architecture (system) that is realizable (based on society's value set alignment.
 - Valid need establish that there is a valid need, that the system will be used (in the market, market feasibility - someone will buy the system)
 - 2. System concepts exploring potential system concepts/formulations along with valid sets of system performance requirements.
 - Selection selection of the most optimal (best fit) system concept (matching). Define the functional characteristics of the optimal (best fit) system concept so that the selected system concept definition can be used to make engineering, productions, and operations plans.
 - New technology development certain times, the newly envisioned system will require the development of new technology (because of non-existent technology) - hence, develop necessary technology and technology needed

for the system concept, and validate the technology.

- A. In engineering, the need associated with a critical gap constitutes the start of the systems engineering lifecycle and the initiation of a conceptual design solution. As mentioned earlier in the process lifecycle, conceptual design includes:
 - 1. Define organizational needs and requirements
 - 2. Define stakeholder/user needs and requirements
 - 3. Define system requirements
 - 4. Conduct system-level synthesis this will allow for the selection of the optimal ("preferred") system-level solution (configuration).
 - 5. Conduct system design review (evaluation)
 - 6. The output of 5 then becomes the Preliminary Design
- 2. **Requirements activities** The 3 types of requirements that form [part of] the system's logical design (requirements flowdown):
 - A. Societal-level organizational needs and requirements - the value system [engineering] requirements for materialization (their alignment):
 - 1. In the societal information system, this is represented by: the parallel decision inquiry processes.
 - 2. The organizational requirements (parallel value-alignment decision inquiry process) ensure feasibility of the solution (i.e., that the solution is a feasible undertaking and integration by the societal system). These requirements control (and guide) the development of engineering requirements for the system. The likely options to a problem (i.e., the possible solution spaces). What society requires from the ultimate solution when it is deployed.
 - 3. Societal-level requirements activities are also known as the societal requirements specification (or business requirements specification including organizational/ business needs and requirements).
 - 4. Imperatives and directives such as mission, vision, goals, objectives, needs, etc.
 - 5. In human terms, tasks (execution) herein are completed by members of InterSystem teams, whereas, because the societal information system involves both tasks by 'individuals' and tasks by 'engineering'.
 - B. User (Read: stakeholder) needs and requirements (may or may not describe a system's structure and/or behavior, user

specification) - How the user describes what is required? How the user determined their [logical] path to arrival at what is required? A description of an experience that has resulted or may result in a lack of alignment with a visualizable objective experience?

- In the societal information system, this is represented by: the articulation and recognition decision inquiry processes
- 2. User requirements breakdown structure
- In human terms, tasks herein could be completed by anyone (either accessing as a community individual or accessing as a member of the community InterSystem team)
- C. Engineering requirements (system requirements specification) - the technical system [engineering] requirements for materialization (their alignment):
 - In the societal information system, this is represented by: the solution decision inquiry process, as a description from broad to specific of the functional and non-functional [technical] design of the system.
 - 2. Establish a system level analysis what must the system do to satisfy user requirements.
 - 3. Deliver system requirements specification (in the form of, for example, a physical document, spreadsheet, database, or model of desired system illustrating the desired system by a simulation) including requirements breakdown structure.
 - Determine functional requirements what does the system need to be able to do.
 Determine performance requirements associated with functional requirements (how well does the system need to be able to perform those functions) - define performance levels
 - ii. Non-functional requirements what other characteristics are required of the system.
 - iii. External interface requirements what other systems require interface with the system
 - iv. Under what conditions is the system expected to operate
 - v. Verify the system performance against the requirements. Verification - to confirm system performance against specified requirements (has the system been built right for the user?). Confirming a system as aligning with its requirements. How would I confirm this requirement? Assign rationale. Do not duplicate or repeat requirements in the same document, which will result in

conflict in the future.

- vi. In human terms, tasks (development and execution) herein are completed by members of InterSystem teams.
- 3. **Preliminary design** convert the logical architecture described by the engineering requirements into a secondary description of the [digital, physical] sub-systems (the upper-level architecture) that will meet the system requirements. Develop preliminary design based on chosen system concept while considering production, integration, and operational service life-cycle.
 - A. Translating the concept (the logical design) into the digital and/or physical design (i.e., the logical design is translated into digital/physical design).
 - B. The result (deliverable) of the preliminary design is the allocated baseline (visualizing functionality of the system now allocated to sub-system level (physical or digital "building blocks") groupings, known as configuration items as logically composed in the design/development specification.
 - Sub-system level specifications for each configuration broken down by development item (or module)
 - C. The focus shifts from the [engineering] problem domain to the [engineering] solution domain. Translating the concept into the
 - D. Preliminary design verification (review) was the study and design effort prior (the integration of information) appropriate? Will this design be technically adequate? What are the technical risk?
- Detailed design (and development, prototyping)

 "traditional" engineering, where sub-systems are broken down, understood, developed and integrated into existential operation.
 - A. The complete engineering design specification that goes to makeup the system.
 - B. Engineering of proto-types of sub-systems that make-up the system.
 - C. Engineering for prototype system that satisfy (fulfill) performance (required), reliability (required), life cycle safety and maintenance (required).
 - D. Engineering for manufacturability ensuring resource efficiency (cost affordability).
 - E. Test and evaluation of prototypes confirm system design by means of analysis of tests; design construction test; review, evaluate the expressed design's alignment with requirements.
 - F. By end of this stage here is a digital, physical

system.

- The habitat service system baseline deliverable the societal level service baseline (a.k.a, product baseline, PBL). As the system now defined by numerous services (products, sub-systems, assemblies) as well as the materials and processes for manufacturing and construction of the total system :: materials, processes, people in time to complete tasks.
- Critical design evaluation (review) deliverable

 the last point at which the information is in
 documentation form before transfer to memory
 and/or execution on the design. Here, the design
 is fully and officially accepted by all of the inquiry
 processes: solution (technical) and parallel,
 organizational value decisioning.
- Evaluates [solution] design in terms of readiness for production and construction; asking, Is everything a go, or not, for production and integration into operation. This evaluation process ensures the design is compatible with the societal organizational system (given what is known), or otherwise mis-alignment with a determined value orientation. This includes a detailed understanding of all of the internal and external interfaces.
- 5. Operations (engineering) activities Operation[al design] (including, construction and production) Produce and operate components in accordance with the detailed design specifications. Here, at the societal level, a design configuration is selected and integrated into [HSS operations] materiality (software or hardware, digital or spatial) as a 'construction' and/or 'production' (more precisely, 'service' or 'service object', for which there is InterSystem, Community/Commons, and Personal access). Components are developed, produced, and integrated in accordance with the detailed design specification in its final form, and the system is ultimately construction and operational (as an 'HS service' or 'HS service object').
 - A. Formal qualification evaluation (review) the user accepts the system from the InterSystem Team.
 - B. All activities beyond system development.
 - C. Post-development stage has all activities, but systems engineering is necessary in supporting user.
 - D. Solve unanticipated issues where resolution is necessary to ensure the continued usage of the system.
 - E. Testing and evaluation of system in its operational environment.
 - F. Acceptance stage (because user accepts the

digital/physical design that was the translation of the system concept.

- After the development of the system where activities production, operation, deployment, system support, etc. are accomplished during useful life of the system. The system is doing what it is supposed to do.
- 6. **Utilization of service** (a.k.a., application, postdevelopment, operations) - operational use and system support through engineering as a deployed or transitioned system. System support (life-cycle) supported during utilization.
 - A. Support Operations (support maintenance)
 use, wherein issues become capability (and quality) gaps.
 - B. The fulfillment of a need means the closing of a capability gap in the environment through systems engineering and life-cycle operation.

2.3.4 The risk-oriented engineering view

A.k.a., Safe human integration and human factors engineering.

In systems engineering, the human element is often called the human factor. Humans can come to harm, and because humans can come to harm, engineered systems should be designed while accounting for risk *to the human factor*.

The NASA Human Research Program architecture (Read: the development process) is an example of riskoriented engineering. The human engineering research development cycle (NASA Human Research Program) is:

- 1. Evidence Reviews of the accumulated evidence from human records, habitat operations, and research findings are compiled into NASA Human Research Program Evidence Reports. These findings provide the basis for identifying the highest priority human risks (in space exploration) and are a record of the state of knowledge for each risk in the program requirements document (PRD). The Evidence Reports are available to the scientific community and general public [humanresearchroadmap.nasa.gov]. The Evidence Reports receive outside independent review and are updated as needed. If new evidence indicates that a risk should be retired or that a new risk should be added, the Human Research Program (HRP) will, after thorough review with the HSRB, take the appropriate action to modify the PRD and update the Evidence Reports accordingly.
- 2. **Risks** Identifies relevant risks, including risks to the health and human performance of the exploration program based on current evidence. Each risk is assigned a risk rating as a tool to

communicate to the seriousness of a risk to crew health and performance when applied to the mission* architecture and/or mission characteristics defined for each Design Reference Mission (DRM). The PRD, however, does not establish priority for the risks.

- 3. **Gaps** Identifies gaps in knowledge about the risk and the ability to mitigate the risk. The degree of uncertainty in understanding the likelihood, consequence and/or timeframe of a particular risk as well as its criticality to the mission(s) are the major factors that drive the priority of the research gaps listed in the Integrated Research Plan (IRP). Gaps should represent the critical questions that need to be answered in order to significantly reduce the risk. Gaps could change over time based on research progress, current evidence, and mission planning scenarios. In some cases, a gap can address multiple risks.
- 4. Tasks Defines the tasks that will provide the deliverables required to fill the gaps. Tasks are listed in the Integrated Research Plan (IRP). The IRP describes a plan of research that addresses both human physiology, human performance and the interconnected system of the human and spacecraft in a highly integrated manner. The HRP Elements identify specific research tasks that are targeted at better characterizing a risk or developing mitigation capabilities to reduce the risk to an acceptable level.
- Deliverables Each task or progression of tasks is designed to ultimately culminate in deliverables or products that range from risk characterization to prototype technology or countermeasures.

* A 'mission' is a type of 'project' with a human factor.

Human Research Program (HRP) deliverables are generally:

- 1. **Knowledge** deliverables that add to the body of knowledge regarding the risk or concern.
- 2. **Countermeasures** preventative and treatment actions taken to address a risk,.
- 3. **Technology development** hardware and software that enable risk monitoring, prevention or treatment.
- 4. **Operational protocols** operational procedures and methods that define a technique or process for mitigation of the risk.
- 5. **Guidelines, requirements, and standards** information that defines the acceptable levels of risk. Information generated by HRP that can inform the status of the risk and anticipated mitigations

are documented in the HSRB Risk Summary.

A socio-technical [human] research program may have the following deliverable categories:

- 1. **Requirement** or **Guideline** The "Requirement or Guideline" deliverable is chosen when a task will result in information that is relevant to a requirement (or requirements set) or guideline associated with a higher decision set.
- 2. **Technology** or **Tool** The "Technology or Tool" deliverable covers a broad spectrum of developments that includes hardware, software, systems solutions, new processes, new systems and machines (inventions), new methods and procedures (innovative methods), collaborative design tools, databases, computational models, or systems simulations.
- 3. **Countermeasure** A "Countermeasure" deliverable is a specific protocol that is developed and validated to prevent or reduce the likelihood or consequence of a risk [of acceptable level]. Countermeasures may be medical, physical, or operational entities, such as a pharmaceutical or nutritional supplement, hardware or software (prototype and fully integrated), or specific exercise/training, entrainment routines, respectively. A countermeasure deliverable is usually specific and extensive enough to require validation in habitat service operation.
- 4. **Standard** A working group integration of all feedback and discovery to which operation conforms by threshold (i.e., by degree). Discovery workgroups may result in a recommendation for a new or updated standard. Standards working groups integrate discoveries into the next iteration of the societal-habitat system, through project-engineering and cooperation-coordination.

2.3.5 The asset coordination life-cycle view of engineering

The asset management lifecycle (a.k.a., asset lifecycle management, ALM) is a process for coordinating ("managing") the usage (and maintenance) of a support service 'asset' (or 'object') throughout its lifetime (or period of service). Each assets lifecycle is defined by a series of stages:

1. Procurement/access coordination

- A. Set requirements for purchasing the asset
 - 1. Based on inventory, consumption, and labor rates
 - i. Make purchase order
 - 1. Track purchase until delivery
- 2. Inbound/outbound service coordination

- A. Inbound services
 - 1. Receive shipment
 - 2. Unpackage shipment
 - 3. Reconcile shipment with purchase order (itemized checklist) to ensure accuracy
 - 4. Tag asset for tracking in system
- A. Outbound services
- 1. Package asset (for deliver to end location)

3. Inventory coordination

- A. Storage Assets not yet ready to be delivered to an end location are deposited in an inventory (organized for streamlined storage and retrieval)
 - Inventory cycle counts (inventory surveys) ensure that min/max levels are maintained and accurately reflected in the asset management database

4. Deployment coordination

- A. Request/demand an asset is requested for use
- B. Retrieval an asset is retrieved from inventory
- C. Provisioning ("to make something available or ready to use") final configuration of system for specific use

D. Access - by user for usage

- 5. Re-assignment coordination
 - A. Return access -
 - 1. Still has useful life?
 - 2. Does not still have useful life?
 - 3. Event
 - i. Lost
 - ii. Return to inventory
 - iii. Return for de-composition
 - iv. Return for repair

More simply, the asset lifecycle consists of

- 1. Asset objective communicate and plan asset
- 2. Asset model design asset.
- 3. **Asset construction** code/build and test of asset.
- 4. **Asset deployment** integration and operation
- 5. **Asset usage** the asset is used by the user and maintained/operated by asset technicians.
- 6. **Asset return** the return of the asset to inventory, or for de-cycling.

2.3.6 Asset life-cycle software

Current asset lifecycle software solutions include:

- Autodesk fusion product lifecycle
- Service life-cycle coordination (application, asset management lifecycle)

3 [Engineering] Life-cycle processes

The socio-technical engineering process is a multi-stage method that results in a highly predictable societal design materialization.

3.1 Initiation and planning stage

The output work products for this stage are:

- 1. Issue articulation [initial]
- 2. Project coordination plan [initial]
- 3. Project charter [initial]
- 4. Maintenance plan [initial]
- 5. Configuration Coordination Plan [initial]

3.2 Requirements definition stage

The requirements definition phase starts with establishing a functional baseline from which to do future work.

3.2.1 Establish functional baseline

A.k.a., System requirements baseline.

The functional baseline is the main technical work product of the <u>Requirements Definition Stage</u>. The system requirements are baselined after the Project Team's formal approval of the Requirements Specification. Once the requirements are baselined, any changes to the requirements must be coordinated under change control procedures.

Clarification: *To be "baselined" means to have been formally determined (or, selected).*

The output work products for this stage are:

- 1. Project coordination plan [revised]
- 2. Requirements specification [initial]
- 3. Requirements Traceability Matrix [initial]
- 4. Maintenance plan [revised]
- 5. Configuration Coordination Plan [revised]
- 6. Organizational continuity plan [revised]
- 7. Data dictionary [revised]

3.3 Functional design stage

During the functional design stage, the overall structure of the product is defined from a functional viewpoint. The goal of this stage is to define and document the functions of the product to the extent necessary to obtain the system owner and users understanding and approval and to the level of detail necessary to build the system design.

The deliverable of the functional design stage is the

Functional Design [Document].

The high-level activities are presented in the sections listed below.

- 1. Determine system structure
- 2. Design content of system inputs and outputs
- 3. Design user interface
- 4. Design system interfaces
- 5. Design system security controls
- 6. Build logical model
- 7. Build data model
- 8. Develop functional design
- 9. Select system architecture

The output work products for this stage are:

- 1. Project coordination plan [revised]
- 2. Functional design document [final]
- 3. Maintenance Plan [revised]
- 4. Requirements specification [final]
- 5. Requirements Traceability Matrix [revised]
- 6. Configuration Coordination Plan [revised]
- 7. Organizational continuity plan [revised]
- 8. Data dictionary [final]

3.3.1 The functional design specification

The functional design process maps the "what to do" of the Requirements Specification into the "how to do it" of the design specifications. The functional design describes the logical system flow, data organization, system inputs and outputs, processing rules, and operational characteristics of the product from the user's point of view. The functional design is not concerned with the software or hardware that will support the operation of the product or the physical organization of the data or the programs that will accept the input data, execute the processing rules, and produce the required output. The focus is on the functions and structure of the components that comprise the product. The functional design describes how the product will be structured to satisfy the requirements identified in the Requirements Specification. It is a description of the structure, components, interfaces, and data necessary before development can begin.

The functional design is a model or representation of the system that is used primarily for communicating design information to facilitate analysis, planning, and coding decisions. It represents a partitioning of the system into design entities and describes the important properties and relationships among those entities. Design descriptions may be produced as documents, graphic representations, formal design languages, and records in a database.

Within the functional design, the design entities can be organized and presented in any number of ways. The goal of this activity (Read: develop the functional design) is to compile the design entities and their associated attributes in a manner that facilitates the access of design information from various viewpoints (e.g., project coordination, engineering development, quality assurance, and testing). Also, the design entities and their attributes must be described in terms that are understandable to the system users.

Prototyping of system functions can be helpful in communicating the design specifications to the system users. Prototypes can be used to simulate one function, a module, or the entire product. Prototyping is also useful in the transition from the functional design to the system design.

3.3.2 Determine system structure

A hierarchical approach is useful for determining the structure and components of the system. System decomposition is one hierarchical approach that divides the system into different levels of abstraction. Decomposition is an iterative process that continues until single purpose components (i.e., design entities or objects) can be identified. Decomposition is used to understand how the product will be structured, and the purpose and function of each entity or object.

The goal of the decomposition is to create a highly cohesive design. A design exhibits a high degree of cohesion if each design entity in the system unit is essential for that unit to achieve its purpose.

Several reliable methods exist for performing system decomposition. Select a method that enables the design of simple, independent entities. Functional design and object-oriented design are two common approaches to decomposition. These approaches are not mutually exclusive. Each may be applicable at different times in the design process.

3.3.2.1 Tasks to determine system structure

The system decomposition activity includes the following tasks.

- 1. Identify design entities
- 2. Identify design dependencies

3.3.3 Identify design entities

Design entities result from a decomposition of the system requirements. A design entity is an element (or object) of a design that is structurally and functionally distinct from other elements and is separately named and referenced. The number and type of entities required to partition a design are dependent on a number of factors, such as the complexity of the product, the design method used, and the development environment. The objective of design entities is to divide the product into separate components that can be coded, implemented, changed, and tested with minimal effect on other entities. A design entity attribute is a characteristic or property of a design entity. It provides a statement of fact about an entity. The following are common attributes that should be considered for each design entity.

- Assign a unique name to each entity.
- Classify each entity into a specific type. The type may describe the nature of the entity, such as a sub-program or module; or a class of entities dealing with a particular type of information.
- Describe the purpose or rationale for each entity. Include the specific functional and performance requirements for which the entity was created.
- Describe the function to be performed by each entity. Include the transformation applied to inputs by the entity to produce the desired output.
- Identify all of the external resources that are needed by an entity to perform its function.
- Specify the processing rules each entity will follow to achieve its function. Include the algorithm used by the entity to perform a specific task and contingency actions in case expected processing events do not occur.
- Describe the data elements internal to each entity. Include information such as the method of representation, format, and the initial and acceptable values of internal data. This description may be provided in the data dictionary.

3.3.4 Identify design dependencies

Design dependencies describe the relationships or interactions between design entities at the module, process, and data levels. These interactions may involve the initiation, order of execution, data sharing, creation, duplication, use, storage, or destruction of entities.

Identify the dependent entities of the system design, describe their coupling, and identify the resources required for the entities to perform their function. Also define the strategies for interactions among design entities and provide the information needed to perceive how, why, where, and at what level actions occur.

Dependency descriptions should provide an overall picture of how the product will work. Data flow diagrams, structure charts, and transaction diagrams are useful for showing the relationship among design entities.

The dependency descriptions may be useful in producing the system integration plan by identifying the entities that are needed by other entities and that must be developed first. Dependency descriptions can also be used to aid in the production of integration test cases.

3.3.5 Design content of system inputs and outputs

Design the content and format for each of the product inputs and outputs based on the system input and output requirements identified during the Requirements

3.3.3.1 Attributes of design entities

Definition Stage. Involve the system users in the design process to make certain that their needs and expectations are being met.

Document the design for the system inputs and outputs in accordance with the project design standards. Discuss the designs with the system owner and users and submit completed designs for their review and approval. The approved designs will be incorporated into the Functional Design Document.

3.3.6 Design user interface

Design a user interface that is appropriate for the users, content, and operating environment for the product. Determine interface levels for all categories of users. For interactive user environments, prototype the user interface. Arrange for users to experiment with the prototypes so that design weaknesses in the interface can be identified and resolved early. Use prototypes to gain user acceptance of the interface.

3.3.7 Design system interface

Develop a design depicting how the product will interface with other systems based on the system interface requirements identified in the Requirements Definition Stage. Submit the applicable interface designs for review by the system owner or system administrator for each system that will interface with the product. Any incompatibilities with the interfaces will be identified early in the design process and corrective actions can be initiated to assure each interface is properly designed and coded.

3.3.8 Design system controls

Design the access (security) controls that will be incorporated into the product based on the access requirements identified during the Requirements Definition Stage.

3.3.8.1 Design system controls procedure

Use the following procedure to implement the design process.

- Identify the users and organizations that will have access to the product. Indicate what access restrictions they will have. All persons in a work area may not have the same access level. Controls should be implemented to assure that materials and systems requiring protection are not accessed by unauthorized individuals.
- Identify controls for the product, such as the user identification code for system access and the network access code for the network on which the product will reside.
- Identify whether access restrictions will be applied at the system, subsystem, transaction, record, or

data element levels. Sensitive information must be protected in accordance with State of Michigan directives.

- Identify physical safeguards required to protect hardware, software, or information from natural hazards and malicious acts.
- Identify communications access (security) requirements.

3.3.9 Build logical model

The logical model defines the flow of data through the system and determines a logically consistent structure for the system. Each module that defines a function is identified, interfaces between modules are established, and design constraints and limitations are described. The focus of the logical model is on the real-world problem or need to be solved by the product.

A logical model has the following characteristics:

- Describes the final sources and destinations of data and control flows crossing the system boundary rather than intermediate handlers of the flows.
- Describes the net transfer of data across the system boundary rather than the details of the data transfer.
- Provides for data stores only when required by an externally imposed time delay.

When building a logical model, the organization of the model should follow the natural organization of the product's subject matter. The names given to the components of the model should be specific. The connections among the components of the model should be as simple as possible.

The logical model should be documented in user terminology and contain sufficient detail to obtain the system owner's and users' understanding and approval. Use data flow diagrams to show the levels of detail necessary to reach a clear, complete picture of the product processes, data flow, and data stores.

Maintain the logical model and data flow diagrams for incorporation into the Functional Design Document. Keep the logical model and diagrams up-to-date. They will serve as a resource for planning enhancements during maintenance, particularly for enhancements involving new functions.

3.3.10 Build data model

A data model is a representation of a collection of data objects and the relationships among these objects (i.e., representation of information about a form or a process).

The data model is used to provide the following functions:

• Transform the sense entities into data entities.

- Transform the socio-technical rules into data relationships.
- Resolve the many-to many relationships as intersecting data entities.
- Determine a unique identifier (key) for each data entity.
- Add the attributes (facts) for each data entity.
- Document the integrity rules required in the model.
- Determine the data accesses (navigation) of the model.

The data dictionary is developed in this stage. Its purpose it to catalogue every known data element used in the user's work and every system-generated data element. Data elements are documented in detail to include attributes, known constraints, input sources, output destinations, and known formats.

The data dictionary can serve as a central repository of information for both developers and end users. The dictionary can include business rules, processing statistics, and cross-referencing information for multiple vendor environments.

To expand the data dictionary, define, analyze, and complete data definitions using the following steps.

- Identify data needs associated with various system features.
- Match (verify) data needs with the data dictionary.
- Match the data dictionary with specific data structures.
- Create data record layouts.
- Ensure that all data can be maintained through add, change, or delete functions.

3.3.11 Develop functional design

Major work products are the Functional Design and the revised Requirements Traceability Matrix. Each requirement identified in the Requirements Specification must be traceable to one or more design entities. This traceability ensures that the product will satisfy all of the requirements and will not include inappropriate or extraneous functionality. Expand the Requirements Traceability Matrix developed in the Requirements Definition Stage to relate the functional design to the requirements.

The following tasks are involved in developing the functional design.

- 1. Develop Functional Design Document
- 2. Conduct Functional Design Review

3.3.11.1 Develop functional design document

The Functional Design Document defines the functions of the system in user terminology and provides a firm

foundation for the development of the system design. The Functional Design Document should be written from the system users' perspective. This document provides the users with an opportunity to review and provide input to the product design before system design work is completed.

3.3.11.2 Conduct functional design review

The Functional Design Review is a formal technical review of the basic design approach. The primary goal of the Functional Design Review is to demonstrate the ability of the system design to satisfy the project requirements. The review may be a series of presentations by the project team to the system users, functional area Team members (a.k.a., points-of-contact). Vendors may be invited to participate in the Functional Design Review when an off-the-shelf software product or hardware item is being considered for the system architecture.

The work product is the Functional Design Document. The review of this document will result in one of the following outcomes:

- Selection (a.k.a., approval) indicates that the functional design is satisfactorily completed.
- Hold selection (a.k.a., hold approval, contingent approval) - indicates that the functional design is not considered accomplished until the satisfactory completion of identified action items.
- Non-selection (a.k.a., disapproval) indicates that the functional design is inadequate. Another Functional Design Review is required, once specified changes to the functional design are completed.

Conduct the Functional Design Review to perform the following verifications:

- Evaluate the progress, technical adequacy, and risk mitigation of the selected design approach. Determine whether the design approach is being followed by the project team.
- Evaluate the progress, technical adequacy, and risk mitigation of the selected test approach. Review the following items:
 - System test requirements from the requirements specification document.
 - Organization and responsibilities of group conducting tests.
 - Planned format, content, and distribution of test reports.
 - Planned resolution of problems and errors identified during testing.
 - Retest procedures.
 - Change control and configuration management of test items.

- Special test tools not required as deliverables.
- Evaluate the techniques to be used to meet quality assurance requirements.
- Establish the existence and compatibility of the physical and functional interfaces.
- Determine whether the functional design embodies all of the product requirements.
- Verify that the design represents a system that can meet the functional, data, and interface requirements.
- Demonstrate any rapid design prototypes used to make design decisions.
- Identify potential high risk areas in the design and any requirements changes that could reduce risk.
- Review to assure that consideration has been given to optimizing the maintainability and maintenance aspects of the product.

The following items should be considered for review and evaluation during the Functional Design Review:

- Functional flows: Indicate how the system functional flows map the software and interface requirements to the individual high-level components of the product.
- Storage allocation data: Describe the manner in which available storage is allocated to individual components. Timing, sequencing requirements, and relevant equipment constraints used in determining the allocation should be included.
- **Control functions**: Describe the executive control and start/recovery features of the product.
- **Component structure**: Describe the high-level structure of the product, the reasons for choosing the components, the development technique that will be used within the constraints of available computer resources, and any support programs that will be required in order to develop and maintain the product and allocated data storage.
- **Security**: Identify the security requirements and provide a description of the techniques to be used for implementing and maintaining security within the product.
- Information systems engineering facilities: Describe the availability, adequacy, and planned utilization of the information systems engineering facilities including both Government-provided and commercially available facilities.
- Information systems engineering facility versus the operational system: Describe any unique design features that exist in the functional design in order to allow use within the information systems engineering facility that will not exist in the operational product. Provide information on the

design of support programs not explicitly required for the operational system that will be generated to assist in the development of the product.

- **Development tools**: Describe any special tools (e.g., simulation, data reduction, or utility tools) that are not deliverables, but are planned for use during systems development.
- **Test tools**: Describe any special test systems, test data, data reduction tools, test computer software, or calibration and diagnostic software that are not deliverables, but are planned for use during development.
- Commercial resources: Describe commercially available computer resources, including any optional capabilities (e.g., special features, interface units, special instructions, controls, formats).
 Identify any limitations of commercially available equipment (e.g., failure to meet user interface, safety, and maintainability requirements) and identify any deficiencies.
- Existing documentation: Maintain a file and have available for review any existing documentation supporting the use of commercially available computer resources.
- Support resources: Describe the resources necessary to support the product during engineering, installation, and operational state (e.g., operational and support hardware and software personnel, special skills, human factors, configuration management, testing support, documentation, and facilities/space management).
- **Standards**: Describe any standards or guidelines that must be followed.
- Operation and support documentation: Describe the documentation that will be produced to support the operation and maintenance of the product.

3.3.12 Select system architecture

When the system architecture for the product has not been predetermined by the existing environment of the system users, evaluate system architecture alternatives to determine which one best satisfies the project requirements. Select the specific design based on the pre-determined value conditions.

The following tasks are involved in selecting a system architecture:

- 1. Evaluate system architecture alternatives
- 2. Select system architecture

3.3.12.1 Evaluate system architecture alternatives

Consider system architecture alternatives within the

organizations architecture guidelines and standards conditions that enable the project objectives and requirements to be achieved.

The following procedure provides one approach for evaluating the architecture alternatives:

- Conduct an analysis to determine the most effective and conditionally aligned alternative.
- Create and evaluate a data flow diagram for each alternative.
- Identify how users would interact with the features associated with each alternative.
- Create a list of the risks associated with each alternative and develop a plan for mitigating each risk.
- Compare the performance capabilities of each alternative.
- Follow the societal-level decision system.

3.4 System design stage

The goal of this stage is to translate the user-oriented functional design specifications into a set of technical, realization-oriented system design specifications; and to design the data structure and processes to the level of detail necessary to plan and execute the Construction and Implementation Stages. General module specifications should be produced to define what each module is to do, but not how the module is to be coded. Effort focuses on specifying individual routines and data structures while holding constant the structure and interfaces developed in the previous stage. Each module and data structure is considered individually during detailed design with emphasis placed on the description of internal and procedural details. The primary work product of this stage is a system design that provides a specification (blueprint) for the materialization (i.e., [en] coding) of individual modules and elements.

The following items provide input to this stage:

- Functional design
- Maintenance plan
- Requirements specification
- Requirements traceability matrix
- Software configuration management plan
- Project coordination plan
- Access plan
- Data dictionary

The high-level activities for this stage are:

- 1. Design specifications for modules
- 2. Design physical model and database structure
- 3. Develop integration test considerations

- 4. Develop system test considerations
- 5. Develop conversion plan
- 6. Develop system design

The output work products for this stage are:

- 1. Project coordination plan [revised]
- 2. Conversion Plan [initial]
- 3. Maintenance Plan [revised]
- 4. Requirements Traceability Matrix [revised]
- 5. Configuration Management Plan [final]
- 6. System Design Document [final]
- 7. Test Plan [initial]
- 8. Test Type Approach and Reports [initial]
- 9. Test Cases [initial]

3.4.1 System design

The system design is the main technical work product of the System Design Stage. The system design translates requirements into precise descriptions of the components, interfaces, and data necessary before coding and testing can begin. It is a blueprint for the Construction Stage based on the structure and data model established in the Functional Design Stage.

Once the system design is baselined, any changes to the design must be managed under change control procedures. Approved changes must be incorporated into the System Design Document.

It is important for the system users to understand that some changes to the baselined system design may affect the project scope and therefore can change the project resources, schedule, etc. It is the responsibility of the project coordinator and team to identify system user requested changes that would result in a change of project scope; evaluate the potential impact to the project elements (resources, schedule, etc.); and notify the system user of the project planning revisions that will be required to accommodate their change requests.

3.4.2 Design specifications for modules

Expand the functional design to account for each major action that must be performed and each data object to be managed. Detail the design to a level such that each sub-system represents a function that a developer will be able to develop.

The following procedure facilitates in designing the module specifications:

- Identify a structure for each action needed to meet each function or requirement in the Requirements Specification and the data dictionary.
- Identify any routines and structures that may be available as reusable objects.
- Identify structures that must be designed and developed (custom-built). Assign a name to each

structure and object that is functionally meaningful. Identify the system features that will be supported by each structure.

- Specify each structure interface. Update the data dictionary to reflect all program and object interfaces changed while evolving from the functional to the system design.
- Define and design significant attributes of the structures to be custom-built.
- Expand the structure interfaces to include control items needed for design validity (e.g., error and status indicators).
- Combine similar structures and objects. Group the design entities into modules based on closely knit functional relationships. Formulate identification labels for these modules.
- Show dependencies between data structures and physical structures.
- Change the design to eliminate features that reduce maintainability or reusability (i.e., minimize coupling between programs and maximize the cohesion of programs).

Document the system design primarily in the form of diagrams. Supplement each diagram with text that summarizes the function (or data) and highlights important performance and design issues.

When using structured design methods, the design diagrams should:

- Depict the product as a top-down set of diagrams showing the control hierarchy of all programs to be implemented.
- Define the function of each structure.
- Identify data and control interfaces between programs.
- Specify files, records, and global data accessed by each program.
- When using object-oriented or data-centered design methods, the design diagrams should:
- Show the data objects to be managed by the product.
- Specify the program functions to be included within each object.
- Identify functional interfaces between objects.
- Specify files and records comprising each object.
- Identify relationships between data files.

Standards for specifications may be provided by government agencies, standards organizations (SAE, AWS, NIST, ASTM, ISO, CEN, US DoD, etc.), trade associations, corporations, and others:

• The following British standards apply to specifications:

- BS 7373-1:2001 Guide to the preparation of specifications [4]
- BS 7373-2:2001 Product specifications. Guide to identifying criteria for a product specification and to declaring product conformity [5]
- BS 7373-3:2005, Product specifications. Guide to identifying criteria for specifying a service offering
- The following NIST standards apply [<u>nist.gov</u>]:
 - IEEE P7001 Transparency of autonomous systems
 - IEEE P7003 Algorithmic bias considerations
 - IEEE P7007 Ontological standard for ethically driven robotics and automation systems
 - IEEE P7008 Standard for ethically driven nudging for robotic, intelligent and autonomous systems
 - IEEE P7009 Standard for fail-safe design of autonomous and semi-autonomous systems
 - IEEE P7010 Well-being metrics standard for ethical artificial intelligence and autonomous systems

3.4.3 Design physical model and database structure

The physical model is a description of the dynamics, data transformation, and data storage requirements of the system. The physical model maps the logical model created during the Functional Design Stage to a specific technical solution.

3.4.4 Develop conversion plan

A.k.a., Develop transition plan.

If the product will replace an existing system, then develop a Conversion Plan. The major elements of the Conversion Plan are to develop conversion procedures, outline the installation of new and converted structures, coordinate the development of structural-conversion, and plan the implementation of the conversion procedures.

System conversion should include a confirmation of file integrity. Determine what the output in the new system should be compared with the current system, and ensure that the files are synchronized. The objective of file conversion is new files that are complete, accurate and ready to use.

Many factors influence conversion, such as the design of the current and new systems and the processes for input, storage, and output. Understanding the structures function in the old system and determining if the function will be the same or different in the new system is of major importance to the Conversion Plan. The structure of the system to be converted can limit the development of the system and affect the choice of structure. Consider the following factors during the development of the Conversion Plan:

- Determine if any portion of the conversion process should be performed manually.
- Determine whether parallel runs of the old and new systems will be necessary during the conversion process.
- Understanding the function of the structure in the old system and determining if the use will be the same or different in the new system is important.
- The order that information is processed in the two systems influences the conversion process.
- User work and delivery schedules, timeframes for reports and end-of-year procedures, and the criticality of the data help determine when conversion should be scheduled.
- Determine whether availability and use should be limited during the conversion.
- Plan for the disposition of obsolete or unused structure that is not converted.

3.4.5 Develop system design

Major work products include the System Design Document and the updated Requirements Traceability Matrix. Each requirement identified in the Requirements Specification must be traceable to one or more design entities. This traceability ensures that the product will satisfy all of the requirements and will not include inappropriate or extraneous functionality. Revise the Requirements Traceability Matrix developed in the Requirements Definition Stage to relate the system design to the requirements.

The following tasks are involved in developing the system design.

- 1. Develop System Design Document
- 2. Conduct System Design Review

3.4.5.1 Develop system design document

The System Design Document records the results of the system design process and describes how the system will be structured to satisfy the requirements identified in the Requirements Specification. The System Design Document is a translation of the requirements into a description of the structure, components, interfaces, and data necessary to support the construction process.

3.4.5.2 Conduct system design review

The System Design Review is a formal technical review of the system design. The purpose of the review is to demonstrate to the system users that the system design can be implemented on the selected platform and accounts for all requirements and accommodates all design constraints (e.g., performance, resource, and reliability requirements). The design review should include a review of the validity of algorithms needed to perform critical functions.

3.5 Construction stage

The goal of this stage is to translate the set of technical system design specifications into a language the constructor can understand and execute. Construction may involves materializing, coding, validation and unit testing by a developer. Plans are developed for the installation of the operating environment hardware and software. A training program is designed and a Training Plan that describes the system is produced.

The activities in this stage result in the transformation of the system design into the first complete executable (operatable) representation of the product.

The high-level activities for this stage are:

- 1. Establish Development Environment
- 2. Develop Programs
- 3. Conduct Unit Testing
- 4. Establish Development Baselines
- 5. Plan Transition to Operational Status
- 6. Generate Operating Documentation
- 7. Develop Training Plan
- 8. Develop Installation Plan

The output work products for this stage are:

- 1. Project coordination plan [revised]
- 2. Maintenance Plan [revised]
- 3. Requirements Traceability Matrix [revised]
- 4. Conversion Plan [revised]
- 5. Test Type Approach and Reports [revised]
- 6. Test Cases [revised]
- 7. Transition Plan [initial]
- 8. Installation Plan [initial]
- 9. Training Plan [initial]
- 10. Operating Documentation [initial]
 - A. Users Manual
 - B. Developer's Reference Manual
- 11. System units and modules [initial]

3.5.1 Establish Development Environment

Establishing the development environment involves assembling and installing the hardware, software, equipment, databases, and other items required to support the construction effort.

Before being integrated into or used to support the product, vendor products should be tested to verify that the product satisfies the following objectives:

- The product performs as advertised/specified.
- The product's performance is acceptable and

predictable in the target environment.

- The product fully or partially satisfies the project requirements.
- The product is compatible with the project team's other hardware and software tools.

Time should be planned for the project team to become familiar with new products. Ensure that the project team members who will use the hardware or software obtain proper training. This may involve attendance at formal training sessions conducted by the vendor or the services of a consultant to provide inhouse training.

3.5.2 Conduct unit testing

Unit testing is used to verify the input and output for each module. Successful testing indicates the validity of the function or sub-function performed by the module and shows traceability to the design. During unit testing, each module is tested individually and the module interface is verified for consistency with the design specification. All important processing paths through the module are tested for expected results. All error handling paths are also tested.

Unit testing is driven by test cases and test data that are designed to verify requirements, and to exercise all program functions, edits, in-bound and out-bound values, and error conditions identified in the program specifications. If timing is an important characteristic of the module, tests should be generated that measure time critical paths in average and worst-case situations.

Plan and document the inputs and expected outputs for all test cases in advance of the tests. Log all test results. Analyze and correct all errors and retest the unit using the scenarios defined in the test cases. Repeat testing until all errors have been corrected.

While unit testing is generally considered the responsibility of the developer, the project coordinator or lead developer should be aware of the unit test results.

Completion of unit testing for a component signifies internal project delivery of a component or module for integration with other components.

3.5.3 Establish development baseline

A development baseline is an approved "build" of the product. A build can be a single component or a combination of components. The first development baseline is established after the first build is completed, tested, and approved by the project manager or lead developer. Subsequent versions of a development baseline should also be approved. The approved development baseline for one build supersedes that for its predecessor build.

Conduct internal build tests such as regression, functional, performance, and reliability. Regression tests are designed to verify that capabilities in earlier

builds continue to work correctly in subsequent builds. Functional tests focus on verifying that the build meets its functional and data requirements and correctly generates each expected display and report. Performance and reliability tests are used to identify the performance and reliability thresholds of each build.

Once the first development baseline is established, any changes to the baseline must be managed under the change control procedures. Approved changes to a development baseline must be incorporated into the next build of the product and revisions made to the affected work products (e.g., Requirements Specification, System Design Document, and Program Specifications).

Document the internal build test procedures and results. Identify errors and describe the corrective action that was taken. Place a copy of the internal build test materials in the Project Test File.

Maintain configuration control logs and records as required. Expand the Requirements Traceability Matrix developed in the Requirements Definition Stage.

3.5.4 Plan transition to operational status

Successful transition from acceptance testing to full operational use of the product depends on planning the transition long before the product is installed in its operational environment. In planning for the transition, quantify the operational needs associated with the product and describe the procedures that will be used to perform the transition.

Rely on experience and data gathered from previous, similar projects to define these needs. Develop a Transition Plan that describes the detailed plans, procedures, and schedules that will guide the transition process. Coordinate development of the plan with the operational and maintenance personnel. The following issues should be considered in the preparation of a Transition Plan:

- Develop detailed operational scenarios to describe the functions to be performed by the operational support staff, maintenance staff, and users.
- Document the release process. If development is incremental, define the particular process, schedule, and acceptance criteria for each release.
- Describe the development or migration of data, including the transfer or reconstruction of historic data. Schedule ample time for the system owner and user to review the content of reconstructed or migrated data files to reduce the chance of errors or omissions.
- Specify problem identification and resolution procedures for the operational product.
- Define the configuration management procedures that will be used for the operational product. Ideally, the methods defined in the Software Configuration Management Plan that were employed during product development can

continue to be used for the operational product.

- Define the scope and nature of support that will be provided by the project team during the transition period.
- Specify the organizations and individuals who will be responsible for each transition activity, ensuring that responsibility for the product by the operations and maintenance personnel increases progressively.
- Identify products and support services that will be needed for day-to-day operations or that will enhance operational effectiveness.

3.5.5 Generate operating documentation

Plan, organize, and write the operating documentation that describes the functions and features of the product from the users point-of-view. The different ways that users (including system administration and maintenance personnel) will interact with the product must be considered. The needs of the users should dictate the document presentation style and level of detail. Responsibilities for changing and maintaining the documents should be described in each document.

The following are typical operating documents for a large project:

- Users Manual/Online Help Screens
- Developer's Reference Manual
- InterSystem Team Manual (a.k.a., Systems Administration Manual)
 - Database Administration Manual
- Operations Manual

It is recommended that a technical writer be involved in the generation of all operating documents. A technical writer works closely with the project team to ensure that documents are grammatically correct; comply with applicable standards; and are consistent, readable, and logical.

Use the following procedure to develop the operating documentation.

- Identify the operating documents that need to be developed. Determine if any of the documents can be combined or delivered as multiple volumes.
- Determine whether the documents should be provided as printed material, standalone electronic files, online documentation accessed through the product, or a combination.
- Determine the best presentation method or combination of methods required for each of the documents, such as a traditional manual, quick reference guide or card, or online help.
- Identify all of the features of the user interface and

the tasks users will perform.

- Identify the users' needs and experience levels to determine:
 - The amount of user interaction, level of interaction, and whether the interaction is direct or indirect.
 - The appropriate level of detail (e.g., the Users Manual should not contain highly technical terms and explanations that may confuse or frustrate a user).
- Determine the document content and organization based on whether the document will be used more as an instructional tool or a reference guide.
- Develop descriptions of each function and feature of the product and organize the information to facilitate quick, random access.
- Provide appropriate illustrations and examples to enhance clarity and understanding.
- Establish a schedule for the documents to be reviewed after the product goes into production. Operating documents must be kept up-to-date as long as the product remains in production.

The following tasks describe the minimum requirements for operating documentation.

- Produce Users Manual
- Produce Developer's Reference Manual

3.5.5.1 Produce users manual

The Users Manual provides detailed information users need to access, navigate through, and operate the product. Users rely on the Users Manual to learn about the product or to refresh their memory about specific functions. A Users Manual that is organized functionally so that the information is presented the same way the product works helps users understand the flow of menus and options to reach the desired functions.

Different categories of users may require different types of information. A modular approach to developing the Users Manual to accommodate the needs of different types of users eliminates duplication and minimizes the potential for error or omission during an amendment or update. For example, separate general information that applies to all users from the special information that applies to selected users such as system administrators or database administrators. The special information can be presented in appendixes or supplements that are only provided to the users who need the information.

Write the draft Users Manual in clear, non-technical terminology that is oriented to the experience levels and needs of the user(s).

For very small projects, a quick reference guide or card may be more appropriate than a full-scale Users Manual.

For projects of any size, a quick reference card may be developed as a supplement to more detailed user documentation.

The following are typical features of a users manual.

- Overview information on the history and background of the project and the architecture, operating environment, and current version or release of the product.
- Instructions for how to install, setup, or access the product.
- Complete coverage of all functions, presented in a logical, hierarchical order.
- Accurate pictures of screens and reports, ideally with data values shown, so the user can easily relate to examples.
- In-depth examples and explanations of the areas of the product that are most difficult to understand.
- Clear delineation of which features are accessible only to specific users.
- Instructions on accessing and using online help features.
- Procedures for data entry.
- Descriptions of error conditions, explanations of error messages, and instructions for correcting problems and returning to the function being performed when the error occurred.
- Instructions for performing queries and generating reports.
- Who to contact for help or further information.

3.5.5.2 Produce developer's reference manual

The Developer's Reference Manual contains information about program development used by the maintenance staff to maintain the programs, databases, interfaces, and operating environment. The Developer's Reference Manual should provide an overall conceptual understanding of how the product is constructed and the details necessary to implement corrections, changes, or enhancements.

The Developer's Reference Manual describes the logic used in developing the product and the functional and system flow to help the maintenance staff understand how the programs fit together. The information should enable a developer to determine which programs may need to be modified to change a system function or to fix an error.

Use appendixes to provide detailed information that is likely to change as the product is maintained. For example, a list of program names and a synopsis of each program could be included as an appendix.

The following are typical features of a Developer's Reference Manual.

• A description of the technical environment, including versions of the development language(s) and other proprietary software packages.

- A brief description of the design features including descriptions of unusual conditions and constraints.
- An overview of the architecture, program structure, and program calling hierarchy.
- The design and coding practices and techniques used to develop the product.
- Concise descriptions of the purpose and approach used for each program.
- Layouts for all data structures and files used in the product.
- Descriptions of maintenance procedures, including configuration management, program checkout, and system build routines.
- The instructions necessary to compile, link, edit, and execute all programs.
- Manual and automated backup procedures.
- Error-processing features.

3.5.6 Develop training plan

A Training Plan defines the training needed to implement and operate the product successfully. The Training Plan should address the training that will be provided to the system users, and InterSystem Team Operators and Maintenance personnel. When new hardware or software is being used, affected personnel will need hands-on experience before bringing the new system (equipment and/or software) into daily operation.

Training must address both the knowledge and the skills required to operate and use the system effectively.

Complete the Training Checklist to ensure that all activities and work products are complete.

Place a copy of the initial Training Plan and completed Training Checklist in the Project File. The plan will be reviewed and updated during the Testing Stage.

Design the training to accomplish the following objectives:

- Provide trainees with the specific knowledge and skills necessary to perform their work.
- Prepare training materials that will sell the product as well as instruct the trainees. The training should leave the trainees with the enthusiasm and desire to use the new product.
- Account for the knowledge and skills the trainees bring with them, and use this information as a transition to learning new material.
- Anticipate the needs for follow-on training after the product is fully operational, including refresher courses, advanced training, and repeats of basic courses for new personnel.
- Build in the capability to update the training as the product evolves.

The Training Plan should address the following issues:

- Identify the organization's training policy for meeting training needs.
- Ensure InterSystem Teams have received orientation on the training.
- Ensure training courses prepared at the organization level are developed and maintained according to organizational standards.
- Ensure a procedure for required training is established and used to determine whether individuals already possess the knowledge and skills required to perform in their designated area.
- Ensure measurements are made and used to determine the status of training activities.
- Ensure that training activities are reviewed on a periodic basis.
- Ensure the training is independently evaluated on a periodic basis for consistency with, and relevance to, the organization's needs.
- Ensure the training activities and work products are reviewed and/or audited and the results are reported.
- Ensure training records are properly maintained.

Prepare a draft Training Plan that describes the training and at a minimum addresses the following issues.

- Identifies personnel to be trained. Review the list of trainees with the system owner and users to ensure that all personnel who should receive training have been identified.
- Defines the overall approach to training and the required training courses.
- Establishes the scope of the training needed for users, management, operations, and maintenance personnel.
- Defines how and when training will be conducted. Specify instructor qualifications, learning objectives, and mastery or certification requirements (if applicable).
- Identifies any skill areas for which certification is necessary or desirable. Tailor the training to the certification requirements.
- Establishes a preliminary schedule for the training courses. The schedule must reflect training requirements and constraints outside the project. Schedule individual courses to accommodate personnel who may require training in more than one area. Identify critical paths in the training schedule such as the time period for the product's installation and conversion to production status.
- Defines the required course(s), outlines their content and sequence, and establishes training milestones to meet transition schedules.
- Tailors the instruction methods to the type of material being presented. Include classroom

presentation, interactive computer-assisted instruction, demonstrations, individual video presentations, and hands-on experience, either live or simulated.

- Identifies trainers who are technically knowledgeable and were involved in the design and development of the system. For projects with extensive and formal training requirements, it may be necessary to provide training for the trainers.
- Consider availability of the following: users, systemtested software, training rooms and equipment, and the completion of system documentation and training materials.

3.5.7 Develop installation plan

The Installation Plan is prepared to specify the requirements and procedures for the full-scale installation of the developed product at the system users' work sites. The plan also addresses the installation of any hardware, software, firmware, and equipment needed to operate the product at each site. In developing an Installation Plan consider each site's requirements for continuity of operations, level of service, and the needs of the project team, users, maintenance personnel, and coordination.

Work closely with the system owner and representatives from the user sites to assure that all site-specific hardware, software, and communications installation requirements are addressed in the Installation Plan.

Ensure any special requirements are adequately documented. Place a copy of the initial Installation Plan in the Project File.

Develop an initial Installation Plan that addresses the following issues:

- Schedule of all installation activities.
- Items to be delivered to each installation site.
- Number and qualifications of personnel performing installation.
- Equipment environmental needs and installation instructions.
- Hardware, software, firmware, tools, documentation, and space required for each installation.
- Special requirements governing the movement of equipment to each site.
- Communications requirements.
- Dependencies among activities affected by installation.
- Installation tests to assure the integrity and quality of the installed product.

3.6 Testing stage

In this stage, components are integrated and tested to determine whether the product meets predetermined functionality, performance, quality, interface, and security requirements. Once the product is fully integrated, system testing is conducted to validate that the product will operate in its intended environment, satisfies all user requirements, and is supported with complete and accurate operating documentation. User Acceptance Testing (UAT) follows System Testing, and requests-accepts feedback from users to make any final adjustments to the system before releasing the product for implementation.

Refer to the Testing Process Manual for more information regarding testing.

The high-level activities for this stage are:

- 1. Conduct Integration Testing
- 2. Conduct System Testing
- 3. Conduct User Acceptance Testing

The output work products for this stage are:

- 1. Project coordination plan [revised]
- 2. Maintenance Plan [revised]
- 3. Requirements Traceability Matrix [final]
- 4. Conversion Plan [revised]
- 5. Test Type Approach and Reports [final]
- 6. Test Cases [final]
- 7. Transition Plan [revised]
- 8. Installation Plan [final]
- 9. Training Plan [final]
- 10. Operating Documentation [final]
 - A. Users Manual
 - B. Developer's Reference Manual

3.6.1 Testing

Testing activities focus on interfaces between and among components of the product, such as functional correctness, system stability, overall system operability, system control, and system performance requirements (e.g., reliability, maintainability, and availability). Testing performed incrementally provides feedback on quality, errors, and design weaknesses early in the integration process.

3.6.2 Conduct integration testing

Integration testing is the first activity in the Testing Stage and requires special attention to preparation. The Pre-Acceptance Checklist, Integration and System Test Checklist, and Testing Package Checklist each provide the necessary steps for their preparation.

During integration, the components constructed by the development personnel, vendors, and reusable code or modules obtained from other sources are assembled into one product. Each assembly is tested in a systematic manner in accordance with the Integration Section of the Test Plan. An incremental approach to integration enables verification that as each new component is integrated, it continues to function as designed and both the component and the integrated product satisfy their assigned requirements.

Given the incremental nature of the Testing Stage, completion and sign-off of the Integration Section of the Integration and System Testing Checklist is required prior to moving on to System Testing.

Refer to the Testing Process Manual for more information regarding integration testing.

Each requirement identified in the Requirements Specification must be tested during integration testing. This traceability ensures that the product will satisfy all of the requirements and will not include inappropriate or extraneous functionality. Expand the Requirements Traceability Matrix developed in the Requirements Definition Stage to relate the integration test to the requirements. Place a copy of the expanded matrix in the Project File.

At the completion of each level of integration testing, a test report is written. The report documents test results and lists any discrepancies that must be resolved before the tested components can be used as the foundation for another integration level. Place a copy of all integration test materials in the Project Test File.

A final test report is generated at the completion of integration testing indicating any unresolved difficulties that require management attention. Place a copy of the final Integration Test Report in the Project File.

Sign-off of the Integration section of the Integration and System Checklist signifies completion of the Integration Testing activities.

A formal reporting system by which detected errors and discrepancies are recorded and fully described is recommended. These reports will help to confirm that all known errors are fixed before delivery of the completed product. Error reports also help to trace multiple instances of the same error or anomalous behavior, so that error correction and prevention assignments can be implemented. The Quality Assurance representative assigned to the project can provide assistance in developing and using an error reporting/tracking system.

3.6.2.1 Integration testing

Integration testing is a formal procedure that must be carefully planned and coordinated with the completion dates of the unit-tested modules. Integration testing begins with a structure where called sub-elements are simulated by stubs. A stub is a simplified program or dummy module designed to provide the response (or one of the responses) that would be provided by the real sub-element. A stub allows testing of calling program control and interface correctness. Stubs are replaced by unit-tested modules or builds as integration testing proceeds. This process continues one element at a time until the entire system has been integrated and tested.

Integration testing may be performed using "bottom up" or "top down" techniques. Most integration test plans make use of both bottom-up and top-down techniques. Scheduling constraints and the need for parallel testing will affect the test approach.

The bottom-up approach incorporates one or more modules into a build; tests the build; and then integrates the build into the structure. The build normally comprises a set of modules that perform a major function of the system. Initially, the function may be represented by a stub that is replaced when the build is integrated.

In the top-down approach, individual stubs are replaced so that the top-level control is tested first, followed by stub replacements that move downward in the structure. Using top-down integration, all modules that comprise a major function are integrated, thereby allowing an operational function to be demonstrated prior to completion of the entire system.

3.6.3 Conduct system testing

A.k.a., Conduct system verification testing.

During system testing, the completely integrated product is tested to validate that the product meets all requirements. System properties and the functional accuracy of logic and numerical calculations are verified under a variety of possible conditions (e.g., both normal and high-load conditions). All operating documents are verified for completeness and accuracy.

System testing is conducted on the system test bed using the methodology and test cases described in the System Test Requirements section of the Requirements Specification document. The system test environment should be as close as possible to the actual production system environment. Either the project team or an independent test team conducts system testing to assure that the system performs as expected and that each function executes without error. The results of each test are recorded and upon completion included as part of the project test documentation.

Note that regression testing is a critical aspect of system testing. It is performed in order to verify that system modifications have not caused unintended effects and that the software or system component still complies with its specified requirements.

When errors are discovered, they should be reviewed by the test team leader to determine the severity and necessary subsequent action. If appropriate, minor problems can be corrected and regression tested by the project team developers within the time frame allotted for the system test. Any corrections or changes to the product must be controlled under configuration management. Major problems may be cause to suspend or terminate the system test, which should then be rescheduled to begin after all of the problems are resolved.

Users may be encouraged to participate in the system tests to gain their confidence in the product

and to receive an early indication of any problems from the user's perspective. Inform users that errors and discrepancies may occur during testing and explain the error correction, configuration management, and retest processes.

Refer to the Testing Process Manual for more information regarding system testing.

Review the draft versions of the operating documents, Training Plan, and Installation Plan. Update the documents as needed. Deliver the final versions of the operating documents, Training Plan, and Installation Plan to the system owner and user for review and approval. Place a copy of the approved documents in the Project File.

Place a copy of all system test materials (e.g., inputs, outputs, results, and error logs) in the Project Test File.

Sign-off of the Integration and System Testing Checklist and the Pre-Acceptance Checklist signifies completion of the System Testing activities.

Generate a test report at the conclusion of the system test process. The report documents the system test results and lists any discrepancies that must be resolved before the software product is ready for acceptance testing. Place a copy of the report in the Project File.

3.6.4 Conduct user acceptance testing

A.k.a., Conduct user validation testing.

Acceptance of a delivered product is the ultimate objective of a development project. Acceptance testing is used to demonstrate the product's compliance with the system owner's requirements and acceptance criteria.

At the system user's discretion, acceptance testing may be performed by the project team, by the system owner and users with support from the project team, or by an independent verification and validation team. Whenever possible, users should participate in acceptance testing to assure that the product meets the users' needs and expectations. All acceptance test activities should be coordinated with the system user(s), operations personnel, and other affected organizations.

Acceptance testing is conducted in the test environment using acceptance test data and test procedures established in the Acceptance Test Requirements section of the Requirements Specification. Testing is designed to determine whether the product meets functional, performance, and operational requirements. If acceptance testing is conducted on an incremental release basis, the testing for each release should focus on the capabilities of the new release while verifying the correct operation of the requirements incorporated in the previous release.

If the project team is not conducting the User Acceptance Test (UAT), training may be required for the personnel performing the testing. The acceptance test participants and their experience with the product and the operating environment should have been identified in the Acceptance Test Requirements within the Requirements Specification. Acceptance testing usually covers the same requirements as the system test. Acceptance testing may cover additional requirements that are unique to the operational environment. The results of each test should be recorded and included as part of the project test documentation.

UAT is typically the final phase in a software development process in which the software is given to the intended audience to be tested for functionality. UAT is done by making the software available for testing by an in-house testing panel comprised of users who would be using the product in real-world applications. UAT is done in order to get feedback from users to make any final adjustments to the programming before releasing the product to the intended user community.

The level of training will depend on the testers' familiarity with the product and the platform on which the product will run. The advantage of having users acceptance test the product is that they are the experts most familiar with the information flow and how the product works.

It is recommended that the operating documents and other test materials be distributed to the test team prior to the actual start of the acceptance test training. This will give the test team time to become familiar with the product and the test process and procedures.

Subject the test environment to strict, formal configuration control to maintain the stability of the test environment and to assure the validity of all tests. Review the acceptance test environment, including the test procedures and their sequence, with the system owner and user before starting any tests.

Testing is complete when all tests have been executed correctly. If one or more tests fail, problems are documented, corrected, and retested. If the failure is significant, the acceptance test process may be halted until the problem is corrected.

Completion and sign-off of User Acceptance Testing is required prior to moving on to the Implementation Stage.

Refer to the Testing Process Manual for more information regarding user acceptance testing.

Sign-off of the User Acceptance Checklist and the Testing Package Checklist signifies completion of the Testing Stage.

Prepare a formal Acceptance Test Report. Summarize the test procedures executed, any problems detected and corrected, and the projected schedule for correcting any open problem reports.

Place a copy of all acceptance test materials in the Project Test File.

3.7 Implementation stage

Implementation of the product is initiated after all testing has been successfully completed. This stage involves the activities required to finalize the install (or conversion) the system and activate the system's operation. The activities associated with this stage should be performed each time the system is installed at a site.

User training may be required to complete the implementation process. A description of the training necessary for developers, testers, users, and operations staff is provided in the Training Plan.

The high-level activities for this stage are:

- 1. Perform Installation Activities
- 2. Conduct Installation Tests
- 3. Transition to Operational Status

The output work products for this stage are:

- 1. Project coordination plan [final]
- 2. Maintenance Plan [final]
- 3. Conversion Plan [final]
- 4. Transition Plan [final]
- 5. Installation test materials [final]
- 6. Operating documents
- 7. Operating system

3.7.1 Perform installation activities

The installation process involves installing, loading, copying, or migrating the system to the production platform and the provision of operating documentation and other support materials at each site.

At each installation site, inspect the facility to assure that site preparation is complete and in accordance with the Installation Plan. Initiate any actions that are needed to complete the preparations. Conduct an inventory of all vendor provided hardware, software, firmware, and communications equipment.

Follow the procedure specified in the Installation Plan when installing. Monitor all installation activities including those performed by vendors.

Use the following procedure to perform the installation activities.

- Coordinate the installation with the system users, operations personnel, and other affected organizations.
- Ensure that any necessary modifications to the physical installation environment are completed.
- Inventory and test the hardware that will support the product. This inventory should be performed in advance of the planned installation date to allow time for missing hardware to be obtained and malfunctioning equipment to be replaced or repaired.
- If the product requires an initial data load or data conversion, install and execute the tested programs to perform this process.
- If the product requires, then install the software product onto the hardware platform.

3.7.2 Conduct installation tests

Ensure the integrity and quality of the installed product by executing the installation tests defined in the Installation Plan. Testing is performed to verify that the product has been properly installed and is fully operational and in production.

The installation test(s) are designed to validate all functions of the product and should specify a standard set of test results and tolerances. If the product being installed is a modification to an existing system, all remaining functions that may be affected by the new product should be tested.

Document any problems and identify corrective action. Select a diagnostic package that will pinpoint problems quickly and allow for timely corrections. Retest all equipment and software after a repair, replacement, or modification.

When installation is complete, rerun a portion or all of the system test and dry-run the acceptance test procedures to verify correct operation of the product.

Place a copy of all Installation Test materials in the Project File.

3.8 Transition to operational status

The transition of the product to full operational status begins after the formal acceptance by the system owner. Use the procedures described in the Transition Plan to implement the transition processes. Conduct or support stress tests and other operational tests. Determine product tolerances to adverse conditions, failure modes, recovery methods, and specification margins. Complete any training and certification activities. Ensure that support to be provided by contractors begins as planned.

The project team is usually expected to provide operational and technical support during the transition. Identify project team personnel with a comprehensive understanding of the product who can provide assistance in the areas of installation and maintenance, test, and documentation of changes. Technical support may involve the analysis of problems in components and operational procedures, the analysis of potential enhancements.

Transition to full operational status should be an event-oriented process that is not complete until all transition activities have been successfully performed. Withdraw the support of the project team personnel in a gradual sequence to ensure the smooth operation of, and user confidence in, the product.

All Project File materials, operating documents, a list of any planned enhancements, and other pertinent records should be turned over to the maintenance staff. Access rules must be modified to provide access to the product by the maintenance staff and to remove access by the project team and other temporary user accesses. Programs, files, and other support software should be in the production library and deleted from the test library, where appropriate. For major systems involving multiple organizations and interfaces with other systems, a formal announcement of the transition to production is recommended. The announcement should be distributed to all affected groups. The names and contact details of the team should be included.

The system is transitioned into operational status. Project File materials, operating documents, and other pertinent records are turned over to the maintenance staff.[Engineering] Systems design

System(s) is a word that takes on relatively distinct meanings in different contexts. In the context of design, a system can be defined as an emergent or designed network of interconnected functions that fulfil an intended unit of satisfaction (system outcome or result). Additionally, system(s) has been described as a holistic, embodied way of thinking about reality. Accordingly, the term system(s) represents both a way of inquiry and an object of inquiry. In the engineering context, system(s) embodies both a way of designing and an object of design.

NOTE: The socio-technical perception (or, nature) of reality assumes that the real-world comprises systems that can be 'designed'. Therefore, it implies that models of those systems can be made and their behavior can be simulated.

Human-oriented design is a unique form of inquiry and action that aims to create and transform systems to fulfil human needs. Therein, systems thinking provides a base (approach) for synthesizing knowledge of how humans may live optimally together in a common ecology.

Here, a systems design approach refers to the mental model (or, approach methodology) through which designers "frame" (understand and construct) the world, sometimes referred to as a perspective or "paradigm". Systems design is an approach that guides designers in their visualization and resolution of complex problem situations. Systems design is an approach to creating better systems for humankind.

Both the need to support increasing changes in the scale of the challenges facing the development of society's infrastructure and resource limitations, have led to the emergence of a common and unified field of 'system' design. The implementation of a systems approach to societal [engineering] design is optimal, and its result is, the visual-materialization of the context of a socio-technical network of habitat infrastructures. These habitat infrastructures are designed and materially developed. Herein, the systems design approach seeks the integration and unification of all humanoriented information in order to pre-determine an optimal structural re-orientation for the next iteration of the societal system. This "learning" and consciouslyintegrating (i.e., emerging) approaches necessarily recognizes the need for a unified societal perspective that considers the capacity of [common] design to improve everyone's well-being by meeting (completing,

fulfilling), currently, everyone's basic and full opportunity needs of existing generations, while sustainable [habitat] 'construction' for future generations.

Obviously, all 'human' groups must be open to contribute to the whole system design (WSD to be executed), the service-product 'habitat' system (SPS/PSS).

From a systems thinking perspective, problem solvers are the whole individual societal system, which is a networked community of human conscious-organismal entities. Community, humanity in this context, may obviously, and only solve its global societal problem situations by identifying and reasoning ("discussing" and "conversationling") at length the relationship between design and the materialization. That designed system, which is designed to be commonly optimal for all, must highlight openly difference in social relations of information and power in order to optimize a system that is commonly fulfilling for all, given all that is known. The distribution of information from 'unified' (commonly open to all) to 'centric' (power-over-others) may be visualizes as an information-based socio-technical system. There is the composition and decomposition of information, the discovery of available information (i.e., search), the controlled inquiry into new reality information (i.e., consciousness sciences), computation of data (i.e., hardware-software, interface-conditional programming). Systems engineering is a method of designing systems. Logic, as expressed by consciousness, is otherwise known as, critical thinking. Logic, at the individual (and hence, societal level) is necessary to understand the idea that an information system structures everything experienced, and that experiential objectives can oriented the structure of the next iteration of the societal system. Critical thinking is necessary to develop technology and social organization is necessary to enable its socially-effective and full application as an optimized habitat system. A unified approach necessitates integration of the 'positive' approach of extensionable compassion, and the revealing 'negative' approach of socially visualizing an open network of power, control, domination, and oppression, to reduce social information and spatial sets that reduce optimal and common, individual human-fulfillment.

3.9 Whole systems design

Whole system(s) design is a collaborative and integrative approach that enables a common (i.e., collective) response to socio-technical (i.e., complex real-world) problems). Whole systems design is required for solutions that scale optimally for all of humanity. Through a systems approach, designers take social and technical [parallel] decisions on what systems methodologies and design tools to use, based on their unified understanding of each problem situation.

INSIGHT: Society is a whole system, and its engineering needs to be re-solved as a whole

[integrated] system.

Note that in software systems, the whole system(s) design uses conditional programming (i.e., procedural software, learning principles) to produce holistic solutions (i.e., to produce solutions that account for the whole of humanity and the environmental ecology).

A community project-systems design approach is a co-participatory approach to every [human-involved] problem situation, where solutions should not be imposed. Rather, stakeholders should be empowered to understand and participate in the functioning of the system (Note: this idea is expounded upon in the Lifestyle System Specification). Moreover, stakeholders actively participate in the conceptualization and implementation of the iteratively ("newly") designed societal system.

In the market, however, there is great confusion over the application of the systems methodology. Some of the "stakeholders" are non-existent entities "institutions, market enterprises (businesses; market coercion), and government enterprises (State coercion; states where 'leaders' control populations through relationships of power-over-others, rather than, coordination for all); which, together form the idea commonly referred to as the 'structural violence', as the common experience of most of modern 21st century society. Layers of confusion and abstraction will limit simplex, higher-system [synthetic] thought (i.e., the perceive that the optimal is to cooperate in the moment toward the fulfillment of all individuals for one's own fulfillment in common with those whom share its conscious, experiential [cosmic] environment.

3.9.1 Living systems design

Living systems design involves ways in which a designer can look at the patterns and life principles that are found within living systems that humanity operates in, and then, apply these patterns and principles to the products, and processes. Living systems design has different names depending upon the disclipine, including biomimicry, permaculture, closed-loop economics, circular economy, and waste equals foods.

3.10 Systems-oriented design

Systems-oriented design (SOD) is an applied knowledgebased (i.e., skills, lifestyle training) approach intended to develop better designs, visualizations, and systems practices. Systems-oriented design, as a holistic approach, has a requirement for a project-based information set, because it accounts for the design of executable interactions in time (in a real-, spatialworld). It must consider different network types and boundaries within a particular socio-technical system to ensure the system functions for all common individual human needs. Systems-oriented design exists as a tool to design of a coherent combination of processes and service-product (or product-service) combinations that together can fulfil the function of the system as specified by humanity in common.

The core design output of a human systems-oriented design is the generation of socio-technical models that are large and information-dense diagrams that act as a bridge between inquiry and design. These models, are visualization maps used to synthesize and interrelate knowledge, and they become a commonly shared understanding of the system among stakeholders.

3.11 What is human systems engineering?

A.k.a., Human system integration (HSI), human engineering [criteria], human engineering standards, human systems integration, human factors, human ergonomics, user-centered design.

Human systems engineering is the process of developing and operating a socio-technical system expressed as a habitat service system and composed of a real world information model that iteratively resolves a higher potential for everyone, given the ability to become more knowable. Human systems engineering is the engineering of systems to meet human requirements (i.e., human needs). Human systems engineering integrates an understanding of human capabilities and human needs into a systems design using an iterative model of systems engineering development.

Human systems engineering (a.k.a., human systems integration) is a structured systems approach to the designing and development socio-technical systems that will involve humans, ensuring alignment of the final system with their requirements, capabilities, and limitations. When perceived from a life cycle viewpoint, human systems engineering is the activities involved throughout the system life cycle that address the human element of system design (one of the first international technical standards for this idea is IEEE 1220-1994, 1998). In other words, human system engineering creates socio-technical life-cycling systems that have the potential to function effectively for humans.

Human systems integration (HIS, NASA terminology circa. 2010) emphasizes human considerations (requirements) as a/the top priority in systems design to reduce life cycle issues and optimize system performance and usability when humans are present. Essentially, human systems integration is the relationship between humans and their environment – particularly how systems are designed and used relative to that relationship – with the goal of ensuring a safe and effective environment that meets human requirements.

Human systems engineering is a comprehensive engineering methodology for integrating human requirements as part of an overall system solution. The goal of human systems engineering is to optimize the total system performance by accounting for both the human and technological components, and their integration.

Human systems engineering starts with an accurate

representation of human needs/requirements, which allows for the development of an effective system (i.e., a system that effectively meets those inputs in its operation). Human systems engineering provides the potential for optimizing the interface between the human and his/her environment or work processes.

Similarly, human factors engineering is the application of information on physical and psycho-sociological characteristics (as requirements) of humans to the design of devices and systems for human use. Note that the terminology here can be confusing, because it could be said that simply accounting for 'human factors' (a.k.a., human requirements) in engineering is human systems engineering, and thus, there is no need for a special label when the approach is unified. And, the approach is necessarily unified when engineering a unified societal service system for humankind.

The term 'social engineering' is associated with many negative connotations. In common parlance, social engineering refers to the design and influence of social organization and social behavior. It brings up visions of advertising, propaganda, manipulation, and scamming. These associations with the term social engineering are applicable under market-based conditions, but may not be applicable to other societal types. Note that terms like social science and systems science are also used when applying the systems approach to social systems.

There is a substantial body of knowledge in both human factors, ergonomics, performance, and usability demonstrating how user-centered design can be organized and applied effectively.

Human systems integration design criteria, principles, and practices for standards:

- 1. Improving performance of personnel (users).
- 2. Enhance the usability, safety, acceptability, and affordability of technology and systems.
- 3. Achieve the required reliability and productivity of personnel-equipment combinations.

Human system integration design engineering (humancentered design):

- 1. Understand the user and environment
- 2. Develop concept of operation
- 3. Allocate function between user and system
- 4. Perform user task analysis
- 5. Conduct requirements analysis
- 6. Visualize and produce design solutions
- 7. Evaluate designs and iterate solutions

Areas of technical expertise necessary for proper HSI include, but are not limited to:

• Human factors and human engineering (including crew workload and usability, human-in-the-loop evaluation, and human error analysis):

- Crew health and countermeasures
- Environmental health (including radiation, toxicology, and other areas)
- Safety
- · Systems engineering
- Architecture
- Crew functions and habitability functions (including nutrition, acoustics, water quality and quantity, etc.)
- Crew interfaces and information management
- Maintenance and housekeeping
- Ground maintenance and assembly
- Extravehicular activity physiology
- Mission operations
- Training

User-centered design (UCD) is a well-established design approach that concentrates on developing usable systems by focusing on the system users, their needs, and requirements. The approach applies principles of human factors and ergonomics, as well as usability knowledge and techniques.

The goals of the user-centered design approach are to:

- Enhance effectiveness and efficiency.
 - Improve human well-being.
 - Increase user satisfaction.
 - Improve accessibility and sustainability.
 - Counteract possible adverse effects of use on human health, safety, and performance.

3.11.1 User-centered design

User-centered design is formalized by multiple standards and standards setting bodies:

- ISO 9241-210 provides requirements and recommendations for user-centered design principles and activities throughout the life cycle of computer-based interactive systems.
- ISO/IEC TR 25060 describes a potential family of International Standards, named the Common Industry Formats (CIF), that document the specification and evaluation of the usability of interactive systems. The Technical Report focuses on documenting design and development elements of usable systems. It does not prescribe a specific process and is intended for use with ISO 9241 standards.
- ISO/IEC 25062 standardizes the types of information captured with user testing. The level of detail allows the same or another organization to replicate the test procedure. Major variables include: user demographics, task descriptions, test context (including the equipment used, the testing environment, and the participant and test

administrator's interaction protocol), and the metrics chosen to code the study findings.

- NISTIR 7889/7990/7934 Human Engineering Design Criteria Standards
- MIL-HDBK-759C (07/31/1995) Handbook for Human Engineering Design Guidelines
- ISO 9241 (06/01/1997)1 human centered design and human-computer interaction
- Section 508 of the Rehabilitation Act of 1973 (08/07/1998)2 - accessibility by those with disabilities
- ISO/IEC TR 25060 (09/01/2006) Systems and software engineering – Systems and software product Quality Requirements and Evaluation (SQuaRE)
- Ministry of Defence Standard 00-250 (05/23/2008) -Human Factors (HF) and Human Factors Integration (HFI) requirements
- NASA/SP-2010-3407 (01/27/2010) Human Integration Design Handbook (HIDH)
- ISO/IEC 25062 (07/15/2010) Software engineering
 Software product Quality Requirement and Evaluation (SQuaRE)
- MIL-STD-1472G (01/11/2012) human engineering design criteria, principles and practices
- ASTM F1166 (06/28/2011) the design and evaluation of human-machine interfaces

3.12 Service product design

A.k.a., Product-service systems (PSSs), or more accurately, service-product systems (SPSs).

In the literature, the integration of product and services is most often called a PSS. Naturally, a human designed (and oriented) 'habitat' system exists to provide functions that fulfil human needs through service, and then product, combinations. Obviously, this conceptualization is found across different "professional-market" disciplines, such as Operational Research, Information Systems, Systems Engineering, Software-Hardware Systems, Politics, Business Management, Marketing, and Selfdevelopment.

A systems thinking perspective on SPS/PSS is fundamental for a commonly aligned conceptualization and in-depth understanding of the socio-material system as it is currently in place, and simultaneously, possibly in place in the future. SPS/PSS design is an effective form of conceptualization of complex societal systems.

Through the understanding that all types of 'human' society represent an understandable and unifiable societal information systems, that will express for that human-society an observable decisioning-materializing system. That system can be visualized before it is generated, a process necessarily open to every individual, if the orientation of the next societal generation is to be a more optimal form of free and open access system as the desired design result. SPS/PSP is as a tool for analyzing and synthesizing (integrating) causal loops (e.g., systemic relationships, procedural decisioning) among community users and operating designers, among a unified habitat. Computationally, SPS/PSS simulates the dynamic behavior of systems quantitatively, because it is a visualization of a materializing system (i.e., a system that is sensibly quantifiable; i.e., can be expressed in numeric pattern, fractally). The SPS/PSS is the operational system; it is the user-interface conceptualized as a sociotechnical 'societal' system.

3.13 Engineering service operations

Engineering operations is the application of knowledge and technical design to fulfill a requirement formulated as a problem. In order to solve a problem in engineering, the cause (or "root") of the problem, and its context, must be understood. The result of the process of engineering is the construction and/or continued operation (or recovery operation) of a technically existent (and experiencable) [societal] system; hence, the dual lifecycle phases of a **unified engineering approach** (with construction and operation information sets):

1. Construction (and Re-construction) of system to specification

- Design feedback integration
- Construction preparation
- Construction (building structures, building substructures, and equipping)
- 2. Operation of system at specification
 - Operation preparation
 - Operation (automation and/or human event involvement)
 - Monitoring (quality assurance and operational feedback)

A. Deconstruction of system to specification

- Deconstruction preparation
- Deconstruction
- Re-integration
- Monitoring (quality assurance and operational feedback)

A clarification must be made here. Take, for example, a chef and a waitress. Each is equally maintaining and operating a service system. A mother feeding a child is maintaining and operating a service system [for the child]. Someone feeding themselves through food acquired anywhere is operating (and maintaining, or not) a service system. There is a constructed and iterating foundation to the system that structures the operation and maintenance of fulfillment to humans (Read: that which humans really do require, and have specified) as a set of societal-level requirements traced to their societal-level [support] services (a.k.a., the Service Systems: life-support service, decision service, facility service systems, etc.). Service activities within the service system(s) may be automated and/or maintain human involvement, where desired(/-able) to humans. That which is desirable to humans is an objective to which humans may (or may not) align the next iteration of their societal-life system (society, civilization). In the social information set of the real world information model, 'objectives' are [expressed] 'values' to which decisions are [objectively] aligned or not.

3.13.1.1 The determination of a societal [service] system design structure

The design and the service system of which the design is a part, is engineered into existence and continued operation as a solution to the requirements that humans have set for its continued operation.

The design of a real [world, societal-level] system:

- The Unified [Societal] Information System: social; decision; lifestyle; material. Social processes; decision processes; lifestyle processes; material processes.
 - Open source collaborative development effort
 - Common and InterSystem Team effort
- The Physical [Societal] System: Actualized configuration in formation of a Habitat service system.
 - Open source collaborative development effort
 - InterSystem Team effort

A real-world, societal-level system may sub-composed of habitat service sub-systems (at the material level of experience of a conscious user). The design, generation and otherwise execution upon and within of these societal systems may be aligned (or not) to explicit[ly human] requirements (or not).

The materialized instantiation of these [required] habitat service systems necessitates the three 'material' information categories of materialization (other conceptions of which include: construction, creation, generation, etc):

- 1. **Specification**, which involves conceptual through to physicalizable designs of a system that meet the requirements. The specifications are a set of visualizations forming a conception through to technicalization of a system, using tools and techniques (i.e., processes).
 - Knowledge encoded by engineering information groups becomes visualized and tested.
- 2. **Operation (construction and de-operation)**, which involves a set of activities (operations, tasks performed in a [pre-]controlled structure) necessary for the materialization (creation and recreation) of the system.
 - A non-prior system will have its first constructed

instantiation, and then life-cycle thereform.

- A prior existing system will have a module life-cycle. A set of unique operations exist for each habitat service system. All systems provide material and informational services directly and indirectly to humans. Indirectly means that the service is that of the lifecycle of the systems themselves.
- 3. Validation to specification, which involves a set of validation activity tests for alignment with requirements, imperatives, and the user. Here, experience generates feedback and revised integration directionally-intentionally evolves the system, or generates an entirely new one to replace the last. The design of a new system, communicated as a delivered specification, must be validated to sufficiently meet operational expectations as defined by the user requirements.
 - Without validation there is no feedback valuable for alignment, and without feedback valuable for alignment, there is no re-alignment to a direction set by an objective.

4 [Engineering] Design and development

NOTE: *If design is political, then debating and obfuscation are design skills. Yet, neither obfuscation nor debating facilitate functional design. Design is not political.*

The determination of a societal-level solution is, in part, through a common engineering design and development process. Design through to execution becomes the fundamental engineering [development] activity (process). The engineering of systems revolves around the problem solving of design. Design consists of a sequence of stages starting from the perception of need and terminating in a final (end/firm) description of a particular design configuration. Each stage is in itself a design process and is an iterative sequence of sets. Design fills the gap, the difference or separation between what is to be done (and why), and how to do it.

Both objects and processes (given an environment) can be designed. The societal information system contains both information objects as well as information processes, given an information-based environment. Therein, the habitat service system is a combination of both objects and processes with material reference. For example, the energy sub-system is a supra-process life-support category, containing object-assets cycled through materiality as part of service system processes to meet human energy [operational] requirements. The energy sub-system delivers service (asset-object) types, including power generation and storage systems (e.g., wind turbine electric generators and batteries).

NOTE: Since engineering quality is only as precise as its tools, the quality of the design tools (e.g., representations, conventions, and applications) has a direct impact on the quality of the result.

Engineering design, as an activity, produces an "engineering design" as a product, which is delivered to be acted upon and through. This information product is a representation of the physical product to be produced and/or operated (and is variously called the designed service object, system model, product model, engineering drawing, etc.).

A design is a solution for a given set of problems. A design is a solution towards a problem experienced by a real user; the design solely relies on the "user" for it to be appreciated. In other words, designing is the process of problem solving.

It's not a canvas for personal expression. Design is not personal, like someone's preference in music or art. A quality designer takes design decisions based on user research, knowledge, and best practices, with a focus on communicating clearly and achieving human goals. The process of design must be complementary with the objectives. This means the design and implementation process is critical. If flexibility and participation are the objectives of an organization's design, then the question must be asked, how might an organization be designed so that it is flexible, interactive and participatory.

Design is a continuous commitment, a re-iterative process. A design is a solution, which inevitably has to be changed, therefore it is critical to build learning and change ability into the organization that produces designs. In concern to feedback on designs, feedback should be linked to goals. Designers are tasked with generating creative and unique solutions, following a process that builds upon logic, observation, knowledge, and feedback to arrive at an optimal output.

APHORISM: "A designer knows he has achieved perfection not when there is nothing left to add, but when there is nothing left to take away." -Antoine de Saint-Exupéry

The quality of any engineering design - whether it's a commercial product or a data model - is a direct function of the ability of the design system to access and codify the knowledge of the users, and systematically translate that knowledge into a model of the desired product/ system.

NOTE: It is the design element in the practice of engineering development that distinguishes engineering as an activity from the sciences.

In design, engineering is a:

- Deliverable (noun) A design is a visualization (sometimes, plan) that shows (through to demonstrates via simulation) some combination of function ("workings"/mechanism), performance, and interface of future system.
 - System design (noun) is, in part, the accumulated set of concordant descriptions or models of the system. Optionally, it may include the rationale behind the model building and the path of decisioning taken in order to reach a consistent, relevant set of models at a particular level of detail. Note that this definition is barely indistinguishable from the architecture definition of IEEE 1471 -- noting that architecting is an intimate constituent of design (verb) and architecture an essential quality of a design (noun).
- Process (verb) To design means the decisioning processes (groups) that model, determine, and select the function, performance, and interface to be recorded as the executable design, a valid design for integration).
 - System design (verb) is the formulation and concordant resolution of as many system models as necessary to describe a real-world system's composition and ordering such that it may then

be realized, and intervene in some future reality according to its originating intentions.

Engineering service design involves, at least:

- 1. Service concept
- 2. Services
- 3. Processes
- 4. Tasks
- 5. Roles & Technologies
- 6. Equipment and Computation
- 7. Resources and conscious motive

Engineering design is:

- As design, A logical sequence of activities and decisions that transforms an operational need into a description of system performance parameters and optimal system configuration
- A comprehensive, iterative and recursive problem solving process, applied to transform needs (and requirements) into a new system (or system state).
- A standardized, disciplined process for the development of system solutions that provide a system that meets user needs in an environment of uncertainty.
- The process of selecting the means and contriving the elements, steps and procedures for producing what will adequately satisfy some need.
- Design is founded on the consistent, directed resolution of a system into reality. Design is founded on decisioning.
- To create order, structure and/or pattern as an outcome [of the process of designing]. Crucially, it is the order, structure and patterns in design actions that are the source of these attributes of design. Design, even in nature, is not an outcome of anything other than a highly structured causative sequence of actions (intentional or not).
- A problem-solving activity. Wherein, problem solving is that form of activity (or action) in which an organism intends to realize a goal, a gap in the 'route' to the goal, and a set of alternative mans, none of which are immediately and obviously suitable. It is a path of resolution followed in conformity with the guiding criteria of a goal (the user requirements/user needs/intervention intention) subject to the constraints of viability (the opportunities and reality of implementation technologies). Design is action requiring the mind to examine (process) each and every item (of information), which pertains to the design in a continuous and uninterrupted process, including all of these in an adequate and orderly enumeration.
- A resolution arising out of a sequence or iteration

of process transformations or work products outputs. Engineering design is a matter of recursion that resolves transformations and work products definition at different scales.

The design process is repeated sequentially in a number of stages, proceeding from a global view of the system, to progressively more localized considerations, and from an abstract and fluid description to a concrete, physicalizable one. Therein, abstraction forms functional descriptions and material detail forms implementation descriptions.

NOTE: To build and test is to construct the whole from the parts (to piece parts together, to join into one that operates together within a boundary).

The processes of design build models of that realisation and future reality, as descriptions of:

- Intended intervention.
- The function of some intervening agent.
- The physical composition and ordering of that agent.

These models are progressively resolved, each with the other according to ever greater detail, until the risks of achieving a viable and valid outcome diminish to an inconsequential level. Thus, design resolution is often recursive in practice.

The concordant resolution of models follows a sequential decision-resolution path; one that is continually revisiting different levels of modeling detail, past decisions and preceding lines of decision rationale.

The design resolution path forms in linear time from a process of execution concurrency relating to the following three information sets:

- Structural detail (as system architecture function, form, and effect domains). Elemental connectivity must exist between all domains.
- Design rational (logical domain).
- Solution progression (as organizational processes and work products - material, energy, information domains)

Both objects and processes can be designed. For example, the habitat service sub-system is a combination of both designed objects and processes. Therein, the energy sub-system is a supra-process life-support category, containing object-assets cycled through materiality as part of service system processes (Read: the operational processes). The energy sub-system delivers asset-object types including power generation and storage systems (e.g., wind turbine electric generators and batteries).

Regardless of what is being designed, design involves several core information processes; design is:

- Generative (i.e., involves creating, analyticalsynthesis) of some new information set. Some thing new is the output of design.
- Iterative (i.e., involves repeated cycles of trial, error, and learning).
- Representational (i.e., visualizations, models, and prototypes document and communicate a design) with many potential views, given inquiry intent.
- Collaborative (i.e., there is fulfillment in optimizing common designs for fulfillment).
- Complex, probabilistic, and emergent

The primary [systems] engineering tasks include:

- 1. Develop the total system design solution.
- 2. Develop and track technical information needed for decisioning.
- 3. Test the system.
- 4. Verify that technical solutions satisfy user requirements.
- 5. Operate the system.

4.1 The design phase

APHORISM: *If you want to be a powerful creator, become good at systems [thinking] and understanding and solving structural problems.*

Design for (i.e., the common elements of the design phase are):

- Function the "means" by which (how) the system operates for user fulfillment.
- Interface the "means" by which (how) which two systems interact (Read: share information).
- Performance the evaluated quality "means" by which (how in alignment):
 - Information is shared between systems (per requirements).
 - The function operates for user fulfillment (per requirements).

Service system engineering life cycle:

- 1. Service operation
 - A. Issue inquiry for service
- 2. 2. Service integration
 - A. Organizational value-alignment inquiry
 - B. Solution engineering inquiry

The contextual elements of use for any particular product (which can be a technology, system, device, piece of equipment, or process) include, but are not limited to:

- 1. The intended user(s).
- 2. Their goals and tasks.

- 3. Associated equipment.
- 4. The physical and social/informational environment in which the product may be used.
- 5. Note: A product could be viewed of a as a set of preplanned tasks.

4.1.1 Define the conceptual system [a phase]

The conceptual formation of a projected system may be initialized through a set of imperatives. Often, a sufficiently developed imperative structure is composed of all of the following:

- Project [societal] imperatives
 - A strategic direction, which is a description of progress along some identified alignment with which humans seek to move or progress. A strategic direction is described by concepts.
 - **Define the mission, vision**, and other strategic directional or outcome descriptives.
 - **Goals (human aspirations)**, which involves a set of criteria representing a list of axiomatic outcomes (conditions) that are to be realized under a given strategic direction of intention.
 - A **societal goal** is a particular category of goals, which are universalizable to a society composed of organisms. Generally, societal goals categorically express the necessary conditions for avoidance of serious harm (survival) and the expressed facilitation of fulfillment.
 - Needs (human needs, which are objectives), which involves a list representing a set of criteria that are of imperative importance to fulfill, including processes and states, for humans to not only survive, but thrive at their fullest potential.

Goals and needs are both:

- **Measurable**, at minimum through progress on subsidiary goals/objectives, but preferably also directly. Here, measurable refers to that which is independent of personal sensitivity, capable of experience by some population with common senses.
- **Completion** of goal and **fulfillment** of a need represents significant alignment with or progress toward the strategic direction.

A conceptual design specification includes:

• A **conceptual specification** (or, Unit; Conceptual specification) is the design for an instance (potential/existent instantiation state) of a community-type society.

- The **functional specification** (Functional specification) is the Unified Societal System Specification detailing the functional elements of that societal instance.
 - A **technical component specification** (Technical specification) is a set of sub-system iteration states.
 - What is needed here is resources, time, financial budget, ...
 - Feedback from experience

4.1.1.1 Process and technology mapping

Process and technology mapping is the process of collecting and associating all configuration and connectivity parameters for hard[ware] (material) and soft[ware] (information) systems. In some disciplines, the total set of process and technology mappings for an entity is called a configuration item (Cl), and configuration items are used for operations (including production/ fabrication and construction/integration). Process mapping creates an image (diagram, visualization, description) of each organizational (such as, societal or business) process, and what would be needed to continue the process in the absence of any or all of its informational and material (Read: IT, information technology) resources.

In concern to system development, process and technology mapping allows easy duplication of a system. In concern to disaster recovery and system continuity, this mapping (assuming it is backed up) allows operators to re-prioritize, move, and most importantly, restore systems.

4.1.2 Define the technical system [a phase]

An engineered system, is a technical or socio-technical systems system, which is the "subject" of a systems [control] engineering life cycle. Systems engineering is the approach, involving a set of processes, which realize (materialize) a system that accomplishes, fulfills, and completes the imperatives [of the projected system].

In part, the technical system is an expressed (or, express-able) visualization.

4.1.2.1 Information visualization function(s)

An information visualization function is the description of an operation that allows information to be more coherently understood and integrated by a visualizing user. An information visualization function adds shape, an object, geometrical relationship to an information set. Here, a 'function' is an information process or information operation that allows for a clearer and larger expression of what is possibly available, because it conveys the greater -ability to connect the user to the usable system.

4.1.2.2 Traceability

Traceability is a principal information visualization objective. Traceability is the ability to describe and follow information in both forward and backward direction. Full traceability is the ability to explain and visualize the flow of information in forwards and backwards directions, fully. For example, a complete (full) visualization of requirements expresses traceability wherein a requirements statement at any level can be related to any other level, including its source (e.g., human issue, intention, problem) and destination (e.g., output, result, system).

4.1.2.3 Requirements traceability (RT)

Requirements traceability (RT) as a principal objective of project coordination is the ability to describe and follow information about [the life of] a requirement in both forward and backward directions, completely (i.e., without gaps or "jumps"). In order to integrate feedback coherently within a project, there must be traceability of outputs to inputs. Traceability assures everyone that all requirements can be accounted for in the design at any stage and that no unnecessary requirements are included (probably, unnecessary work). Traceability supports configuration control (if a requirement needs change, its related information flows and impact are visible).

Requirements traceability is a feature (quality, characteristic, attribute, objective) of a system's unified (top-down) design approach, which "guarantees" (Read: makes objectively measurable) that requirements can be identified and inquired into (satisfied) at any stage of a project.

Traceability ensures data on:

- Where a requirement came from?
- What requirements are related to it?
- What requirements were derived from it?

There are sub-conceptions to traceability:

- **Forward traceability** is required so that design decisions can be traced from any given system-level requirement down to a detail design decision.
- **Backward traceability** means that any lower-level requirement is associated with at least one higher-level requirement.

4.1.2.4 Requirements use case

A use case (or user story) is the sequence of events to explain your requirement.

4.1.3 Modeling (visualizing-simulating) requirements as mathematical associations

There are two mathematically aligned characteristics when using the systems approach to modeling (by the

engineering system) the intention of a 'requirement', or even prior, an 'issue'. The two axiomatic mathematical associations are that of variables and

- Variables or Non-functional requirements: A variable is the way in which an attribute or quantity is represented or expressed. Non-functional requirements may be transposed for variables, which describe an attribute or quantity. How much durability and reliability do you want in the design of your system (its a variable option)? How much autonomy do you want in the design of your society (its also a variable option)? Technological obsolescences as a value, and then a variable, in a societal resolution equation has a different outcome than reliability as a value, and then a variable in a societal resolution equation.
- **Constants:** Functional requirements become absolute quantities. Whereas, the functions are the parameters, normally a constant in an equation describing a model. For instance nutrition is a constant (not optional) need. In a natural environment of scarcity with an inability to design non-basic technologies, then the nutritional constants are pre-determined by scarcity in the environment and organismal sensation. Therein, human needs may be considered a constant.
 - Parameters or Functional requirements: In an environment where needs may be fulfilled via designed and varied methods, then human needs (which are human requirements to engineering) are more akin, conceptually, to parameters. When the environment determines fulfillment, there is very little that can be done in terms of changing (by choice and design) fulfillment. However, when intellect, resources, and designability are present, then the fulfillment (felt and objective) is not fixed.

4.1.4 Engineered system characteristics

Systems engineering involves the processes of designing and constructing additional possible 'function' into the material and/or informational world, through a particular design. In a purposeful (purposive) context, a design[ed] system has the following kinds and sub-kinds of characteristics:

- Physical characteristics (physical properties, physical requirements): its materials, structures, and motions.
- Operational characteristics (operational properties, operational requirements) - are properties that are designed into a system, and expressed in the systems operation or state of being. There are two types of operational

properties:

- Functional characteristics (capability requirements): what it is for; what service(s) it performs. These are the first type of 'ability, functional abilities or capabilities. A description of *functions* of what precisely the system will do. Functional requirement - state what the system will do. Describe how it will behave; what is its specific behavior and functions? A functional requirement is a specific need or desired behavior as seen by an external user of the system. The required capability or function must be delivered by a system through one or more of its components.
- Non-Functional characteristics (a.k.a., dispositional properties and non-functional requirements) that one possible assembly produces over another for the same function. Non-functional requirements are the conditions under which the system should perform. These are otherwise known as 'abilities'. These are the second type of 'ability, non-functional abilities or objectives. A description of *features* of what precisely the system will do. Non-functional requirement state what the system will be. The criteria for evaluating the operation of the system, rather than specific behaviors. These requirements cannot be categorized in to function, data, or process (both process and data) requirements.
 - Execution qualities Execution qualities form an interface and [critical] decision path between a user with needs and a [societal] service system that provides access to a capability that meets those need. Execution qualities are often visible during operation (at run time) of the [societal] system itself. Such as: durability, automaticity, and optimization, which are observable during operation (at run time) of the [societal] system itself.
- Evolution and availability qualities are embodied in the static structure of the system itself. Such as: testability, maintainability, extensibility, and scalability, which are embodied in the static structure of the system itself.
- There is also, for every system, a [negative] efficiency characteristic (efficiency requirements) for all expressed properties: given what is known and what is possible, how off alignment from optimization of materials, structures, motions, and attributes (capability and dispositional) is the system[s design and operation]?

Clarification: Broadly, functional requirements define what a system is supposed to do and nonfunctional requirements define how a system is supposed to be.

The overall properties of the resulting system commonly mark the difference between whether the development project has succeeded or failed.

4.1.5 Define system non-functional requirements (a.k.a., objectives orientational needs)

Objectives area also known as: design goals, dispositional properties, dispositions, nonfunctional requirements, non-functional needs, system quality requirements, system performance requirements, performance needs, qualitative requirements, objectives, system control objectives, quality objectives, quality attributes, quality goals, quality service requirements, constraints, features, and values.

Non-functional requirements (a.k.a., objectives) constrain functional requirements. Non-functional requirements specify under what constraints the functional[lyrequired]system should function. Objectives are the orientational component of the imperative structure. Defining non-functional-requirements is an orienting process. Objectives are orientational because they predetermine one assembly of components for a given function (or service), versus another assembly for fulfillment of the same function. In other words, a design may be categorized under a specific conceptual state (or condition) given its composition, over a design to fulfill the same function, but with a different assembly.

Note: In a decision system, values are nonfunctional requirements, which are the social[ly viable] conditions for creation and operation of a stable human society.

In system requirements engineering, a non-functional requirement (NFR) is a requirement that specifies criteria that can be used to evaluate the operation[al performance] of a system, rather than specific behaviors. They are contrasted with functional requirements that define specific behaviors or functions.

Note: 'Sign' is the way in which a design executes a desired function.

Simply, objectives are top-level project requirements of a system that identify what its design **should be (nonfunctional requirements)**, as opposed to what the design should do **(functional requirements)**. Objectives are design goals (a.k.a., non-functional requirements) that describe the desired attributes, qualities, or features the design will have. Objectives allow for exploration of a design and decision space where an optimal selection among alternative options occurs. **Objectives**, which involves a set of criteria representing a concrete,

THE ENGINEERING APPROACH

measurable output or outcome to become a requirement for the goal's fulfillment. Embodied consciousness has a set of abilities available to it; and it can extend its abilities through a systems process to create newly available technological functions. The extending of single function can occur in multiple different ways, each expressing a different objective (dispositional property). These newly available technological functions allow us to integrate and automate our functional habitat service systems into a network of resource-access sharing for each and everyone's fulfillment.

In contrast to functional requirements, non-functional requirements are in the form of, "system shall be <requirement>", an overall property of the system as a whole or of a particular aspect and not a specific function. Objectives are expressions of desired attributes and behaviors that the system will express. The system must maintain some [conceptual through to actual] ability in its performance. Here, objectives specify -ability inquiries for decision (as the planned solution) selection.

Objectives are characterized as:

- Expressed using the verb, to be. These are "be" words ("be" words include: is, am, are, was, were, be, being, becoming, been).
- Qualities that the system (object) should have.
- Measurable, which senses and inputs measures or sources of data for system progression (i.e., evolvement, optimization, or betterment), whether quantitative, qualitative, or both.
- Logically relevant to the applicable goal.

In order to bring a material system into existence, there is an existent material reality that must be worked with and through. The system which is to be brought into existence is composed of a set of requirements. There are relationships between requirements and the extant material reality. In common parlance, these relationships are called tradeoffs. Objectives are concepts that are encoded into the design, and eventual operation, of the system in order to resolve these relationships toward some particular alignment. These concepts are dispositional properties (-abilities) designed into the system, in expectation of expressing a particular function during the systems lifespan. Here, disposition refers to the arrangement of material reality into a system expressive of a particular technical function, previously conceived of as a objective or dispositional property. Material systems can be arranged in different ways to perform the same service. Dispositional properties prescribe (on the design front-end) and describe (on the operational user-end) the functional expression of a material systems arrangement.

Objectives are expressed as 'abilities' (a.k.a., concepts of operation). An 'ability' is the capacity to form and resolve a process in a categorically pre-defined manner, a dispositional property -- a category of technical action. Specific categories of 'ability' are labelled with that term as a suffix. In other words, an objective defines the predefined manner of desired functioning.

An objective/requirement represents a measure of specified change, in order to bring about the achievement of the goal. The attainment of each goal may require a number of objectives to be reached. There is often much confusion between goals and objectives. Whereas as a goal is a description of a destination, an objective is a measure.

Systems engineering depends on the ability to perceive the [multiple] possibilities for action within a environment, so that a system's movement within the environment can be appropriately coordinated. Herein, objectives design *time* into *being*, which is the fundamental principle of concurrent engineering. There are relationships between a designed system, its environment, and the concepts applied to its assembled functioning.

Objectives enable the selection among design alternatives [for the one(s) that express the greatest alignability with the strategic imperatives]. Here, objectives represent constraints which decidedly orient the a functional system:

- Constraints enable the rejection of unacceptable alternatives [that express dis-alignment ability].
- Constraints are typically framed as a binary yes or no choice.
- Constraints establish the design space.
- Constraints are fixed under consideration of Design Decision Standardization and user requirements.

Note: Feature trees are high-level models organizing features into feature groups capturing the entire scope of a project in a single model. They show the relationships between features.

Here, values become objectives useful for life fulfillment. The encoding of those objectives is likely to produce an economy where only useful things are served; an economy that serves the process of human and ecological fulfillment.

4.1.6 Define system functional requirements (capabilities)

Functional requirements area also known as: operational goals, functional attributes, capabilities, capability requirements, requirements, physical objectives, system operational requirements, system performance requirements.

In contrast to non-functional requirements, functional requirements are usually in the form of "system shall do <requirement>", an individual action or part of the system, perhaps explicitly in the sense of a mathematical function, a black box description input, output, process and control functional model or input>process>output

model. A [functional] specification describes the necessary functions at the level of unit(s) and components; these specifications are typically used to build the system.

Capabilities occur in pairs in which some property of the environment (e.g., climb-able) is related by a property of the being's or system's capability, known as an it's effectivity (e.g., to climb or walk).

Clarification: In common technical parlance, a "value driver" is another term for a primary function, and expresses how to create "value" for the human in line with its objectives.

Project Coordination: Needs must be appropriately matched with abilities (as in, ability to do), forming a technical, functional system.

Herein, a 'capability' is the (physical or informational) ability [of a system] to execute a specified course of action, as originating from some source. In engineering design, a 'capability spread' includes the follow capability elements:

- Capability Gap (or Gap) The inability to execute a specified course of action.
- **Capability Requirement** (also called "need" or "requirement") – A capability is required to meet [human] needs, current or future.
- **Capability Solution** A materiel or non-material solution to satisfy one or more capability requirements (or needs), and reduce or eliminate one or more capability gaps.
- **Capability Production** The materialization of the material or non-material (e.g., digital) solution.

The planned, functional design characteristics of a system are otherwise known as a system's functional attributes. Functions are the behaviors expected from the design. A function is an activity that the system should perform or support. A design should perform certain functions for conversion of a given input into a required output. Functions are often expressed as verb-object pairs. Functions describe what the design (or, more often, an object within the design) will "do" or accomplish, with an emphasis on input-output transformations. Something is expected to occur due to the system's existence in the real world. When denoted, functions are arranged in a hierarchy to express their relationship to the project objectives.

The statement of a function typically couples an action verb to a noun or object (e.g., lift a book, support a shelf, transmit a current, measure a temperature, or switch on a light). For instance, "Measure weight of objects up to 120 kg"; "Support weight up to 70 kg and Hold on wall without failure"; and, "Control pointer on a computer".

Even abstract requirements like 'proximity to transport' may be expressed as functions, such as: enable "easy" access to public transport; whereupon, "easy" is defined specifically and numerically.

The design of a system must account for several types of function:

- The primary function(s)
- Desirable secondary functions
- Undesirable secondary functions

For example,

- Project images (for a projector)
- Generation light (desirable)
- Generation of heat (undesirable)

Additional examples of function include:

- The function of a bicycle brake is stop the wheel when applying the brake lever by means of frictional force between rim and brake pad.
- The function of a hydraulic lift is to elevate heavy weight by means of pascals law.
- The function of a speaker is to produce sound by means of electro-magnetic induction.

A quality/efficiency spectrum from optimization of the functional and non-functional attributes of the service to highly sub-optimal (i.e., a near zero efficiency rating to negative efficiency).

Service product[ion] functioning

The functioning of a product can be described as follows:

• Form (Structure) / Characteristics / Function / Values / Needs.

The design process follows this sequence in reverse:

• Needs / Values / Function / Characteristics / Form (Structure)

5 [Engineering] System concepts

A.k.a., Concept of operations (ConOps), operations concepts (OpsCon), system operational concept (OpsCon).

System concepts bridge the gap between product scope and technical requirements. System Concepts are plain-language descriptions of user-product/system interactions throughout the life of your system from the perspective of all the key stakeholders. How it will be manufactured, tested, installed, used, maintained, stored, and decommissioned.

When developing the system concepts, users describe a day in the life of the product, for all life-cycle stages, and addressing both nominal as well as offnominal situations. These descriptions are told from the users' perspective describing their expectations for the system's functionality, performance, capabilities, and quality. These expectations are in the context of meeting need, goals, and objectives within the context of the defined drivers and constraints. A complete system concepts information set helps prevent both missing and incorrect requirements. System concepts will help establish a shared vision for the system and facilitate acquisition of the knowledge needed to define a clear, complete, correct, and concise set of requirements. The 'system concept' is the basis for system functional and performance requirements.

System concepts exist within the systems engineering domain, and it is the responsibility of systems engineering (or whomever is responsible for the technical expertise of the system) to develop and maintain 'system concept' information set (document).

5.1 Relationship between Concept of Operations and Operational Concept

Both system concept documents, 'concept of operation' and 'operations concepts' are developed in exactly the same way, and many organizations combine the two information sets into one. Both information sets define capabilities, functionality, performance, and quality needed in the system – just from a different perspective:

- OpsCons focuses on the system under development from a user/operator perspective.
 Describes the way the system works from the user/ operators perspective.
- **ConOps** focuses on how the system fits into the bigger system of which it is a part and will be developed, tested, and operated. Describes the way the system works from a socio-technical organizational perspective.

More specifically,

- Concept of Operations (ConOps, ConOp, CONOP): A verbal and graphic statement, in broad outline, of a socio-technical organization's assumptions or intent in regard to an operation or series of operations. The concept of operations frequently is embodied in long-range strategic plans and operational plans. In the latter case, the concept of operations in the plan covers a series of connected operations to be carried out simultaneously or in succession. The concept is designed to give an overall picture of the sociotechnical operations.
- Operational Concept (OpsCon): A verbal and graphic statement of an socio-technical organization's assumptions or intent in regard to an operation or series of operations of a system or a related set of systems. The operational concept is frequently developed as part of a system development or acquisition project. The operational concept is designed to give an overall picture of the operations using one or more specific systems, or set of related systems, in the enterprise's operational environment from the users' and operators' perspective.

Both information sets address user needs, the lifecycle, and nominal and off-nominal situations. Both ConOps and OpsCons involve the telling of stories, scenarios, or use cases. Both align the users to a common vision, are used to define a feasible approach to meeting the overall needs, goals, and objectives, and are used to further define the various development elements involved in the project.

Documenting both perspectives as 'System Concepts' results in addressing the traditional benefits and outcomes of both a ConOps and an OpsCon thereby avoiding confusion in having to distinguish between whether it is a ConOps or an OpsCon.

5.1.1 OpsCon in brief

A system OpsCon document describes what the system will do (not how it will do it) and why (rationale). An OpsCon is a user-oriented document that describes system characteristics of the to-be-delivered system from the user's viewpoint. The OpsCon document is used to communicate overall quantitative and qualitative system characteristics to the acquirer, user, supplier and other organizational elements.

An Operational Concept Document (information set) is a document for recording an Operational Concept. It is prepared at the acquisition organization and developer level to describe how a particular system (new, modified or existing) will be operated to satisfy its user and operator needs. The description is independent of specific design solutions, although it will make reference to a possible design solution at the highest level of abstraction. The Operational Concept Document is not a requirements document. It describes the system operational intent and context, and is used to derive needs and requirements.

In order to avoid inclusion of solution-specific information in the initial Operational Concept Document, system operational behavior should be described in the form of capabilities and outcomes. Initially, any reference to an architectural or detailed solution should be minimized. As the system is realized and the Operational Concept Document is revised throughout the product life cycle, references to the specific architectural features of the solution are incorporated.

5.1.2 ConOps in brief

The ConOps, at the organization level, addresses the user's intended way of operating the organization. It may refer to the use of one or more systems as black boxes to forward the organization's goals and objectives. The ConOps document describes the organization's assumptions or intent in regard to an overall operation or series of operations within the organization in regards to the system to be developed, existing systems, and possible future systems. This document is frequently embodied in long-range strategic plans and cyclical (e.g., annual) operational plans. The ConOps document serves as a basis for the organization to direct the overall characteristics of the future organization and systems. A concept of operation phase defines a need or gap to be filled by a system.

A Concept of Operations document (information set) is a document for recording a Concept of Operations. It is developed at the organization (enterprise) level, independent of any specific system solution, to describe how the organization (enterprise) will operate to execute strategy and doctrine. The Concept of Operations Document is not a requirements document. It describes the organization (enterprise) operational intent and context, and is used to derive needs and requirements.

'Concepts of operation' (ConOps) are defined as operational design elements that guide the organization and flow of project elements, including hardware, software, personnel, communications, and data products through the course of a project objective implementation. Conops are the organizational design elements; how people and robots work together; how they flow through different pathways as they accomplish different tasks. Here, the term 'capabilities' is defined as specific functional mission aspects that can take the form of hardware or software. Additionally, capabilities may be high-level ("architecture level") such as highbandwidth communications or can be lower level such as pan-tilt-zoom capabilities on a camera. Capabilities are the functional aspect looking at hardware and software. What is required to support humans and robots?

By learning which ConOps and Capabilities are enabling or enhancing (and which are not) early on in the development process, NASA's limited resources are better managed towards value-add systems and support technologies.

5.1.2.1 [System] Concept of operation

A.k.a., ConOps, CONOPS, system concept, system concept of operation, operational concept description, operational concepts, operational scenarios, system concepts, use cases, user needs.

Concept of operation (ConOps) is a formal statement (visual and/or linguistic) of the intended operation of a system. A concept of operation is a useroriented conceptual formalization that describes the characteristics for a proposed system from a user's perspective. A ConOps describes the proposed system in terms of the user needs it will fulfill, its relationship to existing systems or procedures, and the ways it will be used. A ConOps may focus on communicating the user's needs to the developer or the developer's ideas to the user and other interested parties. The main objective of a ConOps is to communicate with the end user of the system during the early specification stages to assure the operational needs are clearly understood and incorporated into the design decisions for later inclusion in the system and segment specifications.

In general, a [system] 'concept of operation' formalization contains the following:

- 1. Define the environment in which the system will operate.
- 2. Define the high-level system concept and reason (provide rationale and justification) that it is superior to the other known alternatives.
- 3. Provide high-level requirements.
- 4. Provide the criteria to be used for validation of the completed system.

The common deliverables for a 'concept of operation' formalization are:

- 1. Statement of the goals and objectives of the system (what is important?):
 - A. Identify direction (e.g., expected impact as human fulfillment, desired result optimal quality of life, high-level conception of operation as habitat service system using a unified societal system.
 - B. Establish objective priorities (e.g., establish societal-human priorities; identify human needs and requirements).
 - C. Identify objective dependencies (e.g., identify the dependencies between conceptual objects, material objects, and their interrelationships through time as a matrix of dependencies, or dependency flow models as input-output

service modeling to fulfill all human needs).

- 2. Identify constraints affecting the system ("externally" environmental):
 - A. Ecological [service flows and capacities]
 - B. Resource [service flows from market, ...]
 - C. Jurisdictional [service flows from State, ...]
- 3. Organizations, activities, and interactions among team.
- 4. Clear statement of roles and accountabilities ("responsibilities").
- 5. Specific operational processes for fielding the system.
- 6. Processes for initiating, developing, maintaining, and retiring the system.

Additional ConOps objectives include:

- 1. Provide end-to-end traceability between operational needs and captured source requirements.
- 2. Establish a high-level basis for requirements that supports the system over its life cycle.
- 3. Establish a high-level basis for test planning and system-level test requirements.
- 4. Support the generation of operational analysis models (use cases) to test the interfaces.
- 5. Provide the basis for computation of system capacity.
- 6. Validate and discover implicit requirements.

5.2 System concepts standards

The principal standards defining 'System Concepts' (as ConOps) are:

- ISO/IEC/IEEE 29148-2018: Systems and software engineering Life cycle processes Requirements engineering.
- ISO/IEC/IEEE 15288:2015: Systems and software engineering System life cycle processes.
- IEEE Std 1362-1998: IEEE Guide for Information Technology—System Definition—Concept of Operations (ConOps) Document [standards.ieee. org/standard]
- ISO/IEC/IEEE 29148: Systems and software engineering. Life cycle processes. Requirements engineering
- ANSI/AIAA G-043A-2012: Guide to the Preparation of Operational Concept Documents
- NASA NPR 7123.1B: US NASA Systems Engineering Processes and Requirements (here, the definitions of ConOps and OpsCon are closely aligned with BSR/AIAA G-043A).
- **DI-IPSC-81430:** US DoD data item description for CONOPS document.

NOTE: The first commonly known standard that defined the idea of a formalized Concept of Operation was IEEE 1362-1998 - IEEE Guide for Information Technology - System Definition -Concept of Operations (ConOps).

The principal standards guiding the development of OpsCon are:

- IEEE Standard 1362:1998: IEEE Guide for Information Technology – System Definition – Concept of Operations Document
- ISO 14711:2002(E) Space systems Unmanned mission operations concepts
- FHWA-HOP-07-001:2005 Developing and Using a Concept of Operations in Transportation Management Systems, US Federal Highway Administration

5.2.1 Standards descriptions of ConOps

System concepts are defined via the aforementioned standards in the following ways:

- ISO/IEC/IEEE 29148: The ConOps, at the organization level, addresses the leadership's intended way of operating the organization. It may refer to the use of one or more systems, as black boxes, to forward the organization's goals and objectives. The ConOps document describes the organization's assumptions or intent in regard to an overall operation or series of operations of the business with using the system to be developed, existing systems, and possible future systems. This document is frequently embodied in long-range strategic plans and annual operational plans. The ConOps document serves as a basis for the organization to direct the overall characteristics of the future business and systems, for the project to understand its background, and for the users of [ISO/IEC/IEEE 29148] to implement the stakeholder requirements elicitation.
- IEEE Std 1362-1998: A Concept of Operations (CONOPS) is a user-oriented document that describes systems characteristics for a proposed system from a user's perspective. A CONOPS also describes the user organization, mission, and objectives from an integrated systems point of view and is used to communicate overall quantitative and qualitative system characteristics to stakeholders.
- Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, 4th Edition, INCOSE: A Concept of Operations (ConOps) document is produced early in the requirements definition process to describe what

the system will do (not how it will do it) and why (rationale). It should also define any critical, toplevel performance requirements or objectives (stated either qualitatively or quantitatively) and system rationale. Describes the way the system works from the operator's perspective. The ConOps includes the user description and summarizes the needs, goals, and characteristics of the system's user community. This includes operation, maintenance, and support personnel.

5.3 Concept of operations

A.k.a., Concepts of operation, ConOps, CONOPS.

Concept of Operations (ConOps) is a description of how the system will operate to meet user (operator) expectations for anything being conceptualized for the purpose of transforming that concept into reality. The ConOps includes the user description and summarizes the needs, goals, vision, and characteristics of the system's user. ConOps includes a description of the operation, maintenance, and support for the system. The ConOps describes the characteristics of a proposed system from the viewpoint of its users (and in a unified system, its operators also). It is used to communicate the quantitative and qualitative system characteristics to all stakeholders and serve as a basis for stakeholder unification on the issue. It often conveys a clearer statement of intent than the requirements themselves. The concept of operation describes the concept of the solution to meet the requirements. ConOps is a formal description of the likely operation of a future or existing system in the terminology of its users, providing important information for the development (or acquisition) of that system.

A ConOps makes all project team members aware of the different types of users of the system and activities those users will perform. This allows everyone who uses the document to get an idea of who is performing what task and in what order they are performing those tasks.

A ConOps is a living document that is updated a changes occur.

NOTE: A ConOps is a directional document which can be used to compose an executive summary.

ConOps is the first step in the engineering life-cycle for a new project [to develop a system]. The ConOps is a starting point for the more detailed description of the system. A system functional requirements specification follows the ConOps. Although the Concept of Operations is not a requirements document, a well-formed concept of Operations will be a primary source of information used to create the initial high-level functional requirements.

ConOps is part of the systems engineering life-cycle process, as seen below:

- 1. ConOps
- 2. Requirements (high-level to detailed)
- 3. Design (high-level to detailed)
- 4. Implementation
- 5. Integration and testing system verification
- 6. Operation and maintenance
- 7. Assessment

The principal goal of the ConOps is to provide high-level definition of the system, including:

- 1. Identifying the required vision (mission) in functional terms.
- 2. The major parts within the envisioned system.
- 3. The flows of information among those parts, the information flow to any entities external to the system.
- 4. The high-level capabilities of the system.

Each capability in the ConOps needs units of measure meaningful for decisioning:

- Measures of effectiveness Operational measures of success that are closely related to the achievements of the vision or operational objectives evaluated in the operational environment, under a specific set of conditions.
- 2. **Measures of performance** Characterize physical or functional attributes relating to the system operation, measured or estimated under specific conditions.
- Key performance parameters Capabilities and characteristics so significant that failure to meet them can be cause for re-evaluation, re-assessing, or termination of the project.

The ConOps (with OpsCon) provides the following:

- 1. An analysis and information set that bridges the gap between the users' needs and visions, and the developer's technical specifications.
- 2. A means of describing a user's operational needs without detailed technical issues that shall be addressed during the systems design analysis activity.
- A mechanism for documenting a system's characteristics and the user's operational needs in a manner that can be verified by the user without requiring any technical knowledge beyond that required to perform normal job functions.
- 4. A place for users to state their desires, visions, and expectations without requiring the provision of quantified, testable specifications. For example, the users could express their need for a "highly reliable" system, and their reasons for that need, without having to produce a testable reliability

requirement.

5. A mechanism for users and operators (and buyers in the market) to express thoughts and concerns on possible solution strategies.

A ConOps document can be separated at a high-level into four major sections (or stages):

- 1. Describe current system (description)
- 2. Describe changes to make (description)
- 3. Describe proposed system (description)
- 4. Analyze proposed system (explanation)

In concern to the questions that provide a common context for any system, a ConOps/OpsCon answers the following:

- 1. **Who:** These describe the interactions among the various human elements within the system including their interfaces with people external to the system. The document and related scenarios should also identify decision points to include the organizational entity with authority to make those decisions. Other systems with which this system interoperates are also identified.
- 2. What: These are the known components or elements and top level capabilities required of the system, at its highest level of abstraction, to perform the necessary functions. The components are described from an operational point of view. Necessary mission phases or modes may also be described here. The Whats also include descriptions of the external systems with which the system of interest interfaces, and the external interfaces. Principal internal interfaces are also described.
- 3. When: These describe activities, tasks, flows, precedence, concurrencies, and other time / sequence related elements necessary to achieve the mission objectives in each of the various mission modes and conditions. Whens may also include information as to system development and operational availability dates, such as project milestones.
- 4. **Where:** These are the environments, such as geographical and physical locations of user's facilities and interfacing systems, within which the capabilities are required to be performed and supported. A description of the nature of the interfaces with other systems, organizations and the environment is also needed.
- 5. **How:** These tie together the other elements (the what, where, when, who, and why) to describe how the system is expected to be used, operated, maintained and, ultimately, retired in the given

environment, under all significant conditions. The emphasis should be on concepts and should avoid any system design or implementation inferences.

6. **Why:** These provide the rationale behind any established partitioning of the mission tasks between the system components and the operators, and the reasoning for specific sequences of activities or tasks. For example, an important function of the document is to provide the rationale behind the definition of the level of technical expertise required of the system operators. This will provide a basis for the definition of a set of system requirements and designs with a consistent level of complexity and sophistication.

Generally, a ConOps includes all (or, some portion of) the following information sets:

1. Introduction

- A. **Document identification** title and identification number.
- B. **Document overview** an overview of the ConOps document.
 - 1. To communicate user needs and the proposed system expectations.
 - 2. To communicate the system developer's understanding of the user needs and how the system will meet those needs.
- C. **System overview** a high-level overview of the proposed system in text and graphic.
- D. **Development effort** a brief description of the scope of effort required.
- 2. **Applicable references and documentation** what sources are mentioned. This section lists the document identification number, title, revision, and date of all documentation referenced in the ConOps.
- 3. **Current system/situation** what is the problem to be solved, and the system or situation as it currently exists.
 - A. **Background**, **objectives**, **and scope** include as necessary all background, mission, objectives, and scope of the current system.
 - B. **Operational constraints** include descriptions on the operational characteristics of the existing system. This could include limits on fulfillment, hours of operation, hard/software limitations, and resource limitations.
 - C. Description of the current system or situation - provide a thorough description of the current system, including but not limited to: operational characteristics, major system components, component interconnections, external system interfaces, current system functions, diagrams illustrating inputs, outputs, data flows. Include

a description of user classes and other people who interact with the system.

- D. User profiles describe who the users are and how they interact with the current system, and what happens when they do. Also discuss how the users interact with each other when using the system.
- 4. **Reasoning/justification for change** why change is needed. Describe the issues, problems, gaps, shortcomings of the current system or situation that motivate development of a new system or modification of an existing system.
 - A. Reason for changes include the reasons for developing the proposed system, including the new, modified, or discovered user needs, goals, objectives; and dependencies or limitations of the current system.
 - B. Description of the desired changes include a summary of the new or modified capabilities, functions, processes, interfaces, and other changes needed to respond to the justifications previously identified.
 - C. **Change priorities** prioritize or rank the proposed changes. Specify what features are essential, what features are desirable, and what features are optional.
 - D. Changes considered but not included include significant changes or features that were considered but not included in the proposed system.
 - E. Assumptions and constraints describe assumptions or constraints applicable to the changes and new system features.
- New system description (concepts for new/ modified system) - functional architecture and concepts for the proposed system; what is the proposed system that results from the desired changes specified in the fourth section of the ConOps.
 - A. Objectives and scope provide an overview of the new or modified system, including the mission, objectives, and scope. Focus on what about the vision or objectives is new that necessitated a new or modified system.
 - B. **Operational policies and constraints** describe the operational policies and constraints that apply to the proposed system.
 - C. Description of the proposed system provide a thorough description of the proposed system. The system description must be simple and clear enough that all intended readers can fully understand it. A high-level graphical overview of the system is strongly recommended.
 - D. Modes of operation describe the proposed

system's various modes of operation. Examples of modes of operation (e.g., HSS operational processes) include: emergency/incident; maintenance and operations; planning; discretionary; strategic.

- E. User involvement and interaction identify the users and the way they interact within the system.
- F. **Support environment** describe the support and maintenance concepts, including the operating environment for the proposed system.
- 6. **Operational scenarios** describe scenarios from different user's viewpoints. One or more operational scenarios that illustrate the role of the new or modified system, its interaction with users, its interface to other systems, and all states or modes identified.
- 7. **Summary of impacts** Describes and summarizes the operational impacts of the proposed system from the users' perspective. This information is provided to allow all stakeholders to prepare the changes that will be brought about by the new system. Impacts include operation, organizational, and impacts during development.
- 8. **Analysis of proposed system** summarize the benefits, limitations, advantages, disadvantages, and alternatives (and trade-offs) considered for the proposed system. In the context of a ConOps document, alternatives are operational alternatives and not design alternatives, except to the extent that design alternatives may be limited by the operational capabilities desired in the new system.
- 9. Notes, glossary, supplemental material

A ConOps may also include:

- 1. **Resource requirement estimate** A rough order of magnitude resource estimate.
- 2. Market cost estimate A rough order of magnitude cost estimate (ROM; market only).
- 3. A schedule estimate (with expected critical path).
- 4. A project sequence (project plan concept).

Simplistically, ConOps answers the basic questions (for a new or existing system):

- 1. Who who are the team involved in the system.
- 2. Why what does the organization lack, and what will the system provide.
- 3. Where what are the physical locations of the system.
- 4. When what is the time-sequence of activities that will be performed by the system.
- 5. How what resources are needed to design, build,

and operate the system.

A ConOps is used to:

- Provide a vision to guide to the development and operation of the system. A common vision about what is being built and operated.
- Provide reasoning (justification) for and nature of changes.
- Identify system stakeholders.
- Assure a common communications reference.
- Formulate and document a high-level system definition.
- Foundation all lower-level sub-system descriptions.
- Define all major user groups and activities.
- Identify the environment in which the system will function.

5.3.1 System reasoning/justification

In order to provide a complete set of reasoning for a new system, the following questions should be answered:

- Why is the new system need?
- What is being changed?
- What new functions do you get?
- How does it change the environment?
- What changes are needed to support the new system?
- What are the most important changes (priorities)?
- What changes are requested, but not included?
- What assumptions and constraints are there in the system to be built?

5.3.2 Operational scenarios

A scenario is a step-by-step description of how the proposed system should operate and interact with its users and its external interfaces under a given set of circumstances. Scenarios are written in natural (layman's) language and should be non-technical as much as possible.

Scenarios should be structured so that each describes a specific operational sequence that illustrates the role of the system and its interactions with users and other systems. It may be necessary to develop several variations of each scenario, including one for normal operation, one for exception handling, one for degraded mode operation, etc. Each scenario will describe an operational event from the different user perspectives. Scenarios help the readers of a conOps document understand how all the pieces interact to provide operational capabilities.

Generally, a scenarios includes all of the following:

- A description of the starting situation.
- A description of the normal flow of events.
- A description of what can go wrong.
- Information about other concurrent activities.
- A description of the state when the scenario finishes.

5.3.3 Operating environments

The various environments in which a system will be deployed, operate and be maintained include, but are not necessarily limited to:

- Physical
 - Natural
 - Induced
 - Self-induced
 - Threat
 - Cooperative
- Social
- Technological
- State jurisdictional
- Market economic

5.4 Types of OpsCon

OpsCon can be classified according to a system's life-cycle:

- **Operations concept** describes the way the system works from the operator's perspective.
- **Production concept** describes the way the system will be manufactured.
- **Deployment concept** describes the way the system will be delivered and installed.
- **Support concept** describes the desired support infrastructure and manpower considerations for maintaining the system after it is deployed. This includes specifying equipment, procedures, facilities and operator training requirements.
- **Disposal concept** describes the way the system will be removed from operation and retired.

OpsCon can also be classified according to who is composing and using the document:

- User OpsCon Written by users and operators, or by the developer in collaboration with the users and operators. Usually written prior to the commencement of development activity, but can be prepared at any point in the system life cycle. Defines the user's and operator's expectations for the system's operational capabilities.
- System OpsCon Written by developer personnel during or after the design activity defining how the system is to be used. Defines the developer's

perception of how the system will be used.

- Alternative OpsCon Written during the concept exploration phase for each of the major alternative systems examined.
- Remedial OpsCon Written to redirect a Program that displays a lack of understanding of the overall system concept. It would typically be written at some point during the design phase.
- Operations OpsCon Written toward the end of the development Program to be maintained during the operations and support phase. It is written from the user and operator perspective and provides a representation of the system operations and capabilities as delivered.

6 [Engineering] Requirements

A.k.a., Requirements engineering.

A requirement is what the system must do to address the operative directive and satisfy the user of the solution (system). Requirements are the descriptions of the system services and constraints that are generated during the requirements engineering process. All requirements are statements using some measure that can be objectively tested. Requirements define what a system should (must, shall, etc.) do and define constraints on its lifecycle (e.g., development, implementation, operation, disposal, etc.). Simply, a requirement is a condition or capability to which a system must conform in operation and/or development. Requirements are that which is necessary for a system to function as intended and designed.

CLARIFICATION: Requirements are different than goals, and other user directive statements, such that requirements can be objectively tested, whereas goal statements may not necessarily be stated in such a way that they can be objectively tested.

Requirements range from high-level abstract statements of a service or of a system constraint, to detailed mathematical functional specification.

IMPORTANT: *At a societal level, requirements define the societal direction.*

Requirements are often expressed as "shall" statements. Requirements are level dependent; for example, there are system requirements (top-level) and subsystem, or component (bottom-level) requirements.

Fundamental problems arise when requirements are not properly stated. Ambiguous requirements may be interpreted in different ways (by developers and users).

NOTE: *In the market, requirements serve as the basis for a bid for a contract as well as the basis for the contract itself.*

Requirements should be (i.e., attributes of requirements are):

- **Complete** describe everything required. Each requirement describes one result that must be achieved by the product. A requirement should not be redundant. The requirement should not describe the means of obtaining the result. Are all functions and conditions required included?
- **Consistent** no conflicts and no contradictions. Individual requirements are not in conflict with other requirements. Are there any requirements conflicts or contradictions?
- Necessary Absolute requirements that are to be verified are identified by "must" or "shall". Goals or

intended functionality are indicated by "will".

- Correct Each requirement is an accurate description of a feature or process of the product.
- Unambiguous (clear) The statement of each requirement denotes only one interpretation. Can the requirement be fully understood?
- Realistic (feasible) Can the requirement be implemented given available knowledge, resources, persons, and technology? Can a real world solution be built and tested to prove that the requirement is satisfied?
- Verifiable (testable) Each requirement is stated in concrete terms and measurable quantities. A process should exist to validate that the product (when developed) will satisfy the set of requirements. Can the requirement be checked? Is the requirement realistically testable?
- Modifiable The structure and style of the requirements are such that any necessary changes to the requirements can be made easily, completely, and consistently.
- **Traceable** The origin of each requirement is clear and can be tracked in future development activities. Is the origin of the requirement clearly stated?

6.1 Engineering design requirements

The identification of a projected system requires a set of descriptive engineering design requirements (a.k.a., engineering requirements). Requirements integrate needs and objectives into a set of instructions (i.e., requirements) that the design has in some priority (i.e., requirements are structured). Requirements describe:

- What functions the system is supposed to provide (what the system does)?
- What characteristics the system is supposed to have (what the system['s quality] is)?
- What goals the system is supposed to meet or to enable users to meet (what use is the system)?

A requirement is another type of [directional] input (imperative) into a project, more specific than and informed from needs, objectives, and goals. In order to coordinate action and access among a team, it is imperative to describe what the system is supposed to do. All requirements have rationales that logically relate requirement to a prior imperative, and must consider:

- What is an aspect of this requirement that could be a source of confusion?
- How is the potential confusion addressed in the requirement?
- What is the evidence that informs the resolution of the confusion?

• What other requirements might have some effect on the interpretation and implementation of the requirement, and thus should be referenced in the rationale?

A requirement is an engineering input composed of a statement of a need or objective, or of a condition or capacity, that a system or product must possess to satisfy a prior need or objective. Therein, a requirement is a property that a system or product must have to provide usability (or functionality) to a user. Requirements are the start of tasks (i.e., the instantiation of tasks), and the first phase of real world issue resolution. Every requirement inherently asks, "How will a successful (or complete) implementation of this requirement (a specific description of some thing in the real world) be verified?"

A requirement is visualized in a table with [at least] two related columns:

- It must have.
- Because of.

A system requirement list explains why a system, product or service is needed, puts the system in context, and describes what the finished system will be like and/ or what it will do. During engineering, the answers to how questions fall into the realm of design, the next sequential phase after initial requirements are developed. Thus, requirements specifications should not include design solutions (except for interface requirements, which often include embedded design).

One or more requirements forms a 'requirements set/ list'. A requirements list is *formalized* (integrated into a unified model of the system). The requirements list is structured hierarchically.

During engineering, requirements are the basic source for communication among end-users, InterSystem Teams, and intelligent systems.

Note: A [problem] domain-model is an abstraction that defines the structure and behavior of the problem domain.

In the real world, there are several potential problem domains. There are community and market concepts involved in the life cycle modeling of requirements:

- In community, there are two types of concepts involved in life cycle requirements modeling:
 - Human [conceptual] objectives, which represent the problem domain, and are emphasized in the requirements model.
 - **Engineering concepts**, which are emphasized in the design model(s).
- In the market, there is one additional type of concepts involved in life cycle requirements modeling:
 - **Business concepts** related to customers' objectives, which represent the problem domain,

and are emphasized in the requirements model, though expressed in the design.

Requirements provide a tool for evaluating the final results of the project by examining whether each requirement has been met. Every rule and functional relationship provides a test point. Note that requirements tend to change through the course of a project, with the result that the final output, as delivered, may not adhere to the initial version of the requirements.

A 'requirement':

- *Should specify* the expected behavior and/or form, through a detailed analysis of that which is required for creation of the new status/ state [iteration] and/or new product. Generally, requirements are statements of *what* a system should do, rather than *how* it should do it (which is present in the design).
- Is defined as, *What is needed?* A requirement is, *a well-defined need*.
- Is an objective that must be met. Requirements define necessary objectives.
- Contains criteria for completion, or is *testable*.
 - *Performance* is the degree to which requirements are met.
- As a 'list' *includes*, descriptions of system properties, specifications for how the system should work, and constraints placed upon the development and designed operating process.

The attributes of good requirements include the following:

- Achievable A requirement must be achievable. It must reflect need or objective for which a solution is technically achievable at costs considered affordable.
- Verifiable The expected performance and functional utility must be expressed in a manner that allows verification to be objective, preferably quantitative; that is, not defined by words such as excessive, sufficient, resistant, etc.
- Unambiguous A requirement must be unambiguous. It must have but one possible meaning.
- Complete It must be complete and contain all mission profiles, operational and maintenance concepts, utilization environments and constraints. All information necessary to understand the customer's need must be there.
- Causative It must be expressed in terms of need, not solution; that is, it should address the "why" and "what" of the need, not how to do it.
- Consistent It must be consistent with other

requirements. Conflicts must be resolved up front.

 Appropriate - It must be appropriate for the level of system hierarchy. It should not be too detailed that it constrains solutions for the current level of design. For example, detailed requirements relating to components would not normally be in a systemlevel specification.

Project requirements (or just, requirements) are conditions and capabilities that must be met, or tasks that must be completed, for the project to be complete. Requirements require identifying, defining, organizing, documenting, and refining. A'Requirements Specification' (a.k.a., Requirements Definition Document) documents requirements as a specification. Requirement become technical specifications (composed of material and/ or information properties that feed back upon us, influencing our experience. Any engineer/programmer can build one from this document.

Every requirement must be testable. To know when a project is complete, every requirement must have been tested as complete. If a requirement is not testable, then how will a complete (successful) implementation of the requirement be verified. The requirement must answer, "How do "you" the requirement has been completely implemented and works as expected?"

In application, a given system's requirements will have the following set of control characteristics:

- **Defined** Define a model of the system to be built; not [a model of] the system [itself].
 - Define some mixture of functionality, behavior, performance, and systems constraints (non-functional requirements).
 - Defines known constraints.
- **Organized** Organized by functionality and logical layout.
- **Tested** Every statement is verifiable, with level and nature of test as attributes.
- Assigned Assigned to InterSystem Teams.
- **Opened** Viewable to everyone.

In concern to a community-type societal system, what the engineered system does is directly perceived and independently experienced by its users – either human users or other systems. When a user performs some action, the societal system responds in a particular way; when an internal system or user submits a request of a certain form, it gets a particular response. Due to the nature of societal systems being composed of the users themselves, the users must agree on actions they can perform and responses they should expect from the societal system. This common understanding is captured in the requirements.

INTERSYSTEM TEAM: Requirements engineering is the "sub-discipline" of systems engineering that

encompasses all project activities associated with understanding a system or product's necessary capabilities and attributes, including both requirements development and coordination.

Once the system is in operation, a new societal requirements is either:

- A specified design change in the status or state of the societal system;
- Or, a newly designed [habitat] service or product.

Here, requirements include only real requirements to the system (service-product), and exclude requirements to the project or any other ancillary information.

APHORISM: It is from requirements that engineering can proceed. Because it is not possible to have an acceptable system even with the best solution space if this is based on an incorrect problem space formulation.

The concept of system existential categories, which correspond to the following requirement types:

- Functional requirements (Do): Requirements that define what the system must do. In other words, what it accepts and what it delivers (i.e., expected transformation). Examples: The system shall provide food; The system shall transmit 4 signals; The system shall convert sea water into drinkable water.
- Performance requirements (Being): Requirements that define how well the system must operate, which includes performance related to functions the system performs or characteristics of the system on their own, such as -illities. Examples: The system shall move at a speed higher than 30 km/h; The system shall have a reliability better than 0.80.
- Resource requirements (Have): Requirements that define what the system can use to transform what it accepts in what it delivers. Examples: The system shall consume less than 300 W; The system shall have a mass of less than 30 kg.
- Interaction requirements (Interact): Requirements that define where the system must operate, which includes any type of operation during its life-cycle.

Examples: The system shall withstand shock levels higher than 300 g; The system shall operate in vacuum (to reflect operation); The system shall operate in clean room class 'X' (to reflect Assembly, Integration, and Test activities).

Each level of the requirements hierarchy represents a fully operable system as they are options that build upon previous need levels. The amount of levels is unlimited and free of preconceptions, being therefore up to each project to define theirs.

- Base Threshold: the minimum level of service (value) that must be provided so that the system is acceptable.
- Goal Threshold: desired value provided by the system.
- Want Threshold: great-to-have, but considered difficult to achieve.

Functional ("do") requirements:

- The system shall service the spectral range of human need.
 - The system shall provide water services to ...
 - The system shall provide energy services to ...
 - The system shall provide building services to ...
 - The system shall provide medical services to ...
 - The system shall provide production and material cycling services to ...
 - The system shall provide to ...

Performance ("being") requirements:

- The service system shall have an efficiency better than 98%.
- The service system shall have a reliability higher than 0.90.

Resource ("have") requirements:

- The system shall fit within a circular boundary.
- The system shall have a human carrying capacity

NOTE: Carrying capacity is a limit that varies with technology.

Interaction ("have") requirements:

- The system shall fulfill its performance requirements in the manner specified by the modularity (or other) standard (protocol).
- The system shall fulfill its performance requirements within the carrying capacity of the larger ecosystem

The International Council of Systems Engineering (INCOSE) [2011] proposes an independent classification of requirements that targets any complex system and that includes:

- Functional requirements,
- · Performance requirements,
- Non-functional requirements, and
- Architectural constraints.

Hull et al. (2005) make a similar contribution in the field of software systems and define

- Functional requirements
- Performance requirements
- Quality factor requirements
- Environment requirements
- Interface requirements
- Constraint requirements

Requirements exist on design attributes, on the existence of objects and characteristics, on the relationships, and on functions. Their proposition confirms a designer perspective when eliciting requirements: How the system has to be designed.

Function requirements, which indicate what the system must do:

- Performance requirements, which define how well the functions of the system must perform;
- Resource requirements, which define the resources that are available to create and maintain the functions and performance of the system (explicitly referring only to money, people, and time);
- Design constraints, which define restrictions on the solution;
- Condition constraints, which define restrictions on the use of the system.

Providing a domain-independent classification:

- Input/Output requirements
- Technology requirements
- Performance requirements
- Cost requirements
- Trade-off requirements
- System Test requirements

Medical industry a matrix classification of 5 domains as categories of requirements:

- Process
- Performance
- Safety
- Cost
- Documentation

7 stages of the system life-cycle as categories of requirements:

- Design
- Manufacturing
- Distribution
- Installation/Assembly/Integration
- Operation
- Maintenance
- Recycle
- 6.1.1 Requirements breakdown structure (RBS)

The RBS is different than the WBS. The RBS is grouped logically, and the WBS is grouped into physical work packages for the configuration of items that need to be developed. The information in the RBS flows into the WBS.

Requirements functional flow block diagram (flows between functions are seen, not just the hierarchical relationships between functions) - provides information on the sequencing (parallel and series) of functions.

Common requirement framework characteristics include:

- A mission statement with 5-7 key concepts. Each of those concepts if detailed (fleshed out) at the next level leading to 5-7 goal statements, each of which contains 5-7 concepts, fleshed out at the next level as objectives, each of which has 5-7 concepts, and the process continues until we reach the "leaves" of the tree.
- Numbering requirements The usage of a number system allows each level to be associated with the levels above and below.

6.1.2 Requirement categorization approach

The NASA approach to categorizing project requirements:

- **Technical requirements** (functional requirements, performance requirements, and interface requirements).
- **Operational requirements** (mission, configuration, and command and telemetry).
- **Reliability requirements** (environment, fault tolerance, verification, and process and workmanship).
- Safety requirements.
- **Specialty requirements** (maintainability, producibility, etc.).

The European Space Agency approach:

 Functional Requirements, Mission Requirements, Interface Requirements, Environmental Requirements, Operational Requirements, Human Factor Requirements, (Integrated) Logistics Support Requirements, Physical Requirements, Product Assurance Requirements, Configuration Requirements, Design Requirements, and Verification Requirements

In engineering, the classification of requirements should effectively describe the configuration of the output, the resulting system specification. The classification of requirements facilitates the design of the system, which implies influencing the design and selection of a solution. However, at the user level, the required imperative (goal of service) should rather specify what the system is intended to do.

6.2 Requirements as objectives

NOTE: The way in which requirements are categorized can impact system affordability.

Once a need has been recognised and identified, then resources are allocated to the development of a design for its fulfillment, and the 'engineering/design task' is initialized ("born").

The objectives of requirements are:

- 1. Completely define a system by means of defining all elements necessary to complete what the system is intended to achieve, shall fit within the proposed categories.
- 2. Identify requirements that are not applicable to the system to be developed, but to ancillary elements, such as supporting systems (or market contractual agreements).
- 3. Identify constraints that do not support the satisfaction of user needs, but that limit the solution space, thus facilitating the definition of boundaries for the solution and eliminating any influence on a specific solution.

A system is completely defined by specifying:

- What systems do,
- How they are (how well they do),
- What they use,
- Where they live.

All sub-systems are elements that form requirements that define:

- What the system has to do?
- In what context the system has to do it?
- How well the system has to do it?
- Which resources the system can use to do it?

Examples of requirements as objectives include:

- Adaptability needs
 - Can you upgrade and modify it?
 - Sub-conceptions:
 - Flexibility, modularity, scalability, etc.
- Operational effectiveness (readiness) needs
- With what does it operate, how does it operate?
- Efficiency needs
 - Is it intuitive and does it operate well?
 - Sub-conceptions:
 - Use of resources, process efficiency
- Availability needs

- How often does it fail?
- Sub-conceptions:
 - Reliability, maintainability, supportability, etc.
 - Durability = repairability and maintainability

6.3 Requirements as metrics

Metrics are a means of identifying whether an individual atomic requirements statement or an entire requirements set (requirements document as a whole) has been met and/or is in the progress of being met. Requirements are identified with standardized names and a method of both subjective and objective measuring.

There are three primary categories of metrics in terms of requirements:

- Requirements traceability (Traceability metrics)

 Is the set of requirement(s) internally traceable, with clear associations, and no conflict between individual requirements?
- 2. Requirement consistency (Consistency metrics) -Is the set of requirement(s) internally consistent, with no contradictions, no duplication between requirements?
- 3. Requirements falsibility (Falsibility metrics) How adequately can this requirement be tested? Is it clear what test(s) are needed to confirm the requirement is met? Is it clear what should be considered a failure of a test of this requirement?
- 4. Requirements visualizability (Verifiability metrics) - How adequately can this requirement be visualized in object form? Is it clear what objects and relationships are needed to understand the requirement? Is it clear what is not a visualization of this requirement?

6.4 Requirements list

A.k.a., Requirements specification.

A requirements specification should include:

- 1. Definition of the function or entity.
- 2. Description of inputs and where they come from.
- 3. Description of outputs and where they go.
- 4. Information about the information needed for the computation and other entities used.
- 5. Description of the action to be taken.
- 6. Pre and post conditions (if appropriate).
- 7. The side effects (if any) of the function.

6.5 Systems engineering and requirements

Requirements are the primary focus in the systems engineering process because the process's primary purpose is to transform the requirements into designs. The engineering development process develops these designs within the constraints. They eventually must be verified to meet both the requirements and constraints.

NOTE: The primary evaluation of "success" of a system is the degree to which it meets the purpose for which it was intended.

Requirements engineering is the process of:

- Discovering the purpose for the system by identifying users and their needs, and
- Documenting these in a form that is agreeable to analysis, communication, and subsequent implementation.

Requirements engineering is a set of activities concerned with identifying and communicating the purpose of a system, and the context in which it will be used. RE acts as the bridge between the real-world needs of users, customers, and other constituencies affected by a system, and the capabilities and opportunities afforded by technologies.

INSIGHT: *Real-world goals motivate the development of a system.*

NOTE: *Requirements engineering is something of a misnomer.*

Typical definitions of engineering refer to the creation of effective solutions to practical problems by applying scientific knowledge. Therefore, the use of the term engineering in RE serves as a reminder that RE is an important part of an engineering process, being the part concerned with anchoring requirements activities to a real-world problem, so that the appropriateness and effectiveness of the solution can then be analyzed. It also refers to the idea that specifications themselves need to be engineered, and RE represents a series of engineering decisions that lead from recognition of a problem to be solved to a detailed model of that problem.

The primary requirements engineering activities are:

- Eliciting requirements identifying, articulating, or otherwise defining requirements by asking the right questions.
- · Analyzing and modeling requirements
- Communicating requirements

The identification of the problem that needs to be solved leads to identification of a system's boundaries. These boundaries define, at a high level, where the final delivered system will fit into the current operational environment. The identification of user classes, of goals and tasks, and of scenarios and use cases all depend on how the boundaries are selected.

6.5.1 Types of system Requirements

Requirements are categorized in several ways. The following are common categorizations of requirements that relate to technical management:

- User requirements: Statements of fact and assumptions that define the expectations of the system in terms of mission objectives, environment, constraints, and measures of effectiveness and suitability. The customers are those that perform the eight primary functions of systems engineering, with special emphasis on the operator as the key customer. Operational requirements will define the basic need and, at a minimum.
- Functional Requirements: The necessary task, action or activity that must be accomplished. Functional (what has to be done) requirements identified in requirements analysis will be used as the top-level functions for functional analysis.
- Performance Requirements: The extent to which a mission or function must be executed; generally measured in terms of quantity, quality, coverage, timeliness or readiness. During requirements analysis, performance (how well does it have to be done) requirements will be interactively developed across all identified functions based on system life cycle factors; and characterized in terms of the degree of certainty in their estimate, the degree of criticality to system success, and their relationship to other requirements.
- **Design Requirements:** The "build to," "code to," and "buy to" requirements for products and "how to execute" requirements for processes expressed in technical data packages and technical manuals.
- **Derived Requirements:** Requirements that are implied or transformed from higher-level requirement. For example, a requirement for long range or high speed may result in a design requirement for low weight.
- Allocated Requirements: A requirement that is established by dividing or otherwise allocating a high-level requirement into multiple lower-level requirements. Example: A 100-pound item that consists of two subsystems might result in weight requirements of 70 pounds and 30 pounds for the two lower-level items.

6.5.2 Requirements analysis

Requirements analysis involves defining customer needs and objectives in the context of planned customer use, environments, and identified system characteristics to determine requirements for system functions. Prior analyses are reviewed and updated, refining mission and environment definitions to support system definition. Requirements analysis is conducted iteratively with functional analysis to optimize performance requirements for identified functions, and to verify that synthesized solutions can satisfy customer requirements. The purpose of Requirements

Analysis does:

- Refine customer objectives and requirements.
- Define initial performance objectives and refine them into requirements.
- Identify and define constraints that limit solutions.
- Define functional and performance requirements based on customer provided measures of effectiveness.

In general, requirements analysis should result in a clear understanding of:

- Functions: What the system has to do.
- Performance: How well the functions have to be performed.
- Interfaces: Environment in which the system will perform.
- Other requirements and constraints.

The understandings that come from requirements analysis establish the basis for the functional and physical designs to follow. Good requirements analysis is fundamental to successful design definition.

Requirements analysis is a process of inquiry and resolution.

- User requirements.
- Design requirements (prioritize and structure).
- Target values (benchmarking) against target values or what is expected.
- Collaborative design and process planning match capabilities to requirements; what capabilities are available? What capabilities must be developed?

Common requirements analysis questions include, but are not limited to:

- What are the reasons behind the system development?
- What are the user expectations? What do the users expect of the system?
- Who are the users and how do they intend to use the system?
- What is the user's level of knowledge, skill, expertise?
- With what environmental characteristics must the system comply?

- What are existing and planned interfaces?
- What functions will the system perform, expressed in user language?
- What are the constraints (hardware, software, economic, procedural) to which the system must comply?
- What will be the final form of the product: such as model, prototype, or mass production?

The requirements that result from requirements analysis are typically expressed from one of three perspectives or views. These have been described as the Operational, Functional, and Physical views. All three are necessary and must be coordinated to fully understand the users' needs and objectives. All three are documented in the decision database.

- **Operational view** The Operational View addresses how the system will serve its users. It is useful when establishing requirements of "how well" and "under what condition." Operational view information should be documented in an operational concept document that identifies:
 - Operational need definition.
 - System mission analysis.
 - Operational sequences.
 - Operational environments.
 - Conditions/events to which a system must respond.
 - Operational constraints on system.
 - Mission performance requirements.
 - User and maintainer roles (defined by job tasks and skill requirements or constraints).
 - Structure of the organizations that will operate, support and maintain the system.
 - Operational interfaces with other systems.
- Functional view The Functional View focuses on WHAT the system must do to produce the required operational behavior. It includes required inputs, outputs, states, and transformation rules. The functional requirements, in combination with the physical requirements shown below, are the primary sources of the requirements that will eventually be reflected in the system specification. Functional View information includes:
 - System functions.
 - System performance.
 - Qualitative how well?
 - Quantitative how much, capacity?
 - Timeliness how often?
 - Tasks or actions to be performed.
 - Inter-function relationships.
 - Hardware and software functional relationships.
 - Performance constraints.
 - Interface requirements including identification of

potential open-system opportunities (potential standards that could promote open systems should be identified).

- Unique hardware or software.
- Verification requirements (to include inspection, analysis/simulation, demo, and test).
- **Physical view** The Physical View focuses on HOW the system is constructed. It is key to establishing the physical interfaces among operators and equipment, and technology requirements. Physical View information would normally include:
 - Configuration of System:
 - Interface descriptions,
 - Characteristics of information displays and operator controls,
 - Relationships of operators to system/physical equipment, and
 - Operator skills and levels required to perform assigned functions.
 - Characterization of Users:
 - Handicaps (special operating environments),
 - Constraints (movement or visual limitations).
 - System Physical Limitations:
 - Materials limitations (capacity, power, size, weight).
 - Technology limitations (range, precision, data rates, frequency, language).
 - Government Furnished Equipment (GFE).
 - Commercial-Off-the-Shelf (COTS).
 - Non-developmental Item (NDI), reusability requirements.
 - Necessary or directed standards.

Requirements are system and project level data sets (or, issues:

- Requirements are the design decisions about what the system will do.
- Requirements are the set of things that we have decided should matter and be completed by the conclusion of the project.

The properties of the system that we have decided to define and control (manage) through the engineering process. Not all properties of a system are requirements. Requirements are not a statement of intent or a directive, they are not the users needs, they are what a specific system, with specific system boundaries, is actually going to do.

6.5.3 Requirements analysis through prioritization

Motion requires input, input is constrained, therefore motions are prioritized.

Requirements prioritization is a decisioning process. Requirements necessitate prioritization because they concern limitation.

During requirements triage, relative priorities are established for requirements, and resources needed for their achievement are identified and assessed. Then requirements are packed in subsets, and each subset is evaluated against the probability of such subset being a success.

Methods for establishing the prioritization of requirements include:

• Scale of rankings (e.g., 1-4; must, should, could), voting schemes, weightings, value-based (i.e., user-based given available resources), etc.

Prioritization categories include:

- 1. <u>Must have</u> requirement (mandatory, shall).
- 2. <u>Should have</u> if at all possible (high importance).
- 3. Could have but not critical (low importance).
- 4. <u>Will not have</u> this time (delayed importance, does not matter).

NOTE: This prioritization scheme parallels the Habitat Service System's operational decisioning prioritization process (Criticality Response).

The design of the habitat service system naturally breaks down into a series of criticality systems, of which, life support is of the highest prioritization. Herein, facility systems (another top-level habitat service system) is a could have, but not critical.

There are different ways of approaching prioritization, which vary (at least) by type of requirement:

Market Requirements

• <u>Financial requirements</u> will determine financial constraints ("budget"). Financial constraints determines resources purchased.

Real-world Requirements

- <u>Need requirements</u> will determine service constraints. Service constraints determine functions selected.
- <u>Material requirements</u> will determine material constraints. Material constraints determine materials selected.
- <u>Social (navigational) requirements</u> will determine decision constraints. Decision constraints determine the new state of the habitat.

Technology Access

- Technology readiness matrix
- Technology integration matrix (integrated

simulating system)

Technology material composition cost table

6.5.4 Requirements analysis through evaluation (Quality management)

The evaluation of requirements is carried out under quality control/management. Procedures used together for checking that a system (service or product) meets requirements and specifications, and that it fulfills its intended purpose.

NOTE: *Requirements evaluation is a critical component of a quality management system (e.g., ISO 9000).*

Requirements are capable of evaluation because they are:

- 1. Requirements are the foundation from which quality is measured. Lack of conformance to requirements is lack of quality.
- 2. Specified standards define a set of development criteria that guide the manner in which a system is engineered. If the criteria are not followed, lack of quality will likely result.

The factors that affect quality can be categorized in two broad groups:

- 1. Factors that can be directly measured (e.g., defects per function-point).
- 2. Factors that can be measured only indirectly (e.g., usability or maintainability).

In each case, measurement must occur. We must compare the system (documents, programs, data) to some datum and arrive at an indication of quality. Quality factors focus on three important aspects of a product:

- Its operational characteristics
- Its ability to undergo change.
- Its ability to adaptability to new environments.

6.5.5 Engineering assurance

A.k.a., Engineering certainty, quality assurance, systems engineering structured assurance, project assurance, systems evaluation, qualification, examination, acceptance, requirements assurance, quality assurance.

Verification and validation (V&V) mean the same thing within a non-technical context, but in the framing of simulation quality they have quite specific technical meanings. Each involves the accumulation of evidence that correctness (alignment) is present.

IMPORTANT: Verification and validation rely on a source's ability to specify the objective(s) correctly (accurately and fully). **Validation** and **verification** are prerequisite to sufficient user acceptance of a new system. Verification and validation can processes can be applied [at least] to models and to systems engineering.

The model view of validation and verification:

- Verification is the determination of whether the model (e.g., specified requirement) is being solved correctly.
- **Validation** is the determination of whether the model (e.g., specified requirement) is correct.
 - Validation necessarily involves observational or experimental data, and its comparison to the simulation (e.g., operating system).
 - A necessary observation is that validation involves several error modes that color any comparison:
 - The size of the numerical error in solving the model.
 - The magnitude of the experimental or observational error.

The systems engineering assurance views:

- Verification testing to confirm the system and its performance align with the specification/ requirements. Confirm or dis-confirm (and to what degree) a system as aligning with its specified requirements. <u>System verification is assuring</u> that the system is built right.
 - Evaluation (design view; a.k.a., assessment) whether or not a system complies with specified requirements or imposed conditions. Evaluation questions may include: How is the requirement verified (confirmed)? How will testing demonstrate proof of correctness? Has the system been built right for the user; is the system verified (or dis-confirmed)? <u>System evaluation</u> is assuring quality (a.k.a., quality assurance) and function (a.k..a, functional evaluation/ assessment). For instance, what is the baseline of operation, and was it met?
 - **Testing** (development view) whether or not a system reliably complies with specified requirements or imposed conditions. The two types classified by their effect on the system include: non-destructive examination (NDE) and destructive examination (DE).
- Validation (user view) user confirmation of requirements completion. Has the right system been built for the user? System validation is assuring that the right system is built for the intended user environment.

6.5.5.1 System requirement engineering

NOTE: It is normal to find faults with a design after a period of operation.

method itself.

Systems engineering is used to realize viable systems that satisfy user needs.

- **Iterative** the repeated application of a process to the same system or sub-system to correct/ solve a discovered discrepancy or variation from requirements (apply the process again and again until correction is complete).
- **Recursive** the repeated application of a process to design the next lower layer (or level) of the system, or to realize the next higher integrated layer (or level) of the system.

6.5.5.2 System verification

System verification requires the input of a system definition:

- 1. **The definition verification process:** compare the definition of the system, and the system's design specification, and show that the system design specification meets, or does not meet, the system's [objective] definition.
 - If it is not possible, given the information available, to match the system's behavior (as a design specification) to its definition (Read: its model), then scientific inquiry is required -- all that can be done is to do an experiment to see if the system observably behaves like the model (Read: the definition).
- 2. **The evaluation process** a mechanisms that provide a designer with critical feedback on the usability, feasibility, etc. of the system.

The three primary engineering design and development problems for a system are:

- 1. Describe what the system does.
 - What does the system do?
 - What is the system's purpose, function, objective, operation, utility?
- 2. Describe pre-conditions for the systems operation (l.e., for using the product).
 - What does the system require to operate?
 - Under what environmental conditions will the system operate?
- 3. Describe the system's interfaces (material, visual, logical, mathematical, etc.).
 - With what, and how, does the system interface?

NOTE: *Development involves a creation* (*analysis-synthesis*) *life cycle based on evolving prototypes, and the evolution of the development*

6.5.6 Requirements management

Requirements "management" is the process by which changes to requirements are decided and remembered throughout the system life-cycle. Requirements change because:

- Knowledge develops
- User requirements change
- Organizational value-set changes
- The environment changes

NOTE: It is almost impossible to have requirements traceability without implementing the requirements in some automated context. Therein, a requirements coordination tool (visual interface, database, and processing) is generally necessary to assist in the coordination of a large number of requirements.

Requirements interface support (i.e., a requirements coordination tool functions to):

- 1. Supports elicitation
- 2. Support access by means of browse, find, retrieve, and generate reports of requirements based on selected criteria.
- 3. Supports forward and backward traceability.
- 4. Supports the generation of correct linguistic and logical requirements.
- 5. Supports change control and change impact assessment
- 6. Supports functional allocation and functional-tophysical translations.
- 7. Does not enforce any particular requirements engineering process.

6.5.6.1 Requirements hierarchy

A hierarchy of requirements with system requirements leading to sub-system requirements. Traceability within the requirements hierarchy is essential so that requirements always have a causative presence. In systems engineering the terms 'forward' and 'backward' traceability provide a awareness of direction (and how they relate) within the hierarchy.

- Forward traceability is from the system level requirement(s) to the sub-system level requirement(s).
 - Are the system's requirements met by the subsystem's design?
- Backward traceability is from the sub-system level requirement(s) to the system level requirement(s).
 - · Are the sub-systems able to meet their

requirements, and if not, what system level requirement may be at risk [of not being met]?

• Is there requirements "creep" occurring, where sub-system requirements are being created for non-existent system requirements?

These can be:

- Functional requirements what is the thing going to do.
- Performance requirements how well is the thing going to do it.
- Resource requirements how many resources does the thing need to do it.

Requirements are:

- Conceived
- Allocated
- Executed
- Closed

Requirement information need:

- Information category
- Measurable concept
- Leading insight

6.5.6.2 Requirements engineering

Requirements engineering represents a series of engineering decisions that lead from recognition of a problem to be solved to a detailed specification of that problem and its resolution.

Requirements [engineering]

- 1. Articulating requirements
- 2. Modeling and analyzing requirements

The two most common characteristics of requirements are that they:

- Requirements may have interdependencies.
- Requirements are organized in subsets that hierarchically map value to users.

6.5.6.3 Requirements engineering tools

There are a large number of tools that may assist in requirements engineering, including:

- Context diagram
- Functional flow block diagrams
- Requirements breakdown structure (RBS)
- N2 diagrams
- Structured analysis
- Data flow diagrams
- Control flow diagrams
- IDEF diagrams
- Behavior diagrams

- Action diagrams
- State/mode diagrams
- Process flow diagrams
- Functional hierarchy diagrams
- State transition diagrams
- Entity relationship diagrams
- Structure analysis and design
- · Object-oriented analysis
- Unified modelling language (UML)
- Structured systems analysis
- Design methodology
- Quality function deployment

6.6 System requirement constraints

Both resources (material boundaries) and constraints (information boundaries), as well as time, are elements a system uses for transforming inputs into outputs. Cost and schedule limit the solution space (in market, "tradespace") and as such traditional categorization of requirements include them as requirements or constraints. Development cost and schedule can be perceived as resources because they are consumed during system development. However, these resources are not consumed during development by the system, but by the project developing the system, and therefore they would actually reflect project constraints and not system ones. On the other hand, it could also be argued that time and cost are indeed consumed by the system during its creation, which would bring them back as resource requirements to the system.

Consequently, the present research proposes to allocate development cost and schedule requirements in one of the following two categories, depending on the vision and needs of each project:

- System development requirements requirements defined for the system's development.
 - System development resources What resources are consumed and/or cycled by the system during its development?
- System operation requirements requirements defined for the operational phase of the system, i.e., how much money is required to operate the system at the specified performance levels.
 Operational cost requirements inherently belong to the resource category, as it is something a system uses to fulfill its functions.
 - System operational resources What resources are consumed and/or cycled by the system during its operation?

6.7 Requirement expression: standards (Categorical, linguistic)

A requirement is an imperative. Other imperatives include

needs, goals, directives, and objectives. Statements in this plan contain the following imperatives:

- *Shall* are used for binding requirements that must be verified and have an accompanying method of verification. Shall is a binding provision.
- *Will* is used as a statement of fact, declaration of purpose, or expected occurrence. Will is a declaration of purpose.
- *Should* denotes an attribute or best practice that must be addressed by the system design.
- *May* denotes a non-binding attribute or provision.
- *Must* denotes the expression of either a constraint, a certain quantity, or a performance requirement (non-functional requirement).

Principles for usage include:

- Use exactly one provision or declaration of purpose (such as shall) for each requirement, and use it consistently across all requirements.
- 2. When used within the context of a reference document under an agreement, the verbs shall, will, and should are only intended as informational and are not binding.

6.7.1 Requirement expression: format[ion] structure

A requirement must be in the form[ation] or structure of a complete "information package" (e.g., sentence). A requirement must state a subject and predicate where the subject is a user.

The requirements must have, and state, an end result.

A requirement list/set must be consistent in its usage of the "to be" verb:

- *Will* or *must* to show mandatory nature.
- *Should* or *may* to show optionality.

Here are a few basic requirement sentence structures they can apply consistently. A very basic format is:

- Unique ID: Object + Provision/Imperative (shall)
 + Action + Condition + [optional] Declaration Of Purpose/Expected Occurrence (will)
 - For example, 3.1.5.3: The craft shall perform one complete fly-around (of the tower) at a range of less than 250 meters as measured from the craft center of mass to the tower center of mass; after undocking from the tower (and no declaration of purpose).

Table 9. Engineering Approach > Requirements: Requirementtypes and their associated syntax patterns.

Requirements Type	Syntax Pattern
Ubiquitous	The <system name=""> shall <system response=""></system></system>
Event-Driven	When <trigger><optional pre-condition=""> the <system name=""> shall <system response></system </system></optional></trigger>
Unwanted	If <unwanted condition="" event="" or=""> Then, the <system name=""> shall <system response></system </system></unwanted>
State-Driven	While <system state="">, the <system name> shall <system response=""></system></system </system>
Optional Feature	Where <feature included="" is="">, the <system name=""> shall <system response=""></system></system></feature>
Complex	<pre><multiple conditions="">, the <system name="" or="" unit=""> shall <system or="" response="" unit="">. (combinations of the above patterns)</system></system></multiple></pre>

An guiding objective of requirement defining is:

• Minimizing the amount of necessary requirements by eliminating overlapping requirements while ensuring the system is completely specified.

6.7.2 Requirements development

The process of requirements development requires all of the following phases and descriptions, occurring synchronously:

- 1. Define user:
 - Who is interested in the system?
 - How are decisions resolved?
 - Who are the users and developers?
- 2. Define goals (objectives):
 - Define broad (coarse) goals (non-specific goals)? What should be implemented or achieved?
 - Broad goals divided into more specific goals (granular goals)? What should be implemented or achieved?
- 3. Define requirements:
 - Goals (objectives) can be derived into concrete requirements that describe how the goals will be achieved and fulfilled.
 - A requirement is:
 - A specific statement of need derived from a goal.
 - A specific statement(s) of reason (rationale) for the need including a relevant context.
 - A specific explanation for how to achieve or fulfill (i.e., get) the requirement(s) in the context of a goal?
 - Visualize and model the requirements in order to appropriately communicate and construct the how.

All requirements in a requirements list are composed of

at least the following inputs:

- **Requirement unique identifier:** Each requirement shall be assigned a project-unique identifier to support testing and traceability.
 - Each requirement throughout the information system must be tagged with a <u>project unique</u> <u>identifier (PUI)</u>. Tagging each requirement with a PUI optimizes traceability between high-level and low level requirements, and between requirements and verification tests. Each requirement should be marked with a PUI that allows users to easily reference both the requirement and its position in the overall document.
- **The requirement statement:** Each requirement shall be stated in such a way that an objective test can be defined for it. An 'objective test' is a test for which the result can be commonly experienced.
- The requirement rationale (justification or reasoning) Each requirement shall include a rationale statement(s). When a requirement's rationale is visibly and clearly stated, its defects and shortcomings can be more easily spotted, and the rationale behind the requirement will not be forgotten. Rationale statements also reduce the risk of rework, as the reasoning behind the decision is fully documented and thus less likely to be rerationalized

Requirement unique identifier:

For example: 3.5.2.5

- 3 = Transportation and Service requirements
- 5 = Entry/landing requirements
- 2 = contingency
- 5 = space ventilation for emergency landing

6.7.2.1 Requirement construction qualities

Requirements should posses (i.e., presence and not absence of) the following quality attributes:

- **Complete** precisely defines the system's responses to all real-world situations the system will encounter.
- **Consistent** does not contain conflicts between requirements statements.
- **Correct** accurately identifies the conditions of all situations the system will encounter and precisely defines the system's response to them.
- Modifiable (configurable) has a logical structuring with related concerns grouped together.
- Ranked (ordered) organizes the specification statements by importance and/or stability (which

may conflict with the document's modifiability).

- **Traceable** identifies each requirement uniquely. A requirement must be traceable to some source. Each requirement should have a unique identifier allowing the software design, code, and test procedures to be precisely traced back to the requirement.
- **Unambiguous** states all requirements in such a manner that each can only be interpreted one way.
- **Valid** all project participants can understand, analyze, accept or approve it.
- **Measurable** functions can be assessed quantitatively or qualitatively.
- Verifiable must be consistent with related specifications at other (higher and lower) levels of abstraction.

Requirements must also be:

- Uniquely identifiable Each need is stated exactly once to avoid confusion or duplicative work. Uniquely identifying each requirement is essential if requirements are to be traceable and able to be tested.
- **Performance specified** Statements of realworld performance factors are associated with a requirement.
- **Testable** All requirements must be testable to demonstrate that the end product satisfies the requirements. To be testable, requirements must be specific, unambiguous, and quantitative whenever possible.

Simplistically, requirements must be:

- Conceived constructed
- Bounded constrained
- **Coherent** logically related, internally and externally
- Acceptable sufficient input to resolve a design
- Addressed scheduled, allocated, assigned
- Fulfilled actualized

Engineering is a real world creation process, and hence, requirements therein must possess the following characteristics (i.e., to be a "good" requirement):

- Fulfill real world needs.
- Have clear meaning.
- Are organized coherently.
- "Drive" engineering.

Requirements are prioritized:

• **Terminal requirements** - A terminal requirement is a statement in specific and measurable terms

that describes what the system will be able to do, to be, or enable a user to do or be as a result of engaging with the system. A terminal requirement should be created for each of the tasks addressed within the system. Terminal requirement describe results, and not processes. After the terminal objective is created, it should be analyzed to determine if it needs one or more enabling/ supporting requirement. Each written requirement should include a task/performance, condition, and a standard:

- Task or Performance: States what the system will be doing.
- Condition: Specifies under what conditions the system should perform the task (defines the quality of performance of the system).
- Enabling/supporting requirement(s) are supporting or enabling requirements for terminal requirement. They are created by analyzing a terminal requirement. They allow the terminal requirement to be broken down into smaller, more workable and stabler requirements.

6.7.2.2 Requirement syntax

Requirements ("What") are a communications link between the source model and the implementation model ("How").

Herein, specificity and numeric measure are required for performance. Stating that a system should do something "quickly", is not a performance requirement, since it is ambiguous and cannot be verified. Stating that opening a file should take less than 3 seconds for 90% of the files and less than 10 seconds for every file is an appropriate requirement.

Instead of providing a unique section on performance requirements, include the relevant information for each feature in the statement of functionality.

Requirements are syntactically delineated:

- 1. When?/Under what conditions? (Phrase conditions)
- 2. the system
- 3. *shall / should / will* (Type of obligation from imperative)
- 4. verb <process>; provide <whom> with the ability to; be able to <process>
- 5. object
- 6. additional details about the object.

6.7.2.3 Requirements tracing (traceability)

Tracing requirements means relating specific requirements to other project elements, especially to the following:

• Backward tracing - a requirement to its source.

- Traceability matrix one requirement to another.
- Forward tracing a requirement to its design, code, documentation, or other forward project elements.

Simply, backward tracing ensures a source for each requirement. A traceability matrix ensures it is possible to evaluate the effect of changes to requirements among other inter-related requirements. Forward tracing ensures changes to requirements flow through to the design, code, project plan, etc. Forward tracing to the project plan provides data on how much work has been completed, and how much remains.

6.7.2.4 System requirements modeling

Requirements modeling is the process of constructing abstract, formal representation of the initial textually described system requirements in a way that is amenable to unambiguous interpretation, producing a requirements specification. This process ends with a requirements model (specification), which is expected to capture as much of the relevant real world semantics as possible. The core of the input system's requirements is a functional or behavioral, and non-functional, breakdown. This data based breakdown lists:

- What the users need?
- What the system must do to satisfy their needs?
- What components must be built?
- What each component must do, and how they will interact?

In the subsequent phases of the development process, the requirements model is elaborated and transformed into the design model (the [design] specification). This transition emphasizes the critical need for creating a formal, accurate, and complete requirement model from the outset, as it designed serve as the foundation of the entire development process and continued service life cycle.

Modeling is targeted at clear and accurate representation of the concepts that comprise the system. An important benefit of requirements modeling is that since the resulting model is available at an early stage in the system's life cycle, model analysis and simulation may be used to validate the requirements and reduce conceptual design errors. Later on, the requirements modeling is integrated into the life cycle flow of activities in the development process.

A good requirements specification is one in which requirements are arranged hierarchically. Few highlevel, broadly defined requirements are specified in increasing levels of detail, where each level contains a set of requirements that elaborate upon one or more requirements at the level above it. A hierarchical structure of requirements may facilitate the process of modeling. In general, high-level requirements correspond to abstract processes, aggregate objects or agents (actors), and interactions between them at lower levels.

Each requirement is a specification relating to

some characteristic of a system. Model components are introduced and associated with a corresponding requirement (or requirements set) with which the model component is related, creating the objective condition of traceability.

In community, there is no necessary conceptual gap between engineering objectives and human objectives; they seamlessly become one and the same. In the market, however, there is a gap between customers, employers, and employees, and also between client's, engineering, and business. In other words, in the market, a conceptual gap, which is often very wide, exists between these two [problem-requirement] model types, since one faces the client with a problem domain, while the other faces the solution domain provided by a semi-independent business entity whose role is, a technological solution provider. The result of the gap entails a host of consequences, including the necessity for subjective decisioning, and therein, the introduction of various subjective biases that carry on over time and become systemic [to the societal system].

APHORISM: Share information about fishing to a human and s/he can fish for a lifetime.

During the continuous modeling process, issue tracking attributes track the source and status of a requirement. This is basic issue tracking, allowing for requirements traceability. The attributes are:

- Record the source
- Record the urgency (urgency spectrum)
- Record the sufficiency of data to resolve (decisioning)
- Identify verification method (test, demonstration, inspection, simulation, analysis)
- Identify constraints (safety, performance, reliability, contracts, standards, rules)
- Record integrations (specifications)

6.7.2.5 Requirements gap analysis (project coordination task)

If requirements are not available, or not yet well understood, then an gap/requirements analysis (and possible discovery) must be complete to determine what is missing (define the gap or design space between what is present and what is expected). The purpose of Requirements Analysis is to discover unknown requirements (i.e., to turn unknown requirements into known requirements).

6.7.3 Requirement sub-types

Requirements can be classified by the presence of a function into functional requirements and non-functional requirements. There are two primary requirement subtypes divided by function. Herein, qualitative is the conceptual encoding of function, whereas functional is the physical encoding of function:

- Non-functional requirements (Qualitative requirements) that become encoded into the "behavior" of a function, or "status" of a state) conditions that must be met that are not explicit capabilities.
- **Functional requirements** (specify an exact function) capability that the system must perform.

Functional requirements/metrics are capabilities (as physicalizable states or processes) that the product or service (as a system) must perform. Functional requirements meet functional user needs. These are the most fundamental of physicalizable requirements. In the market, fundamental functional requirements are generally referred to as "business" requirements, because they are what the "business" needs to survive. In community, fundamental functional requirements are sometimes referred to as human requirements or human needs, because they are what individual humans in common need to survive and thrive. In society, these functional human requirements are built upon a set of human needs and objectives.

Note: What one person senses, another may sense differently, thus the need for clear communication and preferentially, electric instrumentation where possible. At the level of a project, there is a need for requirements to be referenceable (i.e., traceable) to their "tested" results, which may be verified or not.

Non-functional requirements/metrics can be visualized as the encoding of conception into a real world reality by "shaping" its iterative expression; like batter being pushed through a cookie cutter shape to form individual iterations of that cookie. After application, non-functional requirements become operational (i.e., concepts in operation). The term for a concept in operation usually ends in -ability: usability, dependability/reliability/durability, mobility, scalability, sustainability. For instance, a system can be designed to be created and operated sustainably. When in operation, the system may continue, or not, to remain sustainable, through its continued design and operation.

In general, non-functional requirements are sourced from a value system. A value system is effectively a set of non-functional requirements. The value system forms objects, which then forms the non-functional requirements. Non-functional requirements per definition do not describe what functionalities the platform will deliver, but how they will be delivered. There are two "hows" here:

- 1. How will the system be produced (i.e., under what quality conditions).
- 2. How will the system operate (i.e., under what quality conditions).

Values are the translation of concepts into operation; they are a higher level abstraction than concepts

in operation. Values become operational concepts (Concepts in Operation), and the real, existent and functioning systems they create are described through a Concept of Operation (a system's high-level conception, abbreviated ConOps, CONOPS, CONOPs, or CONOps). A 'Concept of Operation' document/ dashboard describes the characteristics of a proposed system from the viewpoint of an individual who will use the system. It socially communicates the quantitative and qualitative system characteristics of a potentially, or actually existent, system. The concepts used in that document, translate through active human "experience" into physical interactions that lead to the physical construction of a physically operational system. That system may operate well, in concern to its requirements by the user, or it may not.

6.7.3.6 System-level Requirement categorizations

Requirements about a system to be developed are sometimes categorized by their source (point of origin) and/or system's component. Take note that there is, however, only one unified set of structured requirements for any systems engineering project.

The primary requirement types are:

- Functional requirements (Do): Requirements that define what the system must do in essence, or, in other words, what it accepts and what it delivers (i.e., expected transformation). For example: The system shall accept coins; The system shall transmit 4 signals; The system shall convert sea water into drinkable water.
- Performance requirements (Being): Requirements that define how well the system must operate, which includes performance related to functions the system performs or characteristics of the system on their own, such as -illities. What values and qualities will the system express. Examples include: The system shall move at a speed higher than 30 km/h; The system shall have a reliability better than 0.80.
- **Resource requirements (Have):** Requirements that define what the system can use to transform what it accepts into what it delivers. Examples include: The system shall consume less than 100W; The system shall have a mass of less than 10kg.
- Interaction requirements (Interact): Requirements that define where the system must operate, which includes any type of operation during its life-cycle. Examples include: The system shall withstand shock levels higher than 100g; The system shall operate in vacuum (to reflect operation); The system shall operate in clean room class 10,000 (to reflect Assembly, Integration, and Test activities).

The following are common requirement categorizations:

- <u>User requirements</u> are written from the point of view of end users, and are generally expressed in narrative form, "The user must be able to change the color scheme of the welcome screen."
 - In contrast to the roles of user (customer) and developer (employee) in the market, in community the roles of "user" and "developer" are the equivalent, meaning that there is no structural separation of requirements. Remember that in business, "users" are customers, and "developers" are employees. In community, there is no business, and hence, no financial separation between users and developers. In community, users are also developers as part of an InterSystem Team structure.
- System requirements are statements describing the functions the system needs to do, and the non-functional states the system needs to be.
 System requirements are usually more technical in nature, "The system will include four pre-set color schemes for the welcome screen. Colors must be specified for the page background, the text, visited links, unvisited links, active links, and buttons (base, highlight, and shadow)." System requirements may have to do with how the system is built or functions.
 - What the system will do to meet those needs.
 - What do we need to know to build this?
- Engineering requirements are statements including numbers and operational concepts that describe the functional dynamics and non-functional states of a proposed system.
- <u>Interface requirements</u> specify how the interface (the part of the system that users see and interact with) will look and behave. Interface requirements are often expressed as screen mock-ups; narratives or lists are also used. A description of the information (protocol and physical) interface between components of a system.
- <u>Component requirements</u> specify a descriptive list of all things that each component must do and/or be.
- <u>Negative requirements</u> refers to the create boundaries to what the system should do. However, it is not always possible to measure what a system should not do; because, how can "you" test something that should not happen.
- <u>Constraining requirements</u> (a.k.a., non-functional requirements or objectives) requirements that constrain implementation and operation of a system.

• <u>Project plan coordination requirements</u> refers to those requirements specifying what the project coordination system should do (and be) to coordinate information and resources. These requirements are for the continuous process of project coordination, and not the system to be engineered, which has its own set of requirements. Technically, they are both engineering requirements.

6.7.3.7 Project-level requirement categories

At the project level, there are several primary categories of requirement:

1. Information requirements

- A. Research requirements
- B. Design/production requirements (to produce the deliverable of a societal system specification)
- C. Engineering/Operation requirements
- D. Project plan/coordination activities

2. Material requirements

- A. Material resources for coordination,
- B. Material resources for design.
- C. Material resources for construction.
- D. Material resources for operation.
- E. Material resource for cycling.

3. Human requirements

- A. Human presence for knowledge.
- B. Human presence for effort and capabilities.

4. Operational Requirements

- A. The operational requirements should answer:
 - 1. *Who* is asking for this requirement? Who needs the requirements? Who will be operating the system?
 - 2. *What* functions/capabilities must the system perform? What decisions will be made with the system? What data/information is needed by the system? What are the performance needs that must be met? What are the constraints?
 - 3. Where will the system be used?
 - 4. *When* will the system be required to perform its intended function and for how long?
 - 5. *How* will the system accomplish its objective? How will the requirements be verified?

5. Market-State requirements (Financial and contractual requirements)

- A. In the market-State where resources are not held as the common heritage of all of humanity, resources carry transactional costs (e.g., trade goods, bartering service, and currency).
 - 1. Financial requirements (a.k.a., currency costs)
 - i. Contractual requirements (which are really financial requirements)

- ii. Financially feasible conditions for creation and operation of society.
- iii. Multiple types of resource costs: hardware, software, land, manufacturing, logistics and assembly, State and legal (jurisdictional), and expertise.
- 2. Contractual requirements (i.e., where force is above financial requirements)
- B. Frequency of cost:
 - 1. One-time (accounting for repair or replacement)
 - 2. Marginal (no additional after setup)
 - 3. Reoccurring (cyclical)

6.7.3.8 Societal-level requirement input types

At the societal level, there are several primary categories of requirement:

1. Human [end-]user requirements: Human needs,

wants, and preferences - describe generally the needs, goals, and tasks of the user (this is the end user; there is no market-based project requester). All measurements of quality, success, and optimization relate to the user, who is the individual human being in Community. User requirements specifically refer to user fulfillment.

- A. What do "we" need, want, and prefer as a human individuals interconnected within a global societal structure? What is required to work together, to integrate, share information openly, to perceive and act upon "our" interconnectedness.
- [Societal] System requirements: Community-type society instantiation requirements a description of the societal system itself and what the system must do. What informational (through to material) systems require to sustain the current instantiation (iteration) of the societal system? These are requirements that describe the capabilities of the system with which, through which, and on which humans maintain their society (i.e., function together). Note: Technically, everything is information, from conception through into materialization; hence, the habitat service (material) system is a sub-system of the information system. Here, high-level functions and logic are defined.
 - A. Information System instantiation requirements: These are requirements with which, through which, and on which humans maintain their information system's instantiation.
 - 1. Social; decision; lifestyle; material (Subsystemlevel functions and logic are defined here).
 - B. Habitat Service (Material) System instantiation requirements: These are

requirements with which, through which, and on which humans maintain their material habitat service system's instantiation.

 Ecological services, Life Support Service, Technical Support Service, and Facility Support Service.

6.8 Requirements standards

The principal standard defining a requirement is:

• ISO/IEC/IEEE 29148: System and software engineering - Life Cycle Processes - Requirements Engineering

The five key deliverables of the ISO/IEC/IEEE 29148 standard are:

- 1. Stakeholder requirements specification (StRS; user requirements specification) document
- 2. System requirements specification (SyRS) document
- 3. Software requirements specification (SRS) document
- 4. System concepts documents
 - A. System operational concept (OpsCon) document
 - B. Concept of operations (ConOps) document

6.9 Requirements engineering

A.k.a., Requirements engineering process, requirements definition stage.

Requirements engineering is the iterative process of establishing the services that the user requires from the solution system and the constraints under which it is to be developed (e.g., development conditions) and under which it operates (e.g., service conditions, value conditions). The processes used for requirements engineering vary widely depending on the application domain, the project type, and the organization developing the requirements. In practice, requirements engineering is an iterative activity in which requirement tasks/activities/processes are iterated and inter-related.

The collection and analysis of information known as requirements engineering happens continuously throughout the project's life cycle. Therein, requirements require the following actions:

- 1. Requirements analysis involving identification, rationale, positioning and prioritization.
- 2. Show where work is required to resolve/complete requirement.

Requirements engineering involves, but is not necessarily limited to, the [iterating/spiralling] requirements process tasks of (a.k.a., generic requirements engineering activities, requirements engineering stages):

- Requirements coordination (a.k.a., requirements management) - all coordination tasks/processes/ stages associated with the information set, 'requirements'. Of significant importance here are the processes of tracing/tracking and changing (change controlling) requirements.
- 2. **Requirements** <u>discovery</u> (a.k.a., requirements collection, requirements elicitation, requirements solicitation, requirements identification, gathering requirements) - the process of identifying all requirements. Discovery may involve interviews, evaluations, observation and study, scenarios, use cases, work/model flow diagrams, sequence diagrams, activity diagrams, event diagrams, decision trees, etc. Identify all requirement sources.
- 3. **Requirements** <u>analysis</u> the process (technique) of understanding user needs (requirements) and translating (transferring) them into a set of requirements for system construction and/or modification.
 - A. Requirements classification and organization

 grouping related requirements and organizing
 them into coherent clusters.
 - B. **Requirements prioritization** Prioritizing requirements and resolving requirements conflicts.
 - C. **Technical requirements validation** the process of checking the requirements for their expected attributes, including: validity; consistency, completeness, realism, verifiability, etc. Are there technical errors; conflicts; ambiguities; and does the requirement (and requirements specification) conform to standards?
- 4. **Requirements** <u>specification</u> the collection of requirements necessary to complete the project into a formal document/database.
- 5. **Requirements verification** technical verification that the system operates as required. Proving [objectively] that each requirement is satisfied. Can be done by logical argument, inspection, modeling, simulation, analysis, test, or demonstration.
- 6. User requirements validation user validation that the system can be (or, is being) used as expected.

Note that the above is sometimes more simply depicted as a [repeating] four/five stage cycle:

- 1. Requirements discovery
- 2. 2. Requirements classification and organization (grouping)
- 3. 3. Requirements prioritization
- 4. 4. Requirements specification (repeats here)
- 5. Requirements verification (or, repeats here)

The simplified requirements engineering process:

- 1. User requirements definition
 - A. Inputs
 - 1. Source documents
 - 2. User needs
 - 3. Project constraints
 - B. Activities
 - 1. Articulate demands
 - 2. Define user requirements
 - 3. Analyze and maintain user needs (priority demands)
 - C. Outputs
 - 1. Concept documents
 - 2. User requirements
 - 3. Measures of effectiveness needs
 - 4. Measures of effectiveness data
 - 5. Validation criteria
 - 6. Traceability

6.9.1 Requirements coordination planning

Requirements coordination planning decisions include, but are not limited to:

- 1. **Requirements identification** Each requirement must be uniquely identifies so that it can be cross-referenced with other requirements.
- 2. A change control process This is the set of activities that assess the impact of changes to requirements.
- 3. **Traceability structures** Information structures that define the relationships between each requirement and between the requirements and the system design.
- 4. **Requirements tool support** Tools that support coordination and planning, such as spreadsheets, databases, and content coordination (content management) systems.

6.9.2 Requirements definition

Requirements definition is a stage in the project coordination and systems engineering life-cycle. The primary goal of this stage is to develop a basis of mutual understanding between the users and the development team about the requirements for the project. The result of this understanding is an selected (approved) 'requirements specification' that becomes the initial baseline for product design and a reference for determining whether the completed product performs as the system user requested and expected. All system requirements, (e.g., software, hardware, performance, functional, infrastructure, etc.) should be included.

This stage involves analysis of the users' processes and needs, translation of those processes and needs into formal requirements, and planning the testing activities to validate the performance of the product.

6.9.2.1 Define system requirements

Use the project scope, objectives, and high-level requirements as the basis for defining the system requirements. The questions used to define the objectives may be helpful in developing the system requirements. The goals for defining system requirements are to identify what functions are to be performed on what data, to produce what results, at what location, and for whom. The requirements must focus on the products that are needed and the functions that are to be performed. Avoid incorporating design issues and specifications in the requirements. One of the most difficult tasks is to determine the difference between "what" is required and "how to" accomplish what is required. Generally, a requirement specifies an externally visible function or attribute of a system (i.e., "what"). A design describes a particular instance of how that visible function or attribute can be achieved (i.e., "how to").

When requirements are being defined, it is not sufficient to state only the requirements for the problems that will be solved; instead, all of the requirements for the project must be collected.

NOTE: It is often difficult for a non-specialist to understand technically written requirements and their implications.

6.9.2.2 Writing requirements

Requirements are written in several different notational forms, including:

- Natural language The requirements are written using numbered sentences in natural language text. Each sentence should express one requirements. Natural language sometimes carries the problem of a lack of clarity (i.e, precision may be difficult without making the document difficult to read as multiple conditional statements may be requirement and multiple requirements and types of requirements may be expressed together).
- 2. **Structural natural language** The requirements are written in natural language text on a standard form or template. Each field provides information about an aspect of the requirement.
- 3. **Design description language** This approach uses a language like programming language, but with more abstract features to specify the requirements by defining an operational model of the system.
- 4. **Mathematical specification (a.k.a., formal specification)** - These notations are based on mathematical concepts, such as finite-state machines or sets.
- 5. **Tabular notation (a.k.a., table notation)** The requirements are written in one of the prior four

notational forms and placed into a spreadsheetlike table. Generally, tabular notation is used to complement natural language. Tabular notation is especially useful when a number of possible alternative courses of action must be defined. Each row in the table represents a requirement.

 Graphical notation - Graphical models, supplemented by text annotations, are used to define functional requirements for the system; UML use case and sequence diagrams are commonly used.

6.9.3 Requirements specification

A.k.a., Requirements specification document, system requirements specification (SRS).

The requirements for the project are formally documented in the 'requirements specification'. This is the formal (official) statement of what is required of the system developers. All system requirements should be included, however, a definition of user requirements may or may not be included in the document itself. This is the set of selected (agreed) statements on the system requirements. It should be organized so system users and system developers can use it. Simply a requirements specification is a complete description of the behavior of the system and the conditions under which it must be developed and operated. A requirements specification document is "living" during development, and is a reference document for development and operations; it must be maintained over the life of the project. It is the basis (baseline) for the selection of, and agreement on, the system. It also provides a basis (baseline for validation and verification).

The requirements specification becomes the initial baseline (formal reference document) for product design and a reference for determining whether the completed product performs as the system user requested and expected.

The requirements specification should define/ establish the environment in which the system to be developed will operate.

Each requirement in the requirements specification should be uniquely identified in a 'requirements traceability matrix'. Each requirements should include an explanation (rationale) of why the requirement is necessary. A requirements specification represents the compilation and documentation of all requirements.

A 'requirements specification' is not technically a design [specification] document. As far as possible, it should define (formally set) what the system should do, rather than how the system should do it. In principle, requirements should state what the system should do, and the design should describe how it does this. However, in practice, requirements and design are inseparable due to the following:

- A system architecture (system structure) may be designed to structure the requirements.
- The system may inter-operate with other systems that generate design requirements.
- The use of a specific architecture to satisfy nonfunctional requirements may be an external [domain] requirement.
- Requirements may be a consequence of a [societal] standards requirement.

The following factors should be considered when generating a requirements specification:

- Select and use a standard format for describing the requirements. Ensure compliance with standards.
- Present the logical and physical requirements without dictating a physical design or technical solutions.
- Write the requirements in non-technical language that can be fully understood by the system users.
- Write the requirements in technical language that can be fully understood by the system developers.
- Organize the requirements into meaningful groupings.
- Develop a numbering scheme for the unique identification of each requirement.
- Select a method for:
 - Tracing the requirements back to the sources of information used in deriving the requirements (e.g., specific system user project objectives).
 - Threading requirements through all subsequent life-cycle activities (e.g., testing).

The following factors are generally not included in a requirements specification:

- Project requirements, such as, delivery schedule, staffing, reporting procedures, cost. These are included in the Project Plan. If, however, the requirements specification is part of the project plan, then there is nuance here.
- Design solutions.
- System assurance plans: quality assurance plans, configuration procedures, verification and validation procedures, etc.

Users of the requirements specification include:

- **System users** specify the requirements and read them to check that they meet their needs. Users specify changes to the requirements.
- **Project coordinators** Use the requirements document to plan coordination for the system development process.
- **System engineers** Use the requirements to understand what is to be developed.

- **System test engineers** Use the requirements to develop validation/verification tests for the system.
- **System maintenance engineers** Use the requirements to understand the system and the relationship between its parts.
- **Decision system** Use the requirements to determine risks and societal-level project effectiveness (Read: the decision system effectiveness inquiry).

6.9.3.1 Requirements traceability

A.k.a., Requirements cross-referencing.

Requirements traceability refers to the ability to describe and follow the life of a requirement, in both forwards and backwards direction - from its origins, through its development and specification, to its subsequent deployment and use, and through all periods of ongoing refinement and iteration in any life-cycle phase. To ensure traceability, the "life" of a requirement must be documented in a requirements traceability matrix, which allows anyone to find the origin of each requirement and track every change which was made to this requirement.

Using databases allows for easy traceability. For any organization there should exist a requirements database for all possible requirements.

NOTE: *Tracing can be difficult when using multiple tools.*

6.9.3.2 Requirements traceability matrix

The 'requirements traceability matrix' is a requirements coordination tool used to trace project life-cycle activities and work products to the project requirements, and it ensures requirements are traced and verified through the various life-cycle stages, especially during design, testing, and implementation stages. The matrix establishes a thread that traces requirements from identification through implementation. Requirements within the matrix must be traceable from external sources (such as, the user), to derived system-level requirements, to specific hardware and/or software product requirements. In other words, the requirements traceability matrix is a matrix that traces the requirements forward and backward; it traces project requirements back to the project objectives identified in a project charter, for example, and forward through the remainder of the project life-cycle stages.

The requirements traceability matrix is a threading matrix that groups requirements by project objectives. The requirements traceability matrix contains descriptions for each item in the matrix. Under each project objective, the source of the requirement, the unique requirement identification number, and the lifecycle activities are listed in columns along the top and the project requirements in rows along the left side. As the project progresses through the life-cycle stages, a reference to each requirement is entered in the cell corresponding to the appropriate life-cycle activity. The matrix should be capable of being expanded at each stage to show traceability of deliverables (work products) to the requirements and vice versa.

Every project requirement must be traceable back to a specific project objective(s) described in the project's formal direction document (e.g., project charter). This traceability assures that the system (product) will meet all of the project objectives and will not include inappropriate or extraneous functionality or conditions. All deliverables (work products) developed during the design, production, coding, and testing processes in subsequent life-cycle stages must be traced back to the project requirements described in the 'requirements specification'. This traceability assures that the product will satisfy all of the requirements and remain within the project scope.

It is important to know (document, log) the source of each requirement, so that the requirements can be verified as necessary, accurate, and complete.

A copy of the requirements traceability matrix should be placed in the Project File.

6.9.3.3 Requirements diagram

Requirements diagrams show how the different requirements are linked to the block value properties and the hierarchy of requirements that can be used downstream analysis

6.10 Requirements coordination

A.k.a., Requirements management.

Requirements coordination is a process composed of the core processes of tracing and changing requirements, in conjunction with the processes of gathering, organizing, prioritizing, and documenting requirements. Requirements coordination allows for the verification that all requirements have been collected for the system (Read: the product), and that requirements are traceable and changes are controlled effectively and efficiently. Requirements coordination documents the needs, expectations, and understanding of the product to be delivered and provides a framework for identifying, planning, scheduling, verifying, tracing, testing, evaluating, and changing requirements to fulfill user needs (and expectations) of the project.

The processes of gathering, organizing, prioritizing and documenting requirements are based on an interactive communication process that relies on a working relationship between users, the system's developers (the project team), and possibly, the system's operators, to discover, define, refine, and record a precise representation of the system's requirements.

As the project progresses, more requirements may be identified and coordinated through a change control process. As part of requirements coordination, the project coordinator must track requirements that are accepted for the current project and those that will be planned for subsequent releases.

6.10.1 Requirements identification system

The creation of a standard identification system for all requirements is required in order to facilitate control, traceability, and testing activities. The identification system must provide a unique designator for each requirement. For example, the identification system can classify the requirements by type (e.g., functional, input, or computer security). Within each type classification, the requirements can be assigned a sequential number. Select an identification system that is appropriate for the scope of the project.

6.10.2 Requirements change system

As a project evolves, the requirements may change or expand to reflect modifications in the users' plans, design considerations and constraints, advances in technology, and increased insight into user processes. A formal change control process must be used to identify, control, track, and report proposed and selected ("approved") changes. Selected changes in the requirements must be incorporated into the 'requirements specification' in such a way as to provide an accurate and complete audit trail of the changes.

6.11 Requirement definition tasks

The following are common tasks involved in defining system requirements:

- 1. Define functional requirements
- 2. Define non-function/performance requirements
- 3. Define input and output requirements
- 4. Define user interface requirements
- 5. Define system interface requirements
- 6. Define communication requirements
- 7. Define access requirements
- 8. Define backup and recovery requirements
- 9. Define preliminary implementation requirements
- 10. Develop system test requirements
- 11. Develop acceptance test requirements (validation requirements)

In other words, are multiple sub-types of requirements, including but not limited to:

• User requirements (a.k.a., user requirements definition) - Statements in natural language, diagrams, tables, and other notations of the services, or system, and its operational constraints, which are understandable to the user. Written for users (i.e., understandable by end-users who do not have a technical background. What the system

should do for the user.

- System requirements (a.k.a., product requirements definition) - Statements in technical language, possibly including diagrams, tables, and other notations that represent a completely detailed description of the system's functions, services, and operational constraints. Written for developers (designers and constructors).
 - Data requirements Identification of the data elements and logical data groupings that will be stored and processed by the system.
 - **Process requirements** Identification of a specified method or language.
 - Transitional requirements Requirements necessary to transition to a new system.
 - **Operational requirements** Systems requirements that specify how the system must operate.
 - Maintenance requirements System requirements that specify how a system must be maintained (e.g., replacement of parts).
 - Sustainment requirements (a.k.a., maintainability requirements) - Specify how a system must be sustained (e.g., supplied with fuel).
 - **Retirement requirements** Specify how a system must be retired from service (e.g., disposal of hazardous materials).
- External system requirements (a.k.a., environmental requirements, domain requirements) - requirements that arise from factors that are external to the system and its development process (e.g., interoperability requirements, legislative requirements, compliance requirements, etc.). External/domain requirements can be new functional requirements, constraints (non-functional requirements) on existing requirements, or define specific computations. If domain requirements are not satisfied, the system may be unworkable or unsafe. For instance, a train control system has to take into account braking characteristics in different weather conditions.
 - An example: The system shall implement standardization requirements as set out in document #.

6.11.2.1 Identify functional requirements

A.k.a., Define functional requirements.

Identify requirements for all functions, regardless of whether they are to be automated or manual. Describe the automated and manual inputs, processing, outputs, and conditions for all functions. Include a description of the standard data tables and data or records that will be shared with other objects or applications. Identify the forms, reports, source documents, and inputs/outputs that the system will process or produce to help define the functional requirements.

Develop a functional model to depict each process that needs to be included. The goal of the functional model is to represent a complete top-down picture of the system (product). Use flow diagrams to provide a hierarchical and sequential view of the system user's functions and the flow of information through the system.

6.11.2.2 Identify non-functional requirements

A.k.a., Define non-functional requirements, define performance requirements.

Identify requirements for all conditions and constraints the system (and its development) must satisfy.

6.11.2.3 Define input and output requirements

A.k.a., Define information requirements.

Describe all manual and automated input requirements for the system (e.g., data entry from source documents and data extracts from other applications). Document where the inputs are obtained. Describe all output requirements for the system. Document who or what is to receive the output.

6.11.2.4 Define user interface requirements

The user interface requirements should describe how the user will access and interact with the system, and how information will flow between the user and the system.

CLARIFICATION: 'Interfaces' are boundaries that are between elements of a system.

A standard set of user interface requirements may be established for the system owner organization. If not, work with the system users to develop a set of user interface requirements. A standard set of user interface requirements will simplify the design and development processes, and ensure that all systems have a similar look and feel to the users. When other constraints (such as a required interface with another application) do not permit the use of existing user interface standards, an attempt should be made to keep the user interface requirements as close as possible to the existing standard.

Define the user interface requirements by identifying and understanding what is most important to the user, not what is most convenient for the project team.

The following are some of the issues that should be considered when trying to identify user interface requirements:

- The users' requirements for visual and behavior elements, navigation, and help information.
- The standards issued by the decision system and

societal-level organizations that apply to user interfaces.

- The classification of the users who will access and use the system.
- The range of functions that the users will be performing with the product.

6.11.2.5 Define system interface requirements

The hardware and software interface requirements must specify hardware and software interfaces required to support the development, operation, and maintenance of the system.

The following information should be considered when defining the hardware and software interface requirements:

- Users' environment.
- Existing or planned system that will provide data to or accept data from the new system.
- Other organizations or users having or needing access to the system.
- Purpose or mission of interfacing.
- Common users, data elements, reports, and sources for forms/events/outputs.
- Timing considerations that will influence sharing of data, direction of data exchange, and security constraints.
- Development constraints such as the operating system, database system, language, compiler, tools, utilities, and protocol drivers.
- Standardized system architecture defined by hardware and software configurations for the affected organizations, sites, or operations.

6.11.2.6 Define communications requirements

The communication requirements define connectivity and access requirements within and between user locations and between other groups and applications.

The following factors should be considered when defining communication requirements:

- Communication needs of the user and InterSystem Team organizations.
- User organization's existing and planned communications environment (e.g., telecommunications; LANs, WANs, wired, wireless etc.).
- Projected changes to the current communication architecture, such as the connection of additional local and remote sites.
- Limitations placed on communications by existing hardware and software including:

- User systems.
- Applications that will interface with the product.
- Organizations that will interface with the product.
- Standards that define communication requirements and limitations.
- Future changes that may occur during the project.

6.11.2.7 Define access requirements

A.k.a., Define access control requirements, define security control requirements.

Develop the data and system access requirements in conjunction with the system users. This involvement affords early determination of access, and levels of access protection required for the system.

Use the following procedure to determine access requirements:

- 1. Identify the types of data that will be processed by the system.
- 2. Determine preliminary data integrity (protection, security) requirements.
- 3. Coordinate with the users and InterSystem Team operators of the platform to identify existing supporting computer access (security) controls, if applicable.
- 4. Incorporate access requirements into the 'requirements specification'.

The following list provides sample questions that can be used to help define the access controls for the system:

- What access controls (access restrictions) are placed on the users by the societal organization?
- What are the audit and other checking needs for the system?
- What separation of accountabilities, control related functions, operating environment requirements, or other functions will impact the system?
- What measures will be used to monitor and maintain the integrity of the system and the data from the user's viewpoint?

6.11.2.8 Define preliminary implementation requirements

Describe the requirements anticipated for implementing the system (e.g., user production cycle). The high-level implementation requirements are identified early in the life-cycle to support decisions that need to be made for the information systems engineering approach. The implementation requirements are expanded into a full implementation approach during the design stages.

The following factors should be considered when defining preliminary implementation requirements:

- **Operating environment** identify any capacity restrictions given by the environment, existing hardware and software that need to be identified and addressed.
- Acquisition If hardware or software must be acquired, identify the necessary acquisition activities. These activities include preparing specifications, estimating costs, scheduling procurement activities, selection, installation, and testing.
- **Conversion** Identify requirements for converting data (or systems) from an existing or external application to the new product.
- Installation Identify the installation requirements.
- **Training** Identify the specific training needs for various categories of users and InterSystem teams.
- Documentation Identify requirements for the development and distribution of operational documentation for support personnel and user documentation. Operational documentation may include task control procedures and listings, operational instructions, system administration responsibilities, archiving procedures, and error recovery. User documentation includes the user manual, step-by-step instructions, online documentation, and online help facilities.

6.11.3 Functional requirements

A.k.a., Functional user requirements, functional system requirements.

Functional requirements describe functionality or system services, or are descriptions of how some computations must be carried out. Functional requirements are statements of what the system should do in detail. Functional requirements define what the system must do to support the system users functions and objectives. A functional requirements specification represents a model of the desired behavior of the system.

Functional requirements are statements of:

- Services (functions) the system should provide.
- How the system should react to particular inputs.
- How the system should behave in particular situations.
- May state what the system should not do.

The functional requirements should answer the following questions:

- How are inputs transformed into outputs?
- Who initiates and receives specific information?
- What information must be available for each function to be performed?

Examples of functional requirements include:

- A user shall be able to search the unified information system for all resources.
- The system shall generate each day, for each city, a list of actively used services.
- Each user using the system shall be uniquely identified by a # of digits user/community number.

6.11.1 Non-functional requirements

A.k.a., Non-functional user requirements, nonfunctional system requirements, constraints, quality requirements.

Non-functional requirements are constraints on the services or functions the system provides and the development process being used. Common non-functional requirements include timing constraints, development process constraints, operating constraints, standards, etc. Non-functional requirements may also define and constrain system properties, such as reliability, response time, storage requirements, etc. Non-functional requirements may be more critical than functional requirements, for if these are not met, the system may be useless.

Non-functional requirements may affect the overall structure of a system, rather than the individual components. For example, to ensure that performance requirements are met, a developer may have to organize the system to minimize power flow between components.

Additionally, a single non-functional requirement, such as a reliability requirement, may generate a number of related functional requirements that define system services (functions) that are requirement. It may also generate requirements that restrict existing requirements.

Often, though not always, non-functional requirements apply to the system as a whole, rather than individual features or services.

Non-functional classification types include, but are not limited to:

- Non-functional system requirements requirements that specify that the delivered product must behave in a particular way (e.g.,
 - execution speed, reliability, etc.).
 - For example: The system shall be available to all users during the hours of (Mon-Fri, 08:30-19:00).
- Organizational system requirements requirements that are a consequence of organizational value standards/conditions and procedures (e.g., process standards, implementation requirements, value conditions, etc.).

authenticate themselves using their biometric identity.

6.11.1.1 Performance requirements

Performance requirements define how the product must function (e.g., hours of operation, response times, and throughput under various load conditions). The informationgatheredindefining the project objectives can translate into very specific performance requirements; (e.g., if work performed for an organization is critical to the society, the hours of operation and throughput will be critical to meeting the mission). Also, standards can dictate specific availability and response times.

6.12 Requirements analysis

A.k.a., Requirements analysis technique.

A requirements analysis [technique] is the set of data collection and analysis techniques combined with the life-cycle requirements standards (e.g., tracing the requirements through all life-cycle activities) that are used to identify the project requirements and to define exactly what the system (product) must do to meet the system users' needs and expectations. When appropriate, the technique must include methods for collecting data about users at more than one geographic location and with different levels and types of needs.

The requirements analysis technique should be in harmony with the type, size, and scope of the project; the number, location, and technical expertise of the users; and the anticipated level of involvement of the users in the data collection and analysis processes. The technique should ensure that the functionality, performance expectations, and constraints of the project are accurately identified from the system users' perspective. The technique should facilitate the analysis of requirements for their potential impact on existing operations and business practices, future maintenance activities, and the ability to support the system user's long-range information resource coordination plans. It is advantageous to select a technique that can be repeated for similar projects. This allows the project team and the system users to become familiar and comfortable with the technique.

• For example: Users of the system shall

7 [Engineering] Requirements for habitability

A.k.a., Habitat supportability requirements.

Humanity is a global species, and so, it must necessarily recognize, and maintain, a regenerative global habitat. There are multiple layers of accountable requirements in the development of a habitat, and they include, but are not limited to:

- 1. Social requirements (togetherness)
- 2. Individual requirements (human)
- 3. Service requirements (access)
- 4. Project requirements (organized doing)
- 5. Technical requirements (what)
- 6. Team requirements (who)
- 7. Role requirements (execute)

Habitats are sustained by accountable humans and machines fulfilling roles as part a coordinated network of teams that complete technical requirements on the part of projects that exist to service individual and social human needs. That habitat is designed to optimally support the humans given what the humans know and the available environment.

7.1 Support (habitat supportability)

Habitat supportability is the ability of the habitat to optimally meet the [human] requirements of the inhabitants. The cornerstone of the habitat supportability concept is that each habitat service system (city) functions significantly (though not fully) independent of physical resource support from the other habitats. The crews of these missions must have all of the resources and capabilities that will be necessary to enable them to succeed fully and complete the mission without direct intervention from Earth-based supporting personnel.

This self-reliance will be achieved, in part, by increased emphasis on maintenance by repair rather than replacement. A repair-centered maintenance approach would only be effective, however, when it is strategically coupled with a hardware design that is specifically structured as part of the supportability concept.

The habitat service system is sustained by people working together with their environment. The habitat service system represents a relationship between people, machines (soft and hard), and a living ecosystem.

7.2 Maintenance (habitat maintainability)

Robust, autonomous maintenance capabilities are likely to be enabled by implementation of the following concepts and capabilities:

1. Repair rather than replace. It is preferred to repair failed hardware items rather than simply remove

and replace them. This concept is particularly important for LRUs, ORUs and shop replaceable units (SRUs) that have high failure rates and large masses or volumes. This avoids the use of large quantities of relatively bulky and massive spares.

- Replace at the lowest practical hardware level. The objective is to minimize the mass of spares consumed. An example would be to remove and replace an integrated circuit that has a mass of grams rather than a complete avionics LRU that has a mass of several kilograms.
- 3. Comprehensive on-board failure diagnosis. Failure diagnosis should identify the cause of the failure to the level of maintenance. To the extent possible, these capabilities should be built into the systems. When this is not practical, standalone diagnostic equipment can be used.
- 4. Fabricate structural and mechanical replacement parts rather than manifesting unique spares. Processes are being developed that permit the fabrication of parts from feedstock material that would be carried from Earth or, eventually, produced from in-situ resources. This allows manifesting of an appropriate mass of feedstock material rather than a large selection of unique, prefabricated parts. Manifesting prefabricated parts incurs the risk of carrying excess mass in the form of parts that are never needed and of carrying an insufficient number of parts when there is an unanticipated high-demand rate.
- 5. Implement a comprehensive preventive maintenance approach. An effective preventive maintenance program can help to avoid the occurrence of system failures and loss of availability. In addition, preventive maintenance can delay wear out, thus reducing the need to stock replacement parts. Extensive pre-mission study is required to define realistic schedules for preventive maintenance that allows for in-flight adaptability based on real-time experience.
- 6. Enable utilization of common LRUs, SRUs, piece parts, and components across an entire vehicle set. This will allow spare parts that would be carried on one vehicle to be used on another vehicle, or for system elements from one vehicle to be scavenged for use on another vehicle in critical situations. Interchangeability yields flexibility.
- Use reconfigurable hardware. Using hardware that can be reconfigured to perform different functions as a mission progresses reduces the overall mass of hardware that is carried and minimizes the number of unique spares that are required. Optimally, a single generic part, such as a circuit card, can be easily reconfigured to perform in

multiple locations.

7.2.1 Team support functions

Examples of ways in which the team time that would be required for overhead tasks and the mass for team support can be reduced include the following:

- 1. Launder clothes. Mass reductions can be realized if clothes are laundered and used multiple times.
- 2. Make inventory management transparent to the crew. Comprehensive and current inventory information is important to crew efficiency. The current manual barcode scanning method that is employed on ISS is cumbersome. A better approach might be the use of radio frequency identification (RFID) tags – active or passive – or use of machinereadable markings. Effective implementation of this technology may require some accommodation in vehicle hardware and system design to allow effective placement of sensors and transmission of RF signals, and to ensure non-interference with other systems.
- 3. Recycle waste products. Mass efficiency will be enhanced if waste products such as packaging and failed hardware can be recycled and reused.

7.2.2 Maintainability design requirements

Emphasis is on ease of maintenance, standardization and commonality of hardware, and cognizance of issues that would be specific to operations during space flight. The design themes that have emerged to enable the maintenance concept that was described above include:

- Design for maintainability, graceful degradation, upgrades, and adaptation. For a spacecraft that must be maintained entirely by its crew, design for ease of maintenance is crucial. Systems should also be designed in such a way that they can continue to provide reasonable levels of functionality even after some failures have occurred. Systems should be able to accommodate upgrades – either hardware or software – without requiring total redesign. Finally, designers should seek opportunities to design hardware in such a way that it can perform a variety of functions in different mission phases. This can reduce the total amount of hardware that would be required and simplify its support.
- 2. Design and build for maintainability in the operational environment. The spacecraft structure will be subject to pressure and thermal differentials that can cause dimensional changes. These dimensional changes can affect clearances between parts, thereby making removal and replacement

difficult or impossible. The design must consider these changes and how they will affect the ability of a crew to perform maintenance tasks. Working in a weightless environment provides some advantages, but it also requires consideration of how a crew member will maintain stability and be able to apply loads required for tasks. For example, although a specific number of closeout fasteners may be necessary to secure hardware for dynamic phases of flight, far fewer fasteners may be necessary during the much longer, quiescent periods. The number of required fasteners should be minimized whenever possible.

- Require commonality and standardization at hardware levels among major architecture elements. Mission architectures may require multiple elements such as crew transport vehicles, landers, SHABs, and surface vehicles. Every effort should be made to standardize hardware at all levels (LRU, SRU, component) among all architecture elements. This will simplify provisioning of spares, reduce the number of unique tools, and enable substitution between elements. As noted, this applies to hardware at all levels, including avionics circuit card assemblies; electronic components; other assemblies such as pumps, power supplies, and fans; fasteners; connectors; and other piece parts.
- 4. Require all hardware to be maintained should be internal – minimize extravehicular activity. EVA increases crew risk, is time-consuming, and imposes additional hardware design requirements. To the maximum extent possible, all hardware that may require maintenance should be located inside the vehicle in a pressurized environment to avoid the necessity of performing EVA maintenance operations.
- 5. Eliminate avionics line replaceable unit boxes implement rack-mounted boards. Eliminating the boxes that are typically associated with avionics LRUs offers potential mass savings and facilitates access to the individual circuit cards for maintenance. Adoption of this approach, however, also necessitates consideration of cooling efficiency, physical isolation of redundant system elements, and the mass of cabling that would be required if avionics are centralized.
- Do not combine Imperial and SI [System International] hardware. All hardware should be designed using a single system of units of measure (SI preferred) to avoid the need for multiple tool sets.
- 7. Provide robust diagnostics and post-repair verification. Efficient maintenance operations

require quick, unambiguous fault isolation to the designated repair level. This can be accomplished with built-in-test (BIT) capabilities or with standalone test equipment. Whether via BIT or standalone test equipment, the hardware must be designed to be "testable."

- 8. Design systems to operate in a "keep-alive" mode with minimal power. In situations when power availability has been degraded or when power must be conserved, it is important that other spacecraft systems can remain functional with a minimal power demand. In this condition, the system may not perform its function but retain the capability to do so when additional power is provided. This is similar to interplanetary probes that revert to a "survival mode" during severe radiation events to protect (by power off) vulnerable hardware.
- Design systems to enable isolation of faulty components to preclude loss of entire system.
 Systems should be designed so that single failures do not cause total loss of function.
- 10. Design systems so that pre-maintenance hazard isolation is restricted to the item that is being maintained. When power, pressurized gas, coolant, or other potentially hazardous resources are isolated from system hardware elements to make them safe for maintenance, isolation should be limited to the smallest possible set of hardware to minimize impacts to overall system availability.

7.3 The habitat service systems views

Habitat service system de-construction view:

The controlled habitat service system includes life support systems that humankind builds on top of Earth's life support system (the larger habitat).

- Natural [habitat] systems The planet Earth's life support ecological-service systems
 - Human controlled [habitat] systems The human life (and other) support-service systems. In other words, the societal access-fulfillment system.

7.4 Indicators of a co-habitable service system (HSS)

Effectively constructed habitat service systems are characterized by the following principles (following these principles enable more life range choices):

• The life-coherence principle: The ultimate organising principle of any life-coherent society (or economy) through generational time is maintained (or secure) access to life [fulfilling] services. Any social (or economic) system aligns or does not to the extent that it maintains the production and distribution of life services.

- The service-system principle: A service system is a service system, if and only if, it enables life capacities/abilities not possible without it (e.g., food, water, shelter, computation, etc.). Claimed services that disable (or do not enable) life capacities and abilities are not means of life (e.g., commodities). Any service that does not directly or indirectly provide a life service is uneconomic (or, anti-economic to the extent of life resources wasted on the commodity's production and consumption).
- **The provision principle:** The provision, or the deprivation, of each and all of these life services is measurable by greater/lesser sufficiency (e.g., of clean water, life space a, meaningful work, hours of work, etc.).
- The performance principle: The measure of the overall performance of any society (or economy) is its global access commons developmentally expressed as access to life services (including the work share required to provide them). Given what is available and what is known, what is possible? And, how does that compare to all previous states of the society (or economy, or even, another socioeconomic structure)?
- **The memory principle:** The primary base ("capital") of any society (or economy) is information about creating and maintaining life services without loss in cumulative capacity through time. The societal system specification is the integration of a society's understandings and decisions.
- **The efficiency principle:** The efficiency of any product, tool or process increases, and only increases, to the extent that:
 - Ecological efficiency Inputs and throughputs function to enable the provision of life services with diminishing waste and externalities (e.g., organic farming methods, industries directed towards 100% recycling).
 - **Physical input-output efficiency** Reduced inputs of materials/energy/space/mandatory work time produce same or greater means of life outputs (e.g., wheel and pulley structures, cooperative organisation of work/leisure requirements, lower labour/fuel-per-unit machines).
 - Human development efficiency Capability development of productive agents enables more life goods, life-time, and/or life-range choices than before (e.g., by habitat service sector, such

as education, healthcare, and intersystem work). More free time is more life range choice.

8 [Engineering] Construction

Construction is a process of work by creating building or infrastructure to support the requirement of society. This process starts from the planning, design, financing and continues until the project is ready for use include problem recognition to the implementation of fully operational solution. Construction can be referring to the several sectors such as building (residential and non-residential), infrastructure (roads, bridges, public utilities, and dams) and industrial (process chemical, power generation, mills and manufacturing plants).

Building construction is a process of adding a new structure to real property whether for existing or new building. This process was involved with complex documentation that call as construction documentations (CDs) that can be divided into several components such as:

- A graphical representation of the building (which includes 2D floor-plans, elevations and cross-sections, and possibly 3D CAD models)
- A set of specifications that dictate the quality of the components and finishes of the building
- A legal document that highlights the project expectations.

How to reduce uncertainty in a project?

- 1. Coordination (cooperating)
- 2. Visualization (modeling)
- 3. Documentation (explaining)
- 4. Planning (scheduling)

Every construct[-able] societal information system has:

- The data of an underlying methodology for the societal systems construction [of a habitat system].
- The perceived problem situation for re-construction [of a habitat system].
- The individual consciousness involved and affected by the use of the approach to construct [a habitat system].

9 [Engineering] Societal information

To engineering, society is, in part, an information system capable of representing the real world as visual information. A societal engineering system must be a combination of:

- Conceptual information.
- Spatial information.
- Control procedures for associated information into a visualization in time.

9.1 Societal information system construction

Information system integration involves the following layering:

- 1. In an information system:
 - A. Objects "store" data.
 - B. Data "stores" meaning.
 - C. Meaning "stores" utility.
 - D. Utility "stores" memory.
 - E. Memory "stores" rememberance.
- 2. In a conceptual information system, concepts (or concept-objects) store data about meaning (or, perceivable as meaning to consciousness). Therein, concepts can store data about families/patterns of meaning (i.e., their properties). Concepts form patterns of meaning in the awareness of consciousness.
- 3. In a spatial-information system, objects store data about shape; objects can store data about families of shapes (i.e., their attributes).
- 4. In a physical environment, objects (Read: a shape) can potentially be put within other objects (e.g., putting 'water' in a 'glass', or one Matryoshka doll inside another). In a conceptual environment, concepts (Read: with meaning) can potentially be put (embedded) within other concepts (e.g., putting the meaning of a 'bed', or "place to sleep", within the meaning of a 'home' or 'dwelling').

Information systems are operationalized through the functional integration of concepts and objects, which become technology for a social population:

- 1. The subject of a sentence/argument is a concept, a meaning. The rules by which the sentence is constructed is its syntax (ordering logic).
- The object is something to point to (to point out to someone else, to visualize for oneself or another). The rules by which the vision is constructed is its intelligence (visual logic).

3. Technology is the reproduction of an objective in object form, from a function involving concept and object integration.

9.2 Synthetic environment data representation and interchange specification (SEDRIS)

SEDRIS (Synthetic Environment Data Representation and Interchange Specification), SEDRIS Spatial Reference model (SRM)

In order to support the unambiguous description of environmental data (of a conceptual and spatial form), the SEDRIS SRM (spatial reference model) specifies both a Data Representation Model (DRM) and an Environmental Data Coding Specification (EDCS). These address how to describe "environmental things", but explicitly avoid defining how "environmental things" are located with respect to one another and with respect to non-environmental "things". The SEDRIS SRM (spatial reference model) addresses this need and provides an integrated framework and precise terminology for describing spatial concepts and concepts of operations on spatial information.

The SEDRIS RM (reference model) is comprised of a set of Reference Frames (RF), their inter-relationships, and unambiguous definitions of methods for specifying and inter-converting location (including directional and orientation) information among SRFs. Additionally, those methods are documented in terms of detailed algorithms and subsequently reduced to efficient, accurate, and portable implementations.

Algorithms form a coordinating framework for simulation of a physical information space.

- Algorithms exist for spatial operations.
 Space is shaped with physical objects.
- 2. Algorithms exist for informational operations.
 - Space is shaped with informational objects.

9.2.1 A multi-scale integrated model of ecosystem services (MIMES) and human coupling

SEDRIS is a modeling tool that can incorporate user input and biophysical data sets for evaluation of ecosystem services and decisioning by producing an integrated multi-scale model of ecosystem services MIMES and human coupling. In order to accomplish this form of environmental data model, the information system must:

- 1. Simulate ecosystems and socio-economic systems in space.
- 2. Simulate these systems over time.
- 3. Simulate the interactions between these systems

and human service systems through coupling.

4. Simulate the coupling over time.

In order for the model to function, ecosystem services are (Read: assumptions):

- 1. Ecosystems are the structures and processes that generate functions.
- 2. Ecosystem functions of value to humans are ecosystem services.

Characteristics of ecosystem services include, but are not limited to:

- 1. Structures are not transformed into the produced services (e.g. lumber is not the service, the production of trees is).
- 2. The source of most energy for services is solar energy.
- 3. Availability depends on ecosystem functioning and typically is not controlled by humans.
- 4. Ecosystems supply ecosystem services, which humans can harness (use).

The elements of an information-spatial model include, but are not limited to:

- 1. Requirements (information and spatial)
- 2. Acquisition (information and materials)
- 3. Processing (information and materials)
- 4. Usage (service-information and service-objects)

9.3 Spatial and conceptual information

Materiality is shape (Read: literal, physical), which is representable as information. Conceptuality is information, which is representable as materiality (e.g., a house-building or "money"). Spatial and conceptual information come together in the form of an information system for society, with a pure information set, and a material information set (that represents either the current real-world, the past real-world, or potential possible real-worlds).

The two dimensions could be otherwise called:

- Hard[ware] material system (spatial, physical)
- Soft[ware] informational system (conceptual, mental)

For movement in a material system there must be a physical mechanism (material process) to have a complete explanation. Movement can be described, and movement can be explained. For change in a conceptual system there must be an information mechanism (information operation). Change can be described, and change can be explained. The societal system sub-component naming involves:

- The components of a material system are often referred to as architecture (infrastructure).
- The components of an information system are often referred to as data (computation).
- The components of a meaningful or relational system are often referred to as concepts.
- The components of a material system are often referred to as objects.

9.3.1 Spatial information

Spatial information processing requires a coherent capability to describe the geometric (spatial logic) properties of:

- Position (location of)
- Direction (motion toward)
- **Distance** (space between)

It is from these spatial properties that spatial alignment and navigation are calculable, and from which a material service may safely exist.

Spatial information may be spatially referenced to:

- Local structures and regions.
- The Earth as a whole.
- Other celestial bodies. or
- Objects defined within synthetic visual contexts (e.g., virtual realities).

In each of these cases, a spatial reference frame is defined in relation to logic properties (e.g., spatial logic, conceptual logic, etc.).

9.3.1.1 Spatial data

A.k.a., Geo-referenced data, geodetic data, geodetic datum, spatial environmental data, conceptual (social) environmental data,

Spatial data describes the absolute and relative location of geographic (earth or spatial) features. Spatial data describes:

- The characteristics of spatial features.
- Quantitative and/or qualitative data.
- Attribute data is often referred to as tabular data.

Geo-referenced data include, but are not limited to astronomical, orbital, geomagnetic, and local observations whose reference frame may be fixed with respect to observer, solar, celestial, or other positional standards rather than, for example, the equator plus a prime meridian on an Earth Reference Model (ERM) surface. Other Object Reference Models (ORM; e.g., the moon or the NASA Space Shuttle) may also be used. Common geographic, geospatial (positional) representational data types include but are not limited to:

- Points (primary class):
 - id,
 - x, y,
 - m₁..m_n
- Lines (primary class):
 - id,
 - x₁,y₁...x_n,y_n
 - m₁..m_n
- Areas (primary class):
 - id,
 - x₁,y₁...x_n,y_n...x1,y1,
 - m₁...m_n
- Rasters (primary class):
 - x₁,y₁z₁...x_n,y_n,z_n
 - m₁...m_n
- Routes (extended class)
 - id
 - x₁,y₁..x_n,y_n
 - m_{1..}m_n
- Regions (extended class)
 - Poly list
 - id
 - p₁..id,p_n
- Instantaneous points
 - id, x,y,z,t,m
- Time duration points
 - id,x,y,z
 - t_s..t_e
 - m₁..m_n
- Time series points
 - id,x,y,z
 - s
 - t₁..t₂
 - m₁...m_n
- Time duration vectors
 - id
 - x₁,y₁,z₁...x_n,y_n,z_n
 - m1..m2
- Time duration areas
 - id
 - x_{1,},y₁,z₁...x_n,y_n,z_n
 - x₁,y₁,z₁
 - t₁..t₂
 - m₁..m_n

9.3.1.2 The material data set

Material object observations generally have four operational dimensions:

1. The first two are the x and y horizontal spatial coordinates, referring to some predetermined

standard coordinate reference system (CRS).

- The third is the temporal coordinate, t, the moment

 according to some predetermined standard calendar and time zoning system – when the soil was observed.
- 3. The fourth operational dimension is the material observation elevation, z, as measured using some predetermined standard scale, e.g. metres.

At a point in (geographic) space and time, [x, y, t], or in space, time and depth, [x, y, t, z], a material observation is accompanied by an attribute space. The latter is a multi-dimensional space defined by a set of attributes of the environment (e.g., for a soil observation it may be land use, slope, parent material, or soil layer pH, cec, carbon content).

9.3.1.3 Spatial data collection

How are current data collected on current real world objects? The 3D geometry of real world objects are observed and collected through surveying technology, such as total stations, terrestrial/airborne laser scanners, or techniques from photogrammetry. The common name for this collection of techniques is known as, 'remote sensing'. Remote sensing processes record, measure, and interpret imagery and digital representations of [energy] patterns derived from noncontact sensor systems.

9.3.1.4 Spatial data interoperability

Interoperability of spatial data is facilitated through the adoption of a common and widely-known Spatial Reference Model (SRM) that allows the context in which coordinates, directions, and distances are defined to be known exactly, and converted accurately into multiple definitions and representations of geo- and nongeoreferenced space.

9.3.2 Conceptual information

Conceptual information processing requires a coherent capability to describe the conceptual (mechanical-state logic) properties of:

- Condition (quality of)
- Function (behavior of)
- Intention[al progress] (expectation of)

It is from these mechanistic properties that state change and intentional alignment are calculable, and from which an effective service may safely exist.

Conceptual information may be conceptually referenced to:

- Local behaviors.
- Regional behaviors.
- The population as a whole.

- Digital (software) systems.
- Mechanical (hardware) systems.

In each of these cases, a conceptual reference frame is defined in relation geometric properties.

9.3.3 Temporal information

For any object or system to be realized in the real world, it is necessary to specify the time and temporal reference frame to which the spatial position and/or conceptual condition refers, and the time for which the spatial or conceptual reference frame is defined.

9.3.4 Spatial and conceptual interoperability

Interoperability of conceptual data is facilitated through the adoption of a common and widely-known Conceptual Reference Model (CRM) that allows the context in which conditions, functions, and intentions are defined to be known exactly, and converted accurately into multiple definitions and representations of real- and non-realreferenced space.

Interoperability of spatial information requires that:

- Spatial reference frames and ORM/ERMs be defined such that coordinates and angular measures describe position and orientation data uniquely, and
- Mechanisms exist for such data to be converted/ transformed between alternative spatial reference frames, should this be required.

Interoperability of conceptual information requires that:

- Conceptual reference frames and ORM/ERMs be defined such that conditional and functional measures describe intention and orientation data uniquely, and
- Mechanisms exist for such data to be converted/ interpolated between alternative conceptual reference frames, should this be required.

Existence has two delimitations to embodied consciousness:

- The basis of physicality is a limited physical boundary.
- The basis of information is data (i.e., a delimited meaning boundary).

9.3.5 Spatial and conceptual reference frames

A.k.a., Where is the point?

Accurately locating objects is key to the operation of any [service] system which contains information about realworld entities. Consistency (standard) in description, nomenclature, and the treatment (application) of models of the earth and related spatial and conceptual reference frames and coordinate systems is critical to achieving effective data interchange and system interoperability, which are required for optimization of global human [service] fulfillment. The S-/C-RM provides the means to define a unified approach to representing real world conception location information, and precisely relating different descriptions of such location. All information here can be represented in databases, and potentially, simulated.

Any ability to control physical or conceptual motion comes from having a set of coordinates within a coordinate system. A coordinate system is a collection of rules by which values may be used to relate (process) an object to a unique (coordinate system) origin location. Coordinate Systems are a collection of rules by which values may be used to spatially or conceptually relate a location to a unique (coordinate system) origin location. A coordinate system specifies a mechanism for locating points within a reference [coordinate] frame.

CLARIFICATION: A coordinate frame (or simple, reference frame or frame) is specified by an ordered set of mutually dependent direction vectors; thus, a reference frame has an identifiable center. When producing or using positional or conditional data, one [controller] needs to understand both the reference frame and the coordinate system being used.

In physics, a frame of reference (or reference frame) consists of an abstract coordinate system and the set of physical reference points that uniquely fix (locate and orient) the coordinate system and standardize measurements (for some form of intentional control by consciousness). Coordination system formalization [as mathematics] is relatively simple. A coordinate system in mathematics is a sub-conception of geometry (applied algebra), a property of manifolds (in physics even, these are appropriately called configuration spaces or phase spaces; appropriately because coordinate systems allow for controllability, and thus, the benefit of reconfiguration). Mathematically, the coordinates of a point r in an n-dimensional space are simply an ordered set of n numbers: $r = \{x1, x2, ..., xn]$.

INSIGHT: Through coordination there may exist greater development of individual function.

9.3.5.1 Coordinates

Coordinates are:

- Linear or angular quantities that designate the position of a point in a [coordinate system] reference frame. By extension, they also designate the position of a point within a spatial reference frame.
- Conditional or intentional qualities that designate the state of a point in a [coordinate system]

reference frame. By extension, they also designate the condition of a point within an intentional reference frame.

• Data representationally modeled (DRM) locations of spatial position and/or intentional condition.

Reference modeling is the production of:

- A reference model (spatial-, conceptual-type) is a well-defined set of
- reference frames (spatial, conceptual),
- object reference models, and
- · coordinate systems,
- that allows coordinates to be specified
- succinctly, and
- converted accurately between different [spatial and/or conceptual] reference frames.

Spatial reference frames (SRFs) are:

- Reference Frames serve to locate coordinates in a multi-dimensional space (generally either two- or three-dimensional). They are specified in two parts to any SRF.
 - Object reference model A geometric description (model) of a reference object embedded in (and serving to orient) that frame referred to as an Object Reference Model (ORM)
 - An Earth Reference Model (ERM) is a special case of an ORM
- Coordinate system computation A Coordinate System specifying how a tuple of values uniquely determine a location with respect to the origin of that frame. By extension, that tuple also specifies a location with respect to the reference object.

9.3.5.2 The Cartesian coordinate system

A.k.a., The geometric-planar coordinate system, a spatially alignable coordinate system.

The Cartesian coordinate system (the planar coordinate system) is based on an ordered set of mutually perpendicular axes formed by straight lines. The point of intersection of the axes is termed the origin. Alignment - deviation from origin - can be determined to some degree of certainty. The directions of successive axes are normally related to each other by a right hand rule.

- Cartesian Coordinates (two-dimensional) uniquely locate points on a plane using a doublet of values, e.g., (x, y).
- Cartesian Coordinates (three-dimensional) uniquely locate points within a volume using a triplet of values, e.g., (x, y, z).

Since the Earth is an important reference object in our spatial environment, many Spatial Reference Frames will

consist of an Earth Reference Model plus a Coordinate System.

Earth resource frame includes:

- Topographic Surface is the interface between the solid and liquid/gas portions of the Earth. A topographic surface corresponds to the surface of the land and the floor of the ocean.
- Earth Reference Model (ERM) is a specification of the mathematical shape of the Earth, usually in terms of a combination of ellipsoidal and equipotential (geoidal) surfaces. It excludes the topographic surface, and therefore generally corresponds with mean sea level.

Since human needs are an important reference object in our conceptual environment, many Conceptual Reference Frames will consist of a Human Reference Model plus a Coordinate System.

Human needs frame include:

- Habitologic Surface is the interface between the human and ecological materials of the Earth. A habitologic surface corresponds to the surface of the human body and of the local environment.
- Sociologic surface is the interface between the individual and social access to habitat surfaces.
- Economic surface is the interface between the human and habitat re-configuration of surfaces to more greatly meet human habitat needs.
- Real World Reference Model (Real-World Information System) is a specification of the conceptual shape of the human need frame as a real world information model, usually in terms of a combination of conceptual and material surfaces. It excludes the topographic surface, and therefore generally corresponds with mean functional level.

Other reference frame models common to society are:

- Object reference model (ORM)
- Service reference model (SRM)
- Habitat reference model (HRM)

A coordinate system exists to perform useful operations on coordinates, including but not limited to:

- Direction determination (azimuth and elevation angle calculation
- Coordinate Conversion is the process of determining the equivalent location/condition of a point in a reference frame (spatial/conceptual), which is based on the same object reference model (e.g., ERM), but a different coordinate system.
- Coordinate Transformation is the process

of determining the equivalent location/condition of a point in a reference frame, which is based on the same coordinate system, but a different object reference model (e.g., ERM).

• Converting coordinates between two arbitrary Reference Frames may require both Coordinate Conversion and Coordinate Transformation.

There are some common types of operations errors in coordinate systems:

- Formulation (algorithmic) errors in algorithms for coordinate operations.
- Implementation errors includes errors due to sequencing (mathematics) and software implementation.
- Usage errors includes errors due to extension of projection-based reference frame beyond reasonable limits.

9.4 Integrated informational material modeling

In the technical world, one of the most well-known concept models is TCP/IP, the foundation of the global Internet communications system. The generally named Internet protocol suite is, the conceptual model and set of communications protocols used in the Internet and similar computer networks. The information set is commonly known as TCP/IP because the "suite" is primarily composed of the Transmission Control Protocol (TCP) and the Internet Protocol (IP).

The following is a stacked model of informational and material flows in society. [Flow] of information and materiality transmission control protocol ([F]TCP) stack/ model (adapted from Internet TCP/IP model):

- 1. Physical (material surfaces standards; materialization protocol)
- 2. Data Link (information standards; information protocols)
- 3. Network (global habitat decision standard; decision protocol)
- 4. Transport (land and motion systems standards; transportation and communication protocols)
- 5. Session (local habitat service operation systems standard; habitat operational process protocols)
- 6. Presentation (useful objects)
- 7. Application (useful services)
 - A. Application (Habitat contribution service platform; messaging, collaborating, addressing, deciding, tasking; monitoring as support-view; and coordinating as over-view)
 - B. Transport (Resource and human transportation, fabrication, and cycling system; the material

surface system re-composed for differing human service purposes)

- C. Network (intra-habitat integrated-infrastructural network protocols; inter-habitat integrated-infrastructural network protocols)
- D. Link (physical habitat service operational surfaces and information flows)
- E. Physical (machines and humans; drawings and documentation)

9.5 Spatial reference model (SRM) standards

A.k.a., Spatial coordinate system.

A spatial coordinate system is a means of associating a unique coordinate with a point in object-space. It is defined by binding an abstract coordinate system to a normal embedding. A spatial reference frame is a specification of a spatial coordinate system for a region of object-space. The spatial embedding of a real-world surface coordinate system is:

• The ISO/IEC 18026:2006 Spatial Reference Model (SRM) International Standard.

ISO/IEC 18026:2006(E) allows new concepts to be specified by the registration of new entries to the standard. New entries to the standard are registered using the established procedures of the International Register of Items. The registry is also a valuable resource for searching and finding specific spatial reference frameworks (SRFs), object reference models (ORMs), coordinate systems (CS), and other registrable constructs within the reference mode (RM).

Aspects of ISO/IEC 18026:2009 apply to, but are not limited to:

- Mapping, charting, geodesy, and imagery
- Topography
- Location-based services
- Oceanography
- Meteorology and climatology
- Interplanetary and planetary sciences
- Embedded systems
- Modelling and simulation

9.5.5.1 Highly-related ISO Standards

These standards further contextualize spatially referential information:

- ISO/TC 211 Geographic information/geomatics
- ISO/TC 184 Automation systems and integration
- ISO/TC 184/SC 5 Interoperability, integration, and architectures for enterprise systems and

9.6 What is a spatial coordinate system?

A.k.a., spatial coordinate reference system.

Spatial coordinate reference systems are designed to enable the position of points to be uniquely described over varying sizes of information or geographic area. A coordinate system that enables every location on and around Earth to be specified by a set of numbers, letters or symbols.

A [spatial] reference system (SRS) or coordinate reference system (CRS) is a coordinate-based local, regional or global system used to locate [geographical] entities.

Example geographic (a.k.a., earth surface positional) reference systems include:

- A Grid Reference System (grid or projected coordinate reference system), is a means by which to reference locations [on the Earth's surface using a two dimensional Cartesian coordinate system referenced to a map projection. A grid coordinate defining a location consists of and is written as an ordered pair of x and y values expressed in linear units. Most of these grid reference systems use the meter as the unit of measure and define an easting (x) and northing (y) referenced to a series of transverse. A
- Geographic Reference System (graticule) is a means by which to reference locations on the Earth using a system of angles. A geographic coordinate defining a location is usually expressed in angular units of latitude and longitude. Latitude (ϕ - phi) is the angle between the equatorial plane and the straight line that passes through the point in question and the center of the reference shape (WGS84 ellipsoid). Longitude (λ - lambda) is the angle east or west of the reference meridian (Greenwich Prime Meridian) to another meridian that passes through the point in question. The most common standard geographic reference system is latitude and longitude expressed in sexagesimal (base 60) numbering system.

A coordination system (coordination management) is a set of programs to perform operations on data, such as store and retrieve data.

9.6.1 Database operations

A database coordination system maintains the collection of all societal data, and a set of programs to access, store, retrieve, and otherwise process societal data. Therein, the decision system is decision support software with some designed interface. The social system specification is a database of societally relevant information, coordinated by software.

9.6.2 Environmental database

An environmental database is an integrated set of data elements, each describing some aspect of the same geographical region. It often includes additional data describing simulation elements and events expected to take place during the interactions in that environment. For example, data representing trees in a forested region may be found in a database; but in addition, the geometry of vehicles that might drive through the trees during a simulation would also be found in an environmental database. The key phrase in the above definition is "integrated set of data." It is the integration, infusion, and tailoring of varied data sources that creates a full database, and sets it apart from databases that only use an existing raw data source as-is.

9.7 Spatial objects

Spatial objects (in the real world or a simulation) have shape as an attribute in their table. They have geographic (or potential geographic) location. They are a point, line, TIN, raster, etc.

9.8 Temporal-spatial coordination

Time and location are often used together by an application to describe when a given condition exists, or when an object was present, at a given location. The realworld has a time parameter; and at a conceptual level, it is composed of dynamic systems, which are systems that factor a time parameter. These systems reduce to the case of a static relationship by fixing a value for the time parameter. Material/physical object reference model bindings (associations) are often based on physical measurements of objects or systems that change with time. Time is also used to identify the decisions for which these measurements are applicable.

A 'temporal' coordinate system (CS) is a 'Euclidean 1D' CS (see Table 5.35, [standards.sedris.org]) that assigns distinct coordinates to distinct times so that larger coordinate values are assigned to later times. In relation to human tasking, this culminates in a universally, globally coordinatable time system; a temporal coordinate system that enables a unique temporal coordinate to be assigned to every recorded or potential event; thus, necessary for global tasking. For example, in the early 21ste century society, Universal Time (UTC, [standards. sedris.org]) (see 6.2.4, [standards.sedris.org]) was an inter-national time standard.

Herein, times and dates refer to UTC unless explicitly indicated otherwise (often for extra-societal coordination).

9.8.1 Temporal spatial standards

The most well-known temporal-spatial standard is SEDRIS:

- ISO/IEC 18026E: The SEDRIS Standard [standards. sedris.org]
 - Information technology spatial reference model [standards.sedris.org]

9.8.2 SEDRIS

SEDRIS (Synthetic Environment Data Representation and Interchange Specification) is an international data coding standard infrastructure technology created to represent environmental data in virtual environments. A SEDRIS system is coordinated through socio-technical projects.

A virtual environment is a synthetically visualization as a representation of existence. Today, virtual environments are sustained through combinations of hard- and soft ware. In any given society, visualization technology may be installed within an organization's existing *I*_infrastructure and controlled from within the organization itself. From a central interface the technology creates an interactive and immersive experience for teams of users. Visualization technology enables cooperation it be most effective and efficient, because individual understandings can be aligned to a commonly shared vision, and a commonly shared vision can be aligned to individual understanding (through visualization). Visual environments tend to focus on needs of users and issues that are actually relevant and persistent, because that which is the problem and that which is the solution is visually clarified to be so by everyone.

Virtual environments can be persistent and representational of a working, conditional real-world environment.

Environmental data represented by SEDRIS may be concrete (physical, positional and compositional), such as trees and mountains, or abstract (conceptual, conditional and intentional), such as a technology operations procedure (behavioral intention) or the state of a service system (behavioral condition).

Here, visualization facilitates the accurate and coherent exchange of data for reuse and wider scrutiny. Whereas a simulation is a dynamic visualization, a flow diagram (or concept model) is a static visualization.

SEDRIS tutorial data references include:

- SEDRIS Technologies tutorials [sedris.org]
- SEDRIS Data [data.sedris.org]

9.9 What are data models used for?

A data representational model, or simply a data model, is a notation method for describing data. The data model provides a description that enables its users to understand what data is present and how it is organized. A data format specifies the actual bytes used to store data on a storage medium. A specific implementation is defined for how the data objects are to be structured and identified on the medium. There are multiple ways of implementing a data format for a specific data model.

9.9.1 Semantic logic

Semantic logic provides an explicit representation of the conceptual relationships between information objects. Topology provides an explicit representation of the spatial relationships between physical objects (e.g., connectivity and adjacency). Semantic logic (semantic reasoning, rational reasoning) provides the explicit representation of a conceptual relationship, instead of having to derive the conceptual relationship by doing discrete (and axiomatic) logic proofs. Topology provides the explicit representation of a spatial relationship, instead of having to derive the spatial relationship by doing geometric calculations. A topology and semantic logic are ways of pre-computing the answers to spatial and meaningful-informational relationship questions.

The only sensible use of the term "semantics" refers to the meaning of expressions in a language. Such expressions can be single symbols (the "words" of a language) or symbol combinations. As the term implies, they are used to express something, i.e., to communicate meaning. Neither concepts nor entities nor properties nor processes have semantics, but expressions in languages describing them do. In an information system context, many languages need semantics: natural languages, programming languages, schema languages, query languages, interface specification languages, workflow modeling languages, user interface languages, sensor modeling languages, and others. The symbols and expressions of information system languages may be produced and consumed by machines and humans. The languages used in information systems are not natural languages, even if they use natural language terms; instead, they are technical language, which is the results of 'precision of language' determinations sufficient to design and operate a working system. Many of these languages allow users to define new symbols (for individuals, types, properties, relationships etc.). Attaching meaning to language expressions is a conceptual phenomenon. Natural language symbols and expressions evoke concepts in human minds. If these concepts are similar to those which the symbols and expressions were meant to express, communication works. Expressions come to represent entities (as well as properties, relationships, and processes) in the world. This fundamental ternary meaning relationship between symbols, concepts, and entities is captured in the socalled semantic (or semiotic) triangle.

9.9.2 Simulation

To simulate is to make up something similar to an original. One primary use for a synthetic environment is the representation of the natural environment at a specific geographical location. Therefore, the synthetic environment includes the terrain, terrain features (both natural and man-made), 3-D models of vehicles, personnel, and certain terrain features, the ocean (both on and below the surface), the ocean bottom including features (both natural and man-made) on the ocean floor, the atmosphere including environmental phenomena, and near space. In addition, the synthetic environment includes the specific information attributes of the environmental data as well as their relationships.

9.9.3 Active data models

Active data models are operations used to coordinate data into/within a structured document with a centralized data repository.

A common data element classification for an environmental database is:

- Terrain surface Surface geometry.
- Terrain features structures found on and within the terrain, such as vegetation, hydrology (rivers), roads, rockets, terrain artifacts, etc.
- Buildings buildings as structures in the area.
- Objects structures other than buildings in the area.
- Textures, images, and colors surface composition.
- Environmental models environmental phenomena as smoke, rain, haze, etc.
- A database that is designed to support the full spectrum of environmental understanding required to fulfill a wide-ranging human need-service habitat application.

In order to support the unambiguous description of environmental data, an environmental data coding specification:

- Data representation mode (DRM) how to describe "environmental things" in terms of data modeling constructs meaningful to simulation developers (e.g., geometry, feature, image, topology, and data table), it explicitly avoids specifying "where" the "environmental things" are, and enumerating all of the "environmental things" that these data modeling constructs could be used to represent.
- Spatial reference model (SRM) captures and unifies the spatial models used. These models include inertial, quasi-inertial, geo-based, and nongeo-based (purely arbitrary Cartesian) systems. The SRM provides a unifying mechanism for specification and inclusion of any spatial reference frame and coordinate system. Its algorithms are designed to retain a high degree of accuracy during transformation and conversion operations (1mm accuracy).

The EDCS provides a mechanism to specify the environmental "things" that a particular data model construct is intended to represent. That is, a "tree" could be represented alternatively as a <Point Feature>, an <Aggregate Geometry>, a <Data Table>, a <Model>, or some combination of these and other data modeling constructs. Which of these the data modeler (i.e., the data provider of a SEDRIS transmittal) chooses is orthogonal to the semantic of the "thing" that is represented (and its location). The provision of such a "thing" in a SEDRIS transmittal pre-simulation must result in a shared understanding of "what the thing is and what it potentially means" to all participating applications.

9.10 Environmental data standards

Environmental Data Coding Specification (EDCS):

- ISO/IEC 18025 provides mechanisms to unambiguously specify objects used to model environmental concepts. A functional interface is also specified. [standards.sedris.org]
- ISO/IEC 18024-4: EDCS language bindings Part 4: C - Access to the codes defined by ISO/IEC 18025 is through an API.

Environmental data coding standards. All data coding standards focus on meeting the needs of modeling and simulation of the environment for a community of users.

9.10.1 Environmental data-base construction

There are different approaches to database construction depending on the available tools, intended simulation platforms, system requirements, available data sources, design preferences, and application-specific needs. As a result, there is no standard methodology for creating simulation databases. For the most part, however, some general phases are common to all database construction processes. Sometimes these phases overlap or are combined, sometimes one is left out because there is no added benefit, and sometimes their order of execution is changed or done in parallel. With those caveats, we can break the construction process into the following six phases.

- Requirements definition As in any design and implementation, this is critical for database construction because of the varied levels of knowledge between designers and end users, vastly different construction techniques and system constraints, and the lack of a standard terminology common to the simulation community. Without the involvement of both users and designers throughout the entire construction process, the
- Environment data coding specification (EDCS) -

acceptance or desirability of the resulting database will be left to chance.

- 2. Data collection Collecting source data is continuous throughout. Source material can span the range of paper maps, digital elevation products, images and photographs, feature data, 3D models, verbal reports, tabular data, satellite imagery, attributes, weather data, topological data, existing animation and special effects, and a host of other data sources.
- 3. Reasoning (explaining model, value-adding) explanation - visual understanding integration into the given most well-defined model. Often the source data needs to be further analyzed or refined before it can be used.
- 4. "Assembling" the database Once all data sources have been put in an acceptable form, the various data elements are then integrated and assembled into the database one at a time. This may mean combining a surface with a particular texture, color, or attribute; or conforming the 2D features, such as roads or rivers, to the underlying 3D terrain surface. There are many other similar steps that take place during this phase. Applying real-time performance constraints is one of those. The key, however, is the notion of infusing and integrating inherently varied data sources into a single cohesive database.
- 5. Compiling and execution (or transmission) of the database.
- 6. After sufficient simulated iteration of the previous steps, the environmental database is ready for use and testing in the real world. In this step, the database is compiled from its editable data structures into platform-specific data habitat service sub-structure.

It is possible to conduct research into shared ways to represent environmental data was begun in the 1980s in order to permit distributed simulations to work together.

9.11 Unified coordinate information systems algorithms

This report contains guidelines for the development of computationally efficient algorithms for computing informational and spatial operations. A spatial operation is a:

- Coordinate transformation.
- A coordinate conversion.
- An azimuth determination.
- A distance calculation, or other.
- Computations associated with elliptical trigonometry and map projections.

An informational operation is a coordinate transformation, a coordinate conversion, an value determination, a fulfillment calculation or other computations associated set decisioning.

10 [Engineering] Geoinformatics

world, locatable experiential) environment.

A.k.a., Geographic information, geomatics, realworld space computation, an information-based spatial-visual system; geocomputation.

Geoinformatics is a discipline of systems science that uses knowledge and technologies to support the processes of acquiring, analyzing, and visualizing geospatial data (Question: how can the data be added to a simulation of the real-world?). In concern to functioning, the integrated city system ("smart town") is analogous to the human body; it divides functioning into cells and into grouping of cells that share resources and coordinate fulfillment without trade. Activities take place in time and dimensional space; some of the activities are built into the environment as infrastructure. As a type of infrastructure, buildings are an environmentally controlled space where activities take place within. There is a natural organismal ecology. Survey sensors collect environmental and individual issue data. A computational control/conditional system that processes data to give an objective. A transportation network distributes resources, humans, services and products for global accessibility. A circular integrated city grid framework individuates the circle into functional cells. In simulation, the cells overlay a real-world datum as functional habitat material-service boundaries. Additional geoinformatics data layers may overlay the model.

3D geoanalytics and a geo-spatial (visualization, simulation, analytics platform) interface to multiple layers of extant and possibly extant reality. Any information that can be spatially organize, a GIS is the name given (currently) to the system that organizes, visualizations, and databases the system.

- 1. Surveying
 - A. Geoanalytics for the habitat service system network relate individually coordinated habitat service [city] systems within an open resource-access network, unified by means of a pre-planned procedural generation (i.e., visualization) of resource survey data deconstructed by habitat service input-output subservice systems (i.e., integrated city system) that share resources among a commonly integrated information system.
- 2. Engineering
 - A. Geospatial (geo="earth"; spatial="4D.."; material world) engineering.
- 3. Computation
 - A. Geographic information system (data structuring and visualization of the world)
 - 7. Geographic information science (discovery and survey of the world, geomatics).
 - 8. GeoDesign is the concept of designing and planning a geographic (a.k.a., spatial, real-

10.1 Habitat service planning

A.k.a., Smart city planning.

The purposeful usage of geoinformatics is to understand, to design, and to monitor a population's habitat service system. A controlled 'habitat' is a bounded system that transduces ecological (and socio-environmental services), and can be 'planned'. That which is planned within the habitat is services, primarily for humans and with consideration to the larger ecology that facilitates human flourishing. For habitat service planning to be, and remain, effective for scalable and global human fulfillment, it must approach the design of the habitat axiomatically and structurally "bare" (i.e., without artificially imposed prior social constructions), and at a root-fundamental level:

- 1. Plan as if "you" are starting from construction scratch on a given terrain (i.e., there are no prior constructions).
- 2. Separate the shape boundary of the controlled and integrated habitat service system into cells.
- 3. Add spatial data.
 - A. Identify material habitat service operations and prioritize functional placement on a circular layer.
 - B. Positional location of resources into assemblages of operational material mechanics (constructions, infrastructure) used as a service by accessing users.
 - C. Transportational motion of resources, assemblages of resources, and humans between cells.
- 4. Add decisional data.
 - A. Identify parallel decisional process operations and prioritize decisions on a conceptual (meaning-mental) layer.
 - B. Position location of information into assemblages of operational information mechanics (instructions and software) used by a service by accessing users.
 - C. Transportational motion of inputs, outputs, and decisions between information service boundaries.
- 5. Add conceptual (intentional) data.
 - A. Survey human requirements.
 - B. Survey natural landscape artifacts.
 - C. Survey planning of constructable city.
- 6. Develop a simulated map of the geoinformatic environment.
 - A. Develop resource physical simulation model.
 - B. Develop user access opportunity distribution model.

- C. Develop world terrain model.
- D. Develop building (infrastructural) models.
- E. Develop network sharing model.
- F. Develop unified information coordination model.

10.2 Material visualization and analysis

In a unified real-world societal system, coordination must exist between the following three [material visualization and analysis] data sets in order for decisioning to be optimal:

- Building information modeling (BIM) describes information about the design and construction of building sites. digital models of real world assets. BIM tools often use local coordinate systems.
 - Asset design processes
 - Asset documentation processes
- 2. Geographic information system (GIS) describes information about the material environment. A system designed to capture, store, manipulate, analyze, coordinate, and present all types of geographically referenced data (a.k.a., earth referenced data, spatially referenced data). GIS merges cartography, statistical analysis, and databased technology. In a GIS framework, both spatial and non-spatial databases are combined into a geodatabase. A GIS essentially creates map layers of specific thematic maps. By layering the information one on top of the other, an information system can show, for example, the relationship and degree of connectivity between various land uses and transportation routes in a region. GIS extends Building Information Modeling (BIM) design data through visualization and analysis of structures in the context of the material (natural and built environment). GIS data usually rely on geographic coordinate systems that precisely locate the data in the real world. Environmental design constraints are often stored in a GIS database (e.g., what is the terrain[ability] and existing building in some geographic [spatial] area.

Geographic reference processes

- Operational information system (OIS; a.k.a., operational material system, OMS; a.k.a., facilities management, infrastructural development and operations)
 - Operational systems processes
- 4. **Unified interface** that integrates the prior three into a personal dashboard to see in a common environment. The ability to pull together huge amounts of information and visualize it for users and the support of their decisions.

BIM and GIS overlap when their data concerns information about infrastructure, building sites, floors, and rooms. Because of the overlap, the integration of data from both domains (often considered separate disciplines in the professional market) is required for integrated city modelling, development, and operations. BIM model data becomes spatially located in GIS data, and GIS data can provides the materialized context for BIM data.

Historically, although BIM and GIS have a common interest in modelling material object types, they differ in their encoding, their use of geometry and semantics, as well as their level of detail.

11 [Engineering] Geospatial information system (GIS)

A.k.a., Geographic information system, geographical information technology (GIT), geoinformation and environmental planning, geomapping, geovisualization, earth built visualization, world information system.

GIS is an integrated system of spatial and conceptual information about the real-world that has been abstracted and simplified into a digital database upon which analysis can be conducted to facilitate the production of solutions to spatial problems using maps and other geographic information. GIS is a geo-spatial computing interface, wherein, geo = earth (or world) and spatial = 3D (+ time). A geo-spatial information system (GIS) is a description of the environment (e.g., world, earth, spaceship, etc.) past and present. A geographic information system (GIS) is a computer system for capturing, storing, checking, and displaying data related to positions on Earth's surface. By relating initially unorganized data, GIS facilitates a better understand spatial patterns and relationships.

STATEMENT: Location is a critical piece of information in order to address societal-level problems. Planning a material environment concerns problems and data that are inherently spatial.

GIS has three primary purposes:

- 1. The collection and storage of spatially related information.
- 2. The mapping of data onto a geospatial (world) environment.
- 3. The analysis of the geospatially mapped world.
- 4. The visualization of the geospatially mapped world (for user observation).

In this context, a 'map' is a scaled model [data-set] visualization of a real-world reality. Maps convey useful information for navigating within a real-world, spatial reality. Mapping, for example:

- CAD (mechanical drawings) and BIM (mechanical asset data) are map data that may be added as sources in a GIS world scene to become a geo (world) multi-layered data set that accounts for human constructed assets (objects in the scene). These assets (CAD & BIM) become placed (located, positioned) in a geo-spatial scene.
- Thermal imaging monitoring data from multiple sensors can be combined to form a continuous thermal image map of the whole environment. This image map can overlay all other real-world representational maps.

11.1 The components of a GIS

NOTE: *Information systems exist as the conjunction of [specialized] software and computer hardware.*

The elements (or, components) of a geospatial information system (GIS) are:

- **Database** where map information is stored. Sometimes called a geodatabase (GDB).
- **Software** that which runs (operates/processes information, computes) the database.
- Hardware the physical machine that runs the software, computing data and code.
- **Network** the physical and digital aggregation of the whole information system.
- **Coordination procedures** how data is collected and moved.
- Analysis procedures how data is analyzed.
- **People** the users who benefit by having problems resolved [more easily] from the usage of the geospatial information system.

11.2 GIS data input

Note that data can be brought directly into the GIS software from real-world surveying sensors, a 'point cloud' being one such example. In other words, laser sensors survey the real world to produce a 'point cloud' data set [of the current, real-world], and that data set is imported ("brought into") the BIM-GIS software. It may be brought.

11.3 GIS Software

In concern to commercial software, the software "ArcGIS" is one of the more well-known and widely-used GIS software products. "ArcGIS" software is produced by "Esri Corporation".

NOTE: What does the Arc in ArcGIS stand for? The Esri Community Forum has a thread on "The meaning of Arc." [community.esri.com]

11.4 Geospatial relationship types

An information technology for referencing and data storage of spatial analyses. Geospatial relationships can be modeled between the feature classes, enabling more advanced GIS analysis. The more common types of geospatial relationship data structures in the geodatabase are:

• **Topology** - Defines and controls data integrity rules for features. For example, there should be

no gaps between polygons. It supports topological relationship queries and navigation, such as feature adjacency or connectivity and synthetic feature editing tools, and allows feature construction from unstructured geometry (for example, constructing polygon features from line features).

- Geometric network Consists of a set of connected edges and junctions (line and point features) that, along with connectivity rules, are used to represent and model the behavior of a common network infrastructure in the real world. Examples of resource flows that can be modeled and analyzed using a geometric network include, but are not limited to: water purification nodes and distribution conduits, power generation points and electrical lines, gas storage points and gas conduits, telecom points and lines, and water flow in a stream.
 - For example, the streets in a streets feature class could be categorized into three subtypes, each with slightly different geometric properties and affects: local streets, collector streets, and arterial streets.
- Network dataset consists of a set of connected edges and junctions, as well as turn features, along with connectivity rules, that represent and model the behavior of a network systems. Examples of undirected network flows that can be modeled with a network dataset include, but are not limited to: transportation pathways and conduits in and between cities; electrical power and telecommunications pathways within and between cities.
- **Terrain** a data structure that is generated from a mass collection of elevation measurement points, typically from remote-sensing data sources. It is a triangulated irregular network (TIN)-based data structure with multiple levels of resolution and is used to represent surface morphology. A terrain is used for 3D surface modeling applications.
- World surface (cadastral fabric, polygon fabric, parcel fabric) - a continuous surface of connected polygonal shapes ("parcel features", "parcel polygons") that represents the record of survey for an area of land surface (a world space). This data structure enables GIS data to be integrated with survey data to maintain a consistent and accurate survey record. Spatial accuracy in the world polygonal surface ("fabric") is required.

Additional business logic in the geodatabase, in the form of subtypes and attribute domains, can also be applied to GIS data. This additional layer of influential abstraction is likely to overlay in such a way that it obscures the fulfillment of all individual humans in the real world. For example, three jurisdictions in a market-State could be categorized into three boundary subtypes: legal jurisdiction 1, legal jurisdiction 2, and legal jurisdiction 3; or, market 1, market 2, market 3; influence zone 1, influence zone 2, influence zone 3.

Table 10.	Engineering Approach > GIS : Table shows datasets in
a standard geodatabase.	

GIS Data	Geodatabase Dataset
Coverage	Feature dataset containing feature classes
Shapefile	Feature classes
Raster data (e.g., satellite images, air photos, scanned maps, digital pictures, etc.)	Raster dataset and/or raster catalogue
CAD data	Feature dataset containing feature classes
Surface modeling or 3D data	Terrain
Service (utility) network data (e.g., life, technical, facility; water, telecomm., energy, etc.)	Geometric network
GPS coordinates	Table of x,y coordinates that can be generated into a feature class.
Survey measurements	Cadastral fabric

12 [Engineering] Building information modeling (BIM)

A.k.a., Building information management (BIM), architecture, construction engineering.

The 'B' in BIM stands for 'Building, the verb' not 'Building, the noun.' Building information modeling (BIM) is a process supported by various tools and technologies involving the generation and coordination of digital representations of physical and functional characteristics of places. BIM is the creation of a 3 dimensional virtual model that hat contains all of the relevant project information (from one or more sources) about an object (created as a project). Today, the definition of BIM has broadened into an approach that integrates the previously isolated functions and work-flows of geographic and building information. BIM is characterized by information about real-world objects (mostly related to buildings), it's collection, modification, and application (i.e., its use, reuse, and sharing).

BIM should ensure that right information about real world working objects is available to the right person at the right time. BIM integrates all project [world] asset data about real world (or, potentially real world) objects.

BIM is based on the idea of a continuous use of a 3d digital CAD building or infrastructure model over the entire life cycle of an engineering construction and operation process - from the design, through the planning and execution, to the operation and decommissioning of the project.

In a sense, building information modeling (building information coordination/management) comes down to how the "building" information is being used.

BIM is a process, a workflow:

- BIM design model
- BIM construction model
- BIM operations model

NOTE: *BIM-type frameworks allow any change to a design (or operation) to be traceable.*

As a conception, 'Building Information Modeling' (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition. Regardless, in common application, BIM is a very broad term that describes the process of creating and managing digital information about a built asset such as building, bridge, highway, tunnels, transport, communications, and cities, and so on.

The common BIM execution plans include:

Contact info

- Software version
- Hardware specs
- Information exchange
- BIM uses
- BIM goals
- Standards (and file formats, naming convention, methods of sharing, model protocols)

BIM relevant project plan delivery phase life-cycle:

- 1. Pre-design
- 2. Design
- 3. Documentation
- 4. Construction
- 5. Operation

Viewing and tracking team work upon assets includes (in the BIM style):

- Software (asset and building coordination)
 - Autodesk ecology example Revit, BIM 360, BIM 360 Team (tracks team changes), BIM 360 Glue, Fusion.
 - Power BI data analytics for a project that produces dashboard analytics of a project.
 - Dynamo is an open source visual programming platform supported by Autodesk and available as a free Revit plugin. Dynamo is shipped along with Revit since version 2016 R2, but you can always download the latest version from [dynamobim. org].

Today, BIM means different things to different producers and users of the "BIM" framework. Generally, BIM refers to the coordination of data, drawings, design, construction, and operation of assets (in general) and building-related assets (in particular).

How does sharing occur?

- Central location where people upload, view, and share content.
- Cloud drive someone uploads, another downloads; the server stores the file, user downloads to view or can view online, and possibly even, markup online.
 - Google drive, Dropbox.
- Single file revision everyone works together on a single file that is stored on aa network.
 - BIM 360 Team, Revit server (if you have your own network)

CLARIFICATION: Although BIM contains the word building, the BIM framework can be applied to any real world asset or system of assets, such as a city, within which some of the assets are buildings.

Future BIM naming integrations are likely to include:

- AI SIC = Structural Information Computation
- Al Society = information task potential for automation. Allows for optimized information coordination.
- AI BIM = HSS task potential for automation. Allows for optimized 3D coordination. Allows optimized structuring. Daylight optimization for all structures in a city, and with all relevant available data. Allows optimized documentation.
- Robotics may assemble buildings in the system, for those cities who value that level of technical efficiency.
- A computer is programmed with a set of rules, and in a socio-decisioning structure, some of these rules are parallel inquiry thresholds, which the computer is given specific instructions not to exceed for some explicit condition.

There are work-oriented views that BIM software can broadly express:

- Design BIM
- Constructions BIM
- Operations BIM
- Or, some combination of BIM

12.1 Building information models (BIM)

Building information models (BIMs, the noun) are data stored in files (often, but not always in proprietary formats and containing proprietary data) that can be read, shared, or networked to support decisioning regarding building assets. BIM software is used to plan, design, construct, operate and maintain most physical infrastructure (e.g., cities, buildings, bridges, tunnels, railways, water storage and transportation, etc.)

12.1.1 BIM use case scenario

The following services are active for the building in both BIM case 1 and BIM case 2.

- 1. Habitat power sub-system An amount of electrical power was required to be produced (energized) to operate this service.
 - Frequency and coherency.
 - Power processing service.
- 2. Production socio-technical sub-system An amount of material mass was required to be produced (manufactured) to operate this service.
 - Shape and composition.
 - Production processing service.
- 3. Data socio-technical sub-system An amount of information data was required to be produced (calculated) to operate this service.

- Logic and computation.
- Information processing service.
- 4. Transport socio-technical sub-system An amount of mass re-positional movement was required to operate this service.
 - Transport and coordinates position.
 - Transport processing service.

12.1.2 BIM asset modeling

Assets may be organized into the material [requirements] categories of:

- Soft (computational/informational) interface material ("ware").
- Hard (physical/informational) interface material ("ware").
- Training functional materials.
- Sensors collect data associated with physical and functional characteristics.

This contribution framework gives every user an understandable view of how to develop socio-technical competence, and every InterSystem Team member (as someone with socio-technical competence) an operational, execution view of the system. When an element is a model is changed, every view is updated, with the new change appearing in simulation, conception, section, elevation, and sheet views.

Assets may be organized into the material environment

- · Standards societal design specifications
- Guides guides, best practices, agreements
- Work-flows (because it's 'team' view, not command 'disciplinary' view)
- Modeling quantity
- Metrics
- Constructs

Assets (BIM assets) may be visualized together as deliverables with different 'shape' metadata, including at the high level:

- 3D visualizations (rendering)
- Coordinated DWGs (unified file system of accurately shaped objects and their metadata, revisioned)
- Basic quantities (measurement data system, described in detail in the material system specification).

Assets (BIM assets) may be visualized together as information process deliverables, including but not limited to:

- Thermal studies
- Illumination analysis
- Structural analysis

- Compositional analysis
- Constructability
- Pre- and fabrication
- Asset tracking (on 'physical' data side; and, issue tracking on 'informational' data side)
- Global information system tracking all assets through integrated, informational and positional, coordinate system (e.g., BIM/GIS overlay of a city collaborated upon by a local and global InterSystem team living in the network of integrated city service systems)
- Photogrammetry
- Field BIM
- Protocol

Once we have a project plan we can start talking about how we share and collaborate among the individuals contributing to this common organization.

12.1.3 Asset model storage

A digital representation of an asset needs to be accessible quickly in a distributed environment that can be updated and upgraded to adjust to more complex query, analysis, and inspection over time and across the lifespan of the asset.

12.1.4 BIM in Application

A highly simplified application of BIM must involve at least the following design-operational elements:

- 1. <u>Architectural BIM</u> material, dimensional composition of [a commonly standard] space, forming an ID (e.g., building ID, floor ID, room ID, room dimensions, spatial plan and simulation
- 2. <u>Mechanical BIM</u> technical equipment IDs (and standards) of one of the HSS technical sub-systems (production, transportation, calculation, etc.; e.g., mechanical equipment)
- 3. <u>Electrical BIM</u> electrical equipment IDs (and standards)
- 4. <u>Pressurizing (a.k.a., plumbing)</u> Pressurizing equipment IDs (and standards)
- 5. <u>Incident response (a.k.a., protection)</u> Incident protection equipment IDs (and standards)

12.1.5 BIM Project lifecycle phases

- 1. Planning (Plan project)
 - A. Knowledge management tools
 - B. Requirements analysis
- 2. Design phase (D, Project design)
 - A. D1 conceptualization, resource information flow programming, and for market, cost planning.

- B. D2 architectural, structural, and systems design.
- C. D3 analysis, detailing, coordination and specification
- System design deliverables:
- Visualization
- Analysis
- 3. Construction phase (C, Project assembly)
 - A. C1 construction planning and construction detailing.
 - B. C2 construction production, manufacturing, and allocation, and in the market, procurement.
 - C. C3 as-built and handover/integration, and in the market, commissioning.
 - System construction deliverables:
 - On-site construction
 - Off-site construction (and transport)
 - Procurement and deliver (and inspection)
- Operation phase (O, Project becomes 'service' in 'operation'; Asset & Facility Management)
 - A. O1 occupancy and operations.
 - B. O2 service continuation, and maintenance.
 - C. O3 decommissioning and major reprogramming.
 - System operation deliverables:
 - InterSystem planning and operations scheduled coordination
 - Team and system task operations
 - Simulation of operations (from information flow to materialization)
 - Incident response operations
 - Resource operations
 - Information operations
 - Re-use/cycle operations
- 5. **Social feed back deliverables** (a.k.a., model-based optimizations to enable process optimization across project lifecycle phases)
 - A. Resource survey
 - B. Materials coordination
 - C. Knowledge visualization
 - D. Algorithmic value-transparent decisioning

12.1.6 BIM Design phase

Preparatory steps in the design phase:

 The design phase results in a design InterSystem team role of intent model consisting of discipline BIMs (i.e., Habitat service systems, HSS'). To optimize stability, each stakeholder must have defined access [privileges] to the HSS core source algorithm and information system interface. This infrastructure allows each stakeholder to update data through the HSS that is specific to their InterSystem Team accountability role (or "discipline"). For example, the architect InterSystem team (as the InterSystem engineering stakeholders) only can make space-related updates from the decision model to the extant, material habitat service system (HSS). This "as necessary" access diminishes the possibility of one stakeholder overwriting another's decision (discipline) data, and maintains the integrity of model data transferred to the IWMS.

- Information exchange during the design phase: Requirements deliverable
- Requirements specify existing space and equipment standards and desired nomenclature for the new building. For spaces, an owner's requirements may specify the space classification nomenclature (e.g., OmniClass) unique building and floor IDs/names, room numbers/names; and room standards. A room standard is a collection of properties that define a space. Room-standard properties may include room use, room type, cost/ unit area, maximum room area and maximum occupancy.
- For equipment, an owner's requirements may specify equipment classification nomenclature, equipment IDs and equipment standards. An equipment standard is a collection of properties that define a piece of equipment. Such properties may include equipment category, description, manufacturer, dimensions, model number and power specifications, among others. With the allocation of equipment (i.e., assets, service objects) come equipment usage protocols (standards) as predefined ways and accountabilities of using common heritage resources.
- If the design includes spaces undefined by existing space standards, IWMS or design-side stakeholders can create new and/or modify existing decision protocols (e.g., space standards).
- The InterSystem team members create these new instructional standards via the engineering interface of the unified societal information system or the societal information systems model (a visual interface) to the unified societal information system. For example, an architect of sufficient accountability on an architectural InterSystem Team can define a new room standard for a specialized lab and apply this room standard to all poly-lined spaces that will serve as specialized labs. This eliminates the need for tedious and error-prone manual entry of properties for spaces with similar purposes. As a result, the InterSystem Teams can immediately access updated spatial information, which is synchronized from a model into the unified societal system; then use it to

accelerate access occupancy and service programs. Information exchange during the construction phase: Design specification

- The team "lead" decision coordinator (a.k.a., construction BIM manager) communicates to InterSystem team members (e.g., mechanical team, electrical team, etc.) the availability of tasks, which are selected by team members; when selected the team member acquires a set of operational requirements (i.e., responsibilities) for information that is entered, reviewed, and/or executed within and/or upon the societal information system. These InterSystem teams coordinate accountability for all materializations (digital and material) for their respective Habitat InterSystem Team (i.e., "trade") role, position, and tasking.
- Once the space design, floor plans and equipment information (IDs, locations, equipment standards) are available in the societal information system, engineering construction (installation) teams update the habitat service system.

13 [Engineering] BIM and GIS integration

NOTE: Even better than BIM-GIS conversion is BIM-GIS integration; even better than a BIM-GIS integration is a unified societal system. Wherein, CAD-GIS conversion - CAD data are validated and then converted into GIS data. BIM-GIS conversion - BIM data are validated and then converted into GIS data.

Together, the BIM and GIS workflows (data sets and calculations) exist to design and express what is happening in the continuous now of a material service system operation (i.e., the global HSS). BIM and GIS data become integrated into an actual and potential (potentially actualizing) global societal-information city network. Projects are delivered through structured design and documentation that produces safely and optimally decided constructions that provide services to humanity, which are monitored and controlled by all contributing humans. That which may be built safely into the material environment (BIM data) becomes spatially positioned and sensed in a geospatial environment (GIS data). The simulation of what is and what could be, at both the conceptual-information and materialrealization levels. The four axiomatic information realization components of:

- Information
- Conception
- Spatial
- Iteration

Together, all is information, wherein conception [by consciousness] allows for understanding information, the spatial conception is the 3D materialization of information [into plannable experiences], and the iteration conception is the 4D temporalization of information [into human individual, conscious experience].

Building information modeling (BIM) is a process involving the generation and computation of digital representations of physical and functional characteristics of places (i.e., of objects). BIM is a virtual representation of a construction project. It is an integrated process that uses intelligent, digital information to explore, develop and test physical and functional characteristics of a project before it is built. In short, it is a highly detailed representation of a an environment, such as, a building.

BIM represents a series of parametric objects that composed together to form a building model which carries all information includes their physical and functional characteristics and project life cycle information. Since BIM represent the detailed geometrical and semantic information of the building, the application of GIS is needed to manage the construction project's information resources in a material, positional space. GIS can use information from many different sources, in many different formats and can link data sets together by common locational data such as coordinate or postal zip code. Besides, GIS can use combinations of data sets to build and analyze integrated information and also can convert the existing digital information into a form that meets the user's need. From this point of view, GIS can complement BIM function in order to develop a systematic platform for construction purpose. Finding of this study, there are some drawbacks in this technique especially in the construction application in term of data sharing, data integration and data management. Furthermore, the integration of GIS in BIM is studied and potential techniques are shown to overcome the drawbacks of the construction application.

- Integration of BIM data into a 2D/3D GIS database.
- Data exchange between BIM and GIS.
- · Integration of BIM construction data.
- Integration of existing geospatial survey data.

The models created in modern BIM design processes are sophisticated enough to simulate construction to find defects early in design and to generate highly accurate estimates of resource requirements throughout dynamically changing projects.

A societal information and decision support system can now handle billions of events a second from live sensors, serve visualizations from petabytes of 3D model content and imagery to a browser or mobile phone, and perform complex predictive analysis scaled over multiple dispersed processing nodes.

The 3D model generated during BIM design processes is a record of a change to a physical asset. Visualization can be part of the process in that it helps humans understand the dynamics, characteristics, and aesthetics of a proposed design.

All habitat (city) infrastructure is BIM (e.g., the domains of rail, roads and highways, utilities, and telecommunications). When information is 'built' into the environment, it is generally referred to as 'infrastructure'.

Any agency or organization that manages and builds fixed physical assets has a vested interest in making sure that their design and engineering contractors use BIM processes.

Note that BIM data can be used in operational workflows for operational coordination and control.

When seen as a process, integrating GIS technology with BIM becomes vastly more complex than just reading graphics and attributes from a 3D model and showing them in GIS.

How do users need to use a wide range of project data in geospatial context. We also find that focus on the model sometimes means we've overlooked simpler, more basic workflows that are essential to the whole story, such as using accurately collected field data on a constructions site to link location and model data for inspection, inventory, and survey.

INSIGHT: All information is pattern. Because

all information is pattern, all materialization is pattern. All patterns of materialization, because they are only information, can be changed by a capable consciousness who understands the patterns of creation.

13.1 Spatial solution visualization resolution

In the study to visualize space re-creation, in time together, as a population, there is a requirement for coordination of and between:

- 1. Plans (design files)
 - A. Architectural (Arch)
 - 1. Sketch design (SD)
 - 2. Design development (DD)
 - 3. Construction documentation (CD)
 - 4. Mechanical (MEP)
 - B. Structural (Struct)
 - C. Site (Site)
 - D. Operation (Ops)
 - E. Incident (OpsInc)
 - F. Cycling (Cyc)
 - G. Market-State (no acronym)
- 2. Drawings (drawing sheets)
 - A. Mechanical
 - B. Structural
 - С. ...
- 3. Project files
 - A. Images/photos
 - B. Models (level, dimension)
 - C. Renderings
 - D. Simulation
 - E. Descriptions
 - F. Explanations
 - G. Specifications

*Folders and sub-folders have permission to control which role, individual, or team (organization/business) can access this data. These permissions are cascading so that a subfolder can have its permissions controlled by a higher-level folder. Roles and permissions for sub-folders may be inherited from the parent folder. A role(s) must be selected for that folder, then the role(s) are assigned permissions. Users are able to subscribe to a folder to receive notifications when new documents are uploaded, sheets are published, or content changes. This ensures the user is kept up-to-date with the data in the folders that is important to them.

To coordinate this information for useful purpose is to facilitate the determined resolution of resource, machine allocation, and human contribution. Spatial information can be mapped to a semantic reference system. Thematic entities and relationships may be modeled as first class objects, linked to spatial entities through the variables:

- 1. located_at (where an object is in relation to others)
- 2. occurred_at (motion of object in relation to others)

These relationships from the upper-level ontology for any logistical access system. For example, a technician is associated with a control ability using a set of relationships (Technician—member_of—PowerService_ Team—controls_at—GenerationStation—located_at— Spatial_Entities). Spatial information mapping allows for safe and coherent decisioning among a population. Without mapping objects (that with shape) to meaningful processes (motions of two or more objects), decisioning is likely to be significantly reduced in certainty.

13.3 Unified visual software solution

Visual software is the ability to interactivity work with information (spatial and conceptual) in a 3D environment. A unified BIM-GIS, unified, software platform will [seamlessly] integrate these two modalities; using a unified societal platform, these two design and development modalities will themselves integrate with an operations [dashboard, "facilities management"] platform.

There are two software modalities of BIM-GIS integration:

- 1. BIM as the construction design application (3D object constructing):
 - Primary objective of software: Design 3D object.
 - Secondary objective of software: 3D object data layering and analytics. Here, the reference coordinate is the 3 dimensions of space and 1 dimension of time (i.e., the real-world physics of 3D objects).
 - Object may or may not be animated.
 - Object may simulate real-world physics and interactions to study object.
 - Output: A single object mesh with metadata layers. The software can execute and display engineering design instructions. A BIM platform organizes all information relevant to an constructible object.
 - Data format output standard, example: CAD, CAM, CAE, building models, 3D meshes, etc.
 - Users design assets: Users design an asset and simulate real-world physics upon the asset to study the asset.
 - Users create and study individual assets. Users view attribute information for objects.
- 2. GIS as the in-place constructed visualization application (3D object positioning):

13.2 Spatial-informational mapping

- Primary objective of software: Place multiple 3D objects on terrain.
- Secondary objective of software: 3D objects data layering and analytics. Here, the reference coordinate is the terrain of the Earth (i.e., the real-world terrain of the planet; spatial).
 - World may or may not be animated.
 - World may simulate real-world physics and interactions to study world.
- Output: A unified visualization with multiple object meshes associated with real-world coordinates (or potential, real-world coordinates) and world associated metadata layers. The software can execute and display ("dashboard") 3D geoanalytics. A GIS platform organizes all information relevant to objects existing in a world (or, the real world).
 - Data format output standard, example: I3S OGS, IFC files, world simulation engines (i.e., game engines), etc.
- Users design worlds: Users place assets together in a world and simulate real-world physics and organismal interaction to study the world.
 - Users create and study worlds, which are composed of some world reference frame (e.g., the earth) and individual assets. Users view attribute information for world. Note that some of those assets will previously exist in the real-world, such as rivers on earth, and other assets will be created by humans, such as buildings and bridges.

13.4 Open GIS and BIM standards

Industry foundation classes (IFC) and City Geographic Markup Language (CityGML) are two standards which have been developed independently. Although IFC and CityGML both deal with object geometry, surface materials/appearances, semantics, and their interrelationships, the information models are different as they are adapted to the specific requirements of the domains from which they originate. An example of a major difference between the models is how the IFC schema is described using the modeling language EXPRESS, which follows the entity relationship modeling paradigmwhereas the CityGML schema is defined using the Unified Modeling Language (UML) and, therefore, follows the object-oriented modeling paradigm. Although both IFC and CityGML are object-oriented, each uses a different formal modeling language.

The semantic model of IFC, in its current version "IFC4 Addendum 2", focuses on buildings and alignments as well as the physical elements of the building construction, such as slabs and beams—whereas CityGML models all major observable natural and man-made entities in a city or landscape, including buildings. To represent entities with their geometric and semantic properties in different granularities, CityGML includes five well-defined levels of detail (LOD0–LOD4). Regarding IFC, a building element might have multiple geometric representations. (Hijazi, 2018)

Additionally, a "Level of Development" concept was introduced by Forum B which, according to Geiger et al. (2015), cannot be directly compared with the CityGML's level of detail. Level of development (LoD) is applied in BIM to reflect the progressions of the modelling geographic representation, from the lowest LoD of general 2D, to the highest LoD of BIM involving 3D models and corresponding detailed non-geometric information. (Hijazi, 2018)

The main problem in the integration of BIMs with geospatial information occurs at the point of transferring the geometric information. Building models use representations such as constructive solid geometry (CSG) and sweep geometry mostly in local coordinate reference systems, while geospatial models mainly use boundary representation (BRep) in global coordinate reference systems. The fundamental difference arises from their distinct modeling paradigms, which are due to the way 3D models are acquired in the GIS domain in the field of BIM and computer-aided architectural design (CAAD). Using GIS, 3D objects are derived from surface observations of topographic features based on sensor-specific extraction procedures. Features are then described by their observable surfaces by applying an accumulative modelling principle [25]. Alternatively, BIM models reflect how a 3D object is constructed. They follow a generative modeling approach and focus on the built environment, rather than on topography. Therefore, BIM models are typically composed of volumetric and parametric primitives representing the structural components of buildings. However, the relation between the two semantic models (IFC and CityGML) for BIM (design model) and geospatial models (real-world model) has been researched to develop common unified spatial applications with minimum conversion overhead. (Hijazi, 2018)

13.4.1 BIM open standard

- The Industry Foundation Classes (IFC) for the BIM domain [ISO, 2013; Building SMART International, 2013].
 - The Industry Foundation Classes (IFC)3 standard is an open data model used in the Buildinginformation modelling (BIM) domain for the exchange of construction models, often including 3D models of buildings. It has also been adapted as the ISO 16739 international standard [ISO, 2013]. Its geometric aspects are however mostly defined or derived from a different standard, ISO 10303 [ISO, 2014], which also specifies the STEP Physical File (SPF) encoding that is most

commonly used in IFC files (.ifc). The IFC standard provides dedicated entities and attributes for geo-referencing models. IFC files can contain many types of classes: 130 defined types, 207 enumeration types, 60 select types, 776 entities, 47 functions, and 2 rules. The geometries in them can use several different representation paradigms which can be combined more or less freely.

13.4.2 GIS open standard

Open Geospatial Consortium (OGC) standards depend on a generalized architecture captured in a set of documents collectively called the Abstract Specification, which describes a basic data model for representing geographic features. Atop the Abstract Specification members have developed and continue to develop a growing number of specifications, or standards to serve specific needs for interoperable location and geospatial technology, including GIS.

The OGC standards baseline comprises more than 30 standards; including, but not limited to:

- I3S Open Geospatial Community (OGC) Standard
- GML (Geography markup language; XML-format for geographical information)
- SPS Sensor Planning Service
- SensorML Sensor Model Language

The OGC standard CityGML for the GIS domain [Open Geospatial Consortium, 2012].

- CityGML [Open Geospatial Consortium, 2012] is the most prominent standard to store and exchange 3D city models with semantics in the GIS domain. It presents a structured way to describe the geometry and semantics of topographic features such as buildings and roads. CityGML as a data format is implemented as an application schema for the Geography Markup Language (GML).
 - CityGML supports five levels of detail (LODs):
 - LOD0 is non-volumetric and is an horizontal footprint and/or roof surface representation for buildings;
 - LOD1 is a block-shaped model of a building (with an horizontal roof);
 - 3. LOD2 adds a generalised roof and installations such as balconies;
 - 4. LOD3 adds, among others, windows, doors, and a full architectural exterior;
 - 5. LOD4 models the interior of the building, potentially with pieces of furniture
 - 6. (CityGML does not mandate which indoor features need to be modelled, in practice

resulting in models with a different granularity [Goetz, 2013; Boeters et al., 2015]).

13.4.3 BIM technical standards naming

Sources for BIM technical naming standards include:

• *BIM Technical Standards: Naming.* (2019). U.S. General Service Administration (GSA). [gsa.gov]

GSA BIM project-based file platforms use a four part file name consisting of:

- The GSA assigned building ID or site ID
- 1 character major discipline / trade designator (from the PBS [gsa.gov])
- 1 character minor discipline / trade designator (from the PBS [gsa.gov])
- 5 characters to define contained floors
- 1 character type designator M/S/C (model, sheets, combined)

Thus, the file naming standard for a GSA BIM file type includes:

- Building Number_Major/Minor Disp_Included Floors_Sheet/Model File + .File Extension
- For example: IL023ZZ_AC_B4-20_M.rvt

Other sources for example naming conventions include:

- *BIM Guidelines*. (2017). Smithsonian Facilities. [wbdg. org]
- BIM Guidelines for Design and Construction (2015). Commonwealth of Massachusetts. BIM Steering Committee. [mass.gov]
- *BOE CADD Standards*. (2018). City of Los Angeles, Bureau of Engineering. [eng2.lacity.org]
- CAD BIM Technology Center Resources. US Army. Accessed: December, 2019. [cadbimcenter.erdc. dren.mil]
- CAD and Image Standards for Construction Documentation. (2009). Harvard University Planning Office. [home.planningoffice.harvard.edu]
- Capital Projects Group CAD Naming Convention. METROLINX. Accessed: December, 2019. [docplayer.net]
- *CADD/BIM Standards Manual*. (2018). Report No. CPG-DGN-PLN-084. Revision 1. METROLINX. [docplayer.net]
- CAD Standards Guideline For Facility Documentation and Construction Projects. Creighton University Planning and Design. Accessed: December, 2019. [docplayer.net]
- *MIT Design Standards: BIM and CAD Drawing Standards v6.0, Thematic Folder.* (2016). MIT Infrastructure Business Operations, Facility

Information Systems. [web.mit.edu]

• *Naming Conventions (6.2)*. CAD Standards -3rd Edition, November, 2016. Denver Water. [denverwater.org]

Scholarly references

- Hijazi, I., Donaubauer, A., Kolbe, T.H., (2018). BIM-GIS Integration as Dedicated and Independent Course for Geoinformatics Students: Merits, Challenges, and Ways Forward. International Journal of Geo-Information. ISPRS Int. J. Geo-Inf. 7(8), 319. DOI:10.3390/ ijgi7080319 [mdpi.com]
- Griendling, K.A. (2011). Architect: the architecture-based technology evaluation and capability tradeoff method. Georgia Institute of Technology, Thesis In School of Aerospace Engineering. [smartech.gatech.edu]
- Hor, Abdel-Hadi. (2015). A semantic Web platform for BIM-GIS integration. York University, Toronto Canada. DOI: 10.13140/RG.2.1.4176.6643. [researchgate.net]
- Kineman, J.J., Srirama, K, Wilby, J., Mobus, G. (2017). *A Framework for Understanding and Achieving Sustainability of Complex Systems*. Systems Research and Behavioral Science, Wiley Blackwell, vol. 34(5), pages 544-552, September. [ideas.repec.org]
- Mobus, G. (2015). A Systems Science Framework for Understanding the Nature of Governance. ISSS Journal. Vol. 1, No. 1. [journals.isss.org] [semanticscholar. org]
- Mobus, G. (2017). A Framework for Understanding and Achieving Sustainability of Complex Systems. System Research and Behavioral Science, Vol. 34, No. 5. doi.org/10.1002/sres.2482 [journals.isss.org] [onlinelibrary.wiley.com]
- Preiss, O. (2004). Foundations of systems and properties: methodological support for modeling properties of software-intensive systems. Institut d'informatique fondamentale, Theses N 2013, Lausanne, EPFL. [citeseerx.ist.psu.edu]
- Transforming Systems Engineering through Model-Centric Engineering. (2018). Report No. SERC-2017-TR-111. Stevens Institute of Technology, Systems Engineering Research Center. [apps.dtic.mil]

Book references

- Geiger, A., Benner, J., Haefele Kark, H. (2015). Generalization of 3D IFC Buildings Models. In 3D Geoinformation Science; Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P.V., Benner, J., Haefele, K.H., Eds.; Springer International Publishing: Berlin, Germany, pp19–35.
- Maier, M.W. (2009). The Art of Systems Architecting (Systems Engineering). CRC Press.
- Mobus, G., Kalton, E., Michael, C. (2015). Principles of Systems Science. Springer. ISBN: 978-1-4939-1920-8
- *NASA Systems Engineering Handbook.* NASA/SP-2007-6105. NASA. 2007. [ntrs.nasa.gov]
- Sutcliffe, A. G. Requirements Engineering. The Encyclopedia of Human-Computer Interaction, 2nd Ed. [interaction-design.org]
- Technical risk assessment handbook. Australian Government Department of Defense: Defense

Science and Technology Organisation. 2010. [dst. defence.gov.au]

 Wasson, C. S., (2016). System engineering analysis, design, and development: Concepts, principles, practices. John Wiley & Sons, Inc., Hoboken, NJ.

Online references

- 3D-4D Building Information Modeling. (2019). U.S. General Service Administration (GSA). [gsa.gov]
- ACES: A Conference on Ecosystem Services. ACES. December, 2010. Naples, Florida. [conference. ifas.ufl.edu] [conference.ifas.ufl.edu - agenda with presentations and videos]
- *BIM Technical Standards.* (2019). U.S. General Service Administration (GSA). [gsa.gov]
- CityGML Standard. (2012). Open Geospatial Consortium. [opengeospatial.org]
- Decaprio, E. (2006). Root Cause Analysis. ProjectManagement.Com Wiki. [projectmanagement.com]
- George Mobus. Washington University, faculty member webpage. Accessed: December, 2019. [faculty. washington.edu]
- Incubator project & Working group characteristics and process. (2018). Open Source Initiative. [wiki. opensource.org]
- MITRE Systems Engineering (SE) Competency Model. (2007). Ver. 1.13E. MITRE Human Resources, SEworks Program. [mitre.org]
- Question Everything Blog. George Mobus weblog. Accessed: December, 2019. [questioneverything. typepad.com]
- Spatial reference model (SRM). (2004). SEDRIS Technology Conference. [sedris.org]
- Structural ontology. (2012). Semantics. [dev.semantics. org]
- *Template for writing individual requirements*. QRACorp. Accessed 2019, December. [docs.google.com]
- Sample records for mission operations concept. Accessed: December, 2019. science.gov [science.gov]

Table 12. Engineering Approach > Societal Design Phases: Multi-level societal design phase model.^[1]

1. Joore, P., Brezet, H. (2015). A Multilevel Design Model: the mutual relationship between product-service system development and societal change processes. Journal of Cleaner Production, Vol. 97. DOI:<u>10.1016/j.jclepro.2014.06.043</u>

Design Phase	Experience Initial Situation (0)	Reflection (1)	Analysis (2)	Synthesis (3)	Experience New Situation (4)
General Description	Starting state, characteristic of (sub-)system	Values identification, problem definition, discover phase	Objectives for new (sub-)system, define phase	Creation of (sub-) system, develop phase	Characteristics of new (sub-)system, deliver phase
Societal System	S0 - Properties of society	S1 - Value determination regarding societal situation, definition of societal problem	S2 - Human requirements, based on humanity and values, resulting in objectives for ideal new societal situation	S3 - Vision development process, resulting in future vision for new societal situation	S4 - Living in society, executing societal experiment, new societal situation
Socio-Technical System	Q0 - Properties of current socio- technical system	Q1 - Value selection regarding socio- technical situation, system deficiency	Q2 - Dominant interpretive framework (social information structuring) leading to objectives for new socio-technology system	Q3 - System design process, leading to proposal for new socio-technical system	Q4 - Experiencing new socio-technical system (new societal experiment)
Product- Service System	P0 - Properties of current product- service system	P1 - Value selection regarding functioning of product-service system, resulting in functional problem	P2 - Determining functional demands and functional requirements to be met	P3 - Design of a new product- service system, product-service design	P4 - Using and experiencing new product-service system
Product- Technology System	T0 - Properties of current product- technology system	T1 - Value selection regarding functioning of product-technology system, definition of operation problem	T2 - Target definition regarding new product and technology, leading to program of demands	T3 - Product design process, leading to (prototype of) new product- technology system	T4 - Simulation, testing, using and experiencing new product

Table 11. Engineering Approach > External Standards: Systems engineering standard differences.

	ANSI/EIA-632:1998	ISO/IEC-15288:2008	IEEE-1220:2005
System life cycle	Assessment of opportunities Investment decision System concept development Subsystem design and pre-deployment Development, operations, support and disposal	Conception Development Production Utilization Support Retirement	System definition Preliminary design Detailed design FAIT [fabrication, assembly, integration, and test] Production Support
Level of abstraction	Medium level	Highest level - process description	Lowest level - task description
Focus of life cycle	Enterprise-based systems (societal systems)	Product-oriented systems (service systems)	Engineering activities necessary to guide produce/service development

THE ENGINEERING APPROACH

TABLES

Table 13. Engineering Approach > Systems Engineering Competency: This table displays the systems engineering

 competencies by means of six indicators of effectiveness (of knowledge and experience) in systems [thinking], as recognition,

 comprehension, guidance to significant application (adapted from INCOSE UK Competency Table, 2015, [incose.org.uk]). All are

 learners, some learners are experts. Some learners are also sufficiently knowledgeable, skilled, or capable to guide other learners;

 some learners are guides. Some learners are new to a [systems] complex subject matter and may be being guided. Anyone in a

 population can have, and can also not have, an awareness this context, that of systems [thinking].

Systems engineering competency table							
Indicators	Indicators Competency Area - Systems concepts						
Description - A description explains what the complexity is and provides meaning behind the title	Description: The application of the fundamental concepts of systems engineering. These include understanding what a system is, its context within its environment, its boundaries and interfaces and that it has a lifecycle.						
Reasoning - Reasoning indicates the importance of the competency and the problems that may be encountered in the absence of that competency	Reason why it matters: Systems thinking is a way of dealing with increased complexity. The fundamental concepts of systems [thinking] involves understanding how action and decisions in one area affect another, and that the optimization of a system within its environment does not necessarily come from optimizing the individual system components.						
Expert - The person who displays extensive and substantial practical experience and applied knowledge of the subject	and substantial practical Effectiveness Indicators of Knowledge and Experience and applied knowledge						
Practitioner (Guide) - The person who displays detailed knowledge of the subject and is capable of providing guidance and advice to others.	Awareness	Supervised practitioner (new contributor, Mentee or newly Contributing learner)	Practitioner (contributor, Mentor or guide)	Expert (all are learners, some are highly capable)			
Awareness - The person is able to understand the key issues and their implications. They are able to ask relevant and constructive questions on the subject. This level is aimed at everyone in the population.	Is aware of the need for systems concepts Aware of the importance of: - System lifecycle - Hierarchy of systems - System context - Interfaces - Interfaces	Underlying system concepts Understands the system lifecycle in which they are working Understands system hierarchy and the principles of system partitioning in order to help organize complexity	Able to identify and organize complexity with appropriate techniques in order to reduce risk Able to predict resultant system behavior Able to define system	Able to review and determine the suitability of systems solutions and the planned approach Has made significant past contributions.			
Supervised practitioner - The person displays an understanding of the subject but requires guidance and/or supervision (e.g., piloting). This level defines those persons who are "in-training" (being mentored or guided) or are inexperienced in that particular competence.	amongst systems and their elements	Understands the concept of emergent properties Can identify system boundaries and understands the need to define and manage interfaces Understands how humans and systems interact and how humans can be elements of systems	boundaries and external interfaces Able to assess the interaction between humans and systems, and systems and systems. Able to guide mentee.				

Table 14.	Engineering Approach	> Requirements >	> Non-Functional:	Non-functional	requirements (simplified).
-----------	----------------------	------------------	-------------------	----------------	----------------------------

Non functional requirement category	Typically applies to Non-functional Type (Data and Process)	Example
Accuracy Requirements	Both	Process: All requirements will be identified and checked. Data: Issue occurrence must be in the past.
Auditing and Reporting Requirements	Both	Process: A record of which users access or try to access process operational processes is required. Data: A record of which user changes an attribute or value is required.
Availability Requirements	Process	Process operate societal service system.
Backup and Recovery Requirements	Both	Process: All services can be made available after unplanned system downtime within 1 working day. Data: All data will be backed-up daily.
Capacity Requirements	Both	Process: A habitat service system can have up to X users. Data: Up to X users can be stored.
Compatibility Requirements	Both	Process: Systems can integrate onwards. Data: User data can be exported for use.
Concurrency Requirements	Process	Process: Up to X users can use the system at once.
Error-Handling Requirements	Process	Process: In the event of the user cancelling or quitting the process, changes made by the user will be reversed.
Legal and Regulatory Requirements	Both	"Process: The user must gain the permission of the authority. Data: All changes made under the condition of authority."
Licensing Requirements	Both	Process: Ther user must gain the permission of another user. Data: All changes made under the condition of ""gifting"" to another user.
Performance Requirements	Process	Process: The user must be fulfilled in real-time.
Precision Requirements	Data	Data: Time of changes to data must be recorded to the nearest second.
Redundancy Requirements	Process	Process: In the event of an unplanned exist the user can choose to restore from working on at the time of the event.
Security Requirements	Both	Process: Only users holding accountability can create a change. Data: The accountable users must be identified and agreed in the past.
Throughput Requirements	Process	Process: User requires X number of resources per day.

Table 15. Engineering Approach > Geoinformatics: Informatics modeling.
--

	Spatial informatics						
Geoinformatics	Geoinformation	GeoComputation	Technologies/ systems	Applications			
Spatial models	Spatial databases (map layers)	Computational geometry	Geospatial information system	Life support structure			
Spatial algorithms	Cartography (visualization, mapping)	Spatial analysis	Global navigation satelite system	Technical support structure			
Spatial reasoning		Informational analysis	Remote sensing system	Exploratory support structure			
			Location-based habitat services system				
			Spatial decision support system				
		Conceptual informatics	5				
Informatics	Information	Computation	Technologies/ systems	Applications			
Conceptual models	Data (unifying unit of information)	Conditional programming	Unified information system	Social support structure			
Conceptual algorithms	Base (storage boundary of multiple data)	Conceptual analysis	Global value system	Decision support structure			
Conceptual reasoning		Decision analysis	Human sensing system	Material support structure			
			Human-based habitat services system	Lifestyle support structure			
			Human decision support system				
		Simulation informatics	5				
Informatics	Information	Computation	Technologies/ systems	Applications			
Motion models	Data (unifying unit of motion)	Procedural algorithms	Habitat service system	Understanding support structure			
Object flow	Base (storage boundary of multiple data)	Monitoring analysis	Habitat service network	Contribution support structure			
Task reasoning		Intervention analysis	Habitat sensing system/platform	Promotion support structure			

Table 16. Engineering Approach > Geoinformatics: Spatial conceptual breakdown.

Maps	Reference	Human service systems	Coordinates
Points	Positional reference frame	Human service systems	Coordinates in a circle system.
	Global positioning systems	Global habitat service	Grid
	Local positioning system	Local habitat service	Grid
Lines	Resource reference frame	Human service systems	Logistics in a transport system.
	Global access sytem	Global access system	Grid
	Local access system	Local access system	Grid
Triangle	Informational reference frame	Human service systems	Coordinates in an information system.
	Global decision system	Global information system	Database
	Local decision system	Local information system	Database
Polygon	Spatial reference system	Human service systems	Coordinates in a spatial system.
	Building information system (BIS)	Service asset system	Application
	Sensor information system (SIS)	Service asset system	Application
Elevation	World reference system	Human service systems	Coordinates in a spatial system.
	GeoSpatial positional information system	GPS service asset system	Application
Grid	Level reference system	Human service systems	Coordinates in a spatial system.
	Constructable material system	City services	Application
Simulation	Real reference system	Human service systems	Coordinates in a spatial system.
	Global simulation system (Network)	Global habitat operations system	Processes
	Local simulation system (City)	Local habitat operation system	Processes
Operations modeling	Contribution reference system	Human service systems	Coordinates in a spatial system.
	City information model	Contribution to service operation	Task
	Building information model	Contribution to service design	Task
	Landscape information model	Contribution to ecology	Task

THE ENGINEERING APPROACH

TABLES

Table 17. Engineering Approach > Systems Engineering: Systems engineering instrument factors.

Instrument Factor	Systems engineering factors
Demonstrations	Are the capabilities discussed actually in operations - have they been demonstrated?
Integrated simulation	To what degree are the simulations integrated, and better yet do different simulations work off of shared models?
Formal analysis	Are the analyses (e.g., property analysis) formal, meaning that they are performed on models automatically?
Domain specific	Are the different types of models related to the domain? For example, control system engineers often use Simulink/Matlab. Also, most modeling and simulation environments are domain-specific.
Domain interoperability	Are the models that are in different, but related domains integrated? Are the models consistent across the domains?
Synthesis/generation	Can the models be used for synthesis/generation of other related artifacts such as code, simulation, analysis, tests and documentation
Meta-model/model transformations	Are the models used in one domain, or for one purpose, transformable into another domain where the well-defined semantics in one domain is carried through the transformation into the other domain; if so are they known to be consistent?
Formal Capability Assessment	How well do the models, simulations and analyses capabilities support the ability to understand the capabilities being developed?
Virtual Accuracy/Margin Analysis	Are the modeling, simulation and analysis accurate? How well do they allow the designers to understand the margins?
3D Immersive Environments	What is the degree to which 3D Immersive Environments are used to improve the understanding (and possibly training) of the virtual systems.
Risk management	Is there proper risk management identification, analysis and mitigations applied based on the use of models?
Predictive analytics	Are there models used to support a quantitative approach to risk management?
Model-based metrics	Are there model-based metrics (or a comprehensive set of model measurements) and are they used to support the management of programs/projects?
Multi-model interdependencies / consistency and semantic precision	If the organization is dealing with many different types of models, are the interdependencies managed and are the models semantically precise enough to manage model consistency?
High Performance Computing (HPC)	Is HPC applied to the modeling, simulation and analysis efforts?
Procedures	Are the procedures for using the models understood, so that we can trust the model outputs to support other related types of analysis, both in terms of technical as well as risk?
Staff and training	With the advances in the technologies associated with models, are the staff and training in place to support the use of models?
Human factors	How well are human factors supported by the modeling, simulation and analysis capabilities? This should consider Usability.
Certification	How well do the models-based automation and practices support certifications (if required)?
Regulation	How well do the models-based automation and practices support regulations (if required)?
Modeling and simulation qualification	How much do we trust our models?

THE ENGINEERING APPROACH

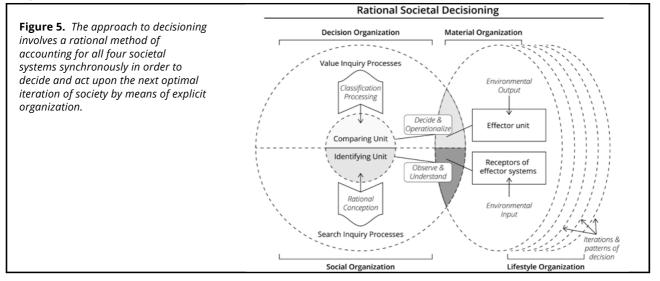
The Decision Approach

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com

Version Accepted: 8 June 2020

Acceptance Event: Project coordinator acceptance Last Working Integration Point: Project coordinator integration


Keywords: decisioning, decision management, decision coordination, decision planning, decision operations, decision development, decision control, decision design, decision resolution

Abstract

A decision resolves into action that has consequence to individual lives. At the societal level, it is possible to come together to form a cooperative 'agreement' system as the first social cooperative coordination pattern. At the societal-level, the first method of cooperative patterning is an understandable kernel logic. It is understandable because it can be logical visualized, and decisioning, can be traced throughout the global system. As a process in the real-world community information systems model, the decision system is a supra-, through to sub-, inquiry process of methods that group to resolve inquiry threshold decisions composed of procedures, for the re-Statement of a new and more optimally aligned societal experience. This project plan accounts for decisions that resolve into actions that affect individuals in a spatial and informational environment. Decisions can be resolved together through identification of common life-cycles and their objective resolution by means of algorithmic computation.

Wherein, feedback is measured against an expected alignment in order to ensure execution is of the highest quality. In order to optimize decisioning, a database of calculable information is required.

Graphical Abstract

1 Introduction

A.k.a., Coordinated decisioning, unified algorithmic control, algorithmic decisioning, algorithmic access control, conditional programming, and synthetic intelligence.

An 'agreement' system is the first social cooperative coordination pattern. In community, the first method of cooperative coordinated patterning is an understandable kernel logic. It is understandable because it can be logical visualized and decisioning transparently traced throughout the global commons. As a process in the real-world community information systems model, the decision system is a supra-through-to-sub- inquiry process of methods that group to resolve inquiry threshold decisions composed of procedures, for the re-Statement of a new and more optimally aligned societal experience.

Simultaneously, the decision system is a computational system that uses mathematics. Mathematics is the methodological-science of patterns. Mathematics may be applied at the societal level to optimally resolve a new societal pattern. To most people, mathematics means working with numbers. Today, mathematics is more well understood as the study of patterns, real or imagined, visual mental, arising from the spatial [natural] world or the conceptual [mental] world.

Mathematics is one, but can be commonly subdivided into:

- 'Mathematics', more commonly known as "higherorder" mathematics resolves new iterations of the whole societal system (as a solution pattern 'state' for the society).
- "Lower-order" mathematics is the science of expression, equation, operation, or formulation within patterns of an informational or physical nature.

Mathematics may be used to represent spatial objects, their motions, as well as informational objects ('concepts'), and their motion, through computation. Mathematics may be used in the decision system to, for example, describe system/patterns, a mechanical pulley. Within the decision kernel, mathematics may be used to resolve many inquiries, including most importantly, resource planning, scheduling, and access (which may be used as a pejorative, it is used in community to mean the benefit of all that can be contributed to (it is a difference in perspective between the two; free access is not negative, but positive...through a planned and coordinated societal, and hence, decision, model.

Effectively, the shape, motion, composition, coposition, and operation of systems in both the spatial and conceptual world can be expressed/described as mathematical equations most precisely, and only to the level to which they can feedback understanding (machine learning in particular here).

In other words, socio-decisions have socio-network effects that "vibrate" (share) information and resource access instruction throughout a materialized ecologicalhabitat service network where InterSystem habitat service teams composed of humans and machines operate a societal-level and sub-system coordinated informational-material environmental system [pattern] of local habitat service systems (Read: the local integrated city system). The input of the decision is all the information; ordered, or to be ordered.

The process of the decision system is an algorithm, a procedural resolution to a set of inquiries, no more than that which can be understood by us as individuals, together.

The output of the decision system is a set of complex 'patterns' (probable and actualized). These , and in systems science the concept of 'complex' systems is categorized under complexity theory. Complexity theory is the study of complex systems. A complex system is a system. A system is a set of parts with relations between those parts that interconnects them into a whole, making them interdependent within the whole system.

 For instance, entities are inter-connected in that one entity is pulling on the other; every atom or sub-element (e.g., human-individual entity) is pulling on every other (e.g., atom or sub-element) of the other entity. Note: Is that what is available as a description of 'gravity'? And for consciousness, there is an information inter-connection, and for a physical body there is a physical, spatial interconnection for consciousness. The intentions of a conscious entity are pulling on the intentions of other conscious entities.

That is what we have as a description of conscious social population. Physics exists to explain how every atom, intention pulls on "you",. How is every atom pulling on every other atom is a question of physics. Where does this occur for our population. In society (information sphere) on Earth (spatial sphere).

Order is received through information and material reception, sensing, and order is imposed on that system through importing conception (information) and materialization (energy). This idea can be seen visually in the many real-world-community models. In other words, systems are received, designed, and have order imposed on them as advancement occurs in a certainly [now] uncertain world.

- For instance, material systems may be influenced to change through reconfiguring energy and matter.
- For instance, social systems may be free to change through reconfiguring information and understanding.

The total information system, of which the decision system is a part, sustains system complexity - some of the complexity of the societal system (complexity theory applied to societal system) can be viewed as:

- Adaptive System Intelligence as control, learning as highly probable control due to past experience or preparation, the ability to plan, and necessarily, visualize/graph in order to control a system infrastructure, together.
- Self-Organization System the ability form, sense, and synchronize patterns, within and from nature.
- Decision System Non-linear systems dynamics resolve to produce an environment with the probable ability to change [linear] direction if fulfillment if it is required. Non-linearity describes a whole, where the whole is greater than the sum of its parts; or, less than the sum of the separate parts.
- Information System Information and material dynamics are graphed as a network multi-domain structure (with zoom-scale) of thread-like feedback loops and "tri-" shape-like motion within a matrix.

In the real-world community model, the decision system is a process object that includes a set of objectives in which inquiry resolutions are calculated through an alignment procedure that operates via the methods of absolute pattern recognition as mathematics (mathematical operations to resolve computations) and linguistics (linguistic operations to resolve computations) and linguistics (linguistic operations to resolve computations) into the absolute differences of a 1/'yes' (or, yes to some degree) or 0/'no' (or, no to some degree) -- wherein, '1/0' is mathematical [number patter] computation and 'yes/ no' is linguistic[al meaning] computation, both of which follow the principles of 'pattern' (a synonym of 'system') logic (certainty is never more than 90-99%):

- Decision system > effectiveness sub-inquiry
 - Regions and cities run no less than 90% difference in societal information and decisioning. This means that the information both sub-global information and habitat systems are 90% equivalent and decision results would be the same 90% of the time.
- Decision system > distributive justice sub-inquiry
 - Human individuals acquire no more than 10% over what others have acquired in current personal access.
- Decision system > regeneration sub-inquiry
 - Habitat services run no more than 90% of carrying capacity.

Together, a societal decision is an informational solution "selected" for resolution (to go from probable to actual):

• Decision plans include product/system/solution

files:

- Requirements
- Series inquiry
- Parallel inquiry
- Decision algorithms include coding/computing sheets:
 - Software
 - Hardware
- Decision services include support systems:
 - Life support system
 - Technical support system
 - Explorational support system

2 What is a decision?

A decision [point] is an information point (or control "gate") that 'controls' the flow of information and/or materiality, in (or through) 'time'. To resolve and execute a decision is otherwise known as the ability to "take control".

In system's control, a decision point is:

• *How* the quantity and/or quality, of a target, is controlled.

A decision system involves access to:

- Information, perceived as memory (awareness).
- Logic, perceived as patterning (order).
- Action, perceived as execution (doing).

In the societal system proposed by this project, the Decision System specification defines and explains the parallel processing of socio-economic information. The Decision System determines solutions and initiates a resolved execution (i.e., change) to the active state of the environment, given a [societal] problem situation. The decision system lists three core inquiry processes that resolve problems into accepted solutions (these inquires are completely defined in the Decision System specification):

- 1. A recognition of issues (issue inquiry).
- 2. A set of societal value condition inquiry thresholds (social solution inquiry).
- 3. A set of technical inquiries (technical solution inquiry).
- 4. A safety and societal effectiveness inquiry (effectiveness inquiry).

Decision control necessitates [at least] the following activities executed by the decision system:

- Identification of situation
- Measurement of progress
- Evaluation of alternatives
- Selection of alternative
- Documentation
- Executing of documented decision

Whenever a decision is taken, the decision space necessarily creates a ranking among possible solutions, as their probabilities of matching decision objectives. And, whenever there is a ranking in the presence of uncertainty, then a numerical-statistical scale emerges.

Consciousness is able to choose (select) a pattern of solution through a decision system configuration, to solve a problem (disturbance). Together, individual consciousnesses can come together to resolve a common decision system configuration to pattern known as 'society'.

In a project-engineering information system,

- Decisioning is directed by requirements.
 - Requirements are determined through analysis, which are informed by intentions (e.g., objectives) and a given situation.
- Designs are directed by specification standards.
 - Specification standards are determined through synthesis, which are informed by combining useful information over time to form knowledge sets useful for predictable design.
- Executions are actions (Note that in a project-based information set they, executions/actions, are most commonly called 'activities' or 'tasks').
 - Activities (tasks) are determined based upon the coordination of the construction (creation) of a material (spatial) information set.
 - Those who participate in executions, activities, tasks, are contributors as part of the coordinated organization of an InterSystem Team (because there is cooperation, and not competition; if there were competition then another term would be used, such as employee).
- Results are feedback that are integrated to produce a better, more optimal decision design execution.
 - Sensors record information into memory storage as data (bits).
 - Individuated integration processing units perform pattern recognition on data (as discrete math, logic).
 - Users become aware of more useful information (more knowledge) over time (as conscious awareness, wisdom).

2.1 Decision objective

The processing of information in the presence of an objective conforms the information result to the objective, by relative degree, as a synthesized information set of information useful for spatial execution [toward the objective]. The objective is an input the user puts into a decision space once the space's code, protocol, or method are "complete", once the decision space is programmed. Therein, the objective is a direction accompanied by a situation, for which the decision processing system must resolve by synthesizing new information from its new (novel) inputs.

2.2 Decision mechanism

Whenever a decision is under resolution (i.e., being resolved, taken, acted upon, etc.), the decision space necessarily creates a ranking among solutions (i.e., solution alternatives), based upon an objective; this mechanism uses conditional probability matching between the decision objective and the situation, based a prior pre-programmed logic with a memory of what predictably works as recorded in memory. When there is a ranking in the presence of uncertainty, all actions in an environment will have some degree of uncertainty; in order to account for uncertainty in decisioning, numerical-statistical scaling (mathematical statistics) has emerged and is used. If there are numerical-statistical scales present, then computation can be performed, and automaticity becomes available. When automaticity is materialized, this is often called, 'technology'. Humanity has the potential for generating through this decision mechanism, a unified, highly organized and coordinated socio-technical society with the objective of fulfilling the needs and highest potentials of all individuals.

STATEMENT: *The first step toward "governance" is actually knowing what happens.*

2.2.1 Decision resolution methods/processes

The common decisioning methods include:

- Analytic Hierarchy Process (AHP, and analytic network process) - a visual organization of information concerning the developing system, wherein indicators are prioritized and alternative solution options are ranked (to which a gated decision threshold may be applied). The Analytic Hierarchy Process uses paired comparisons to derive a scale of relative importance for alternatives.
 - The Analytic Hierarchy Process (AHP) can be used for prioritizing requirements with multiple objectives: value to several stakeholders, importance to the society, risk, or any other type of importance as previously identified. With this method pairwise comparisons between different requirements and weightings between different types of importance (objectives) are performed.
 - A decision space is opened where "hard" operations research (scientific knowledge) is resolved into an asset through "soft" sociotechnical systems engineering. Here, there are technology readiness levels, technology integration "maturity" levels, requirements hierarchies, etc. Here, there are organizational processes and sub-processes in some form of visual order.
- **Critical Path Method** (CPM, temporal organization of information) The CPM is a mathematical algorithm for scheduling a set of project activities. The three critical elements:
 - A. A list of all activities or processes to complete the project.

- B. The duration of each activity or process should be given.
- C. The dependencies between the activities or processes should be identified; and 4) the availability of a human or active service system to execute the change.

NOTE: *Information useful to a decision is: any signal, message or perception that has an impact on the state of the decision system.*

2.2.2 Decision tabling

A decision table is a visual computational structure to formulate requirements when dealing with complex physical and social rules. Decision tables are a concise visual representation for specifying which actions to perform depending on given conditions. Decision tables are used to model complicated logic; they are algorithms whose output is a set of actions. Decision tables can make it easy to see that all possible combinations of conditions have been considered, and make it easy to see when conditions are missed. The information expressed in decision tables could also be represented as decision trees or in a programming language as a series of if-then-else and switch-case statements.

In a decision table, conditions are usually expressed as true (T) or false (F). Each column in the table corresponds to a rule in the [social] logic that describes the unique combination of circumstances that will result in the actions.

One advantage of using decision tables is that they make it possible to detect combinations of conditions that would otherwise not have been found and therefore not tested or developed. Decision tables should best be constructed during system design, since they become useful to both developers and testers.

For example, a simplified decision table may be:

Table 18. <u>Decision Approach > Decisioning</u>: In the table,

 resources are allocated based on resource requirements and

 availability, which are either true or false conditions.

Conditions	R1	R2	R3
Resource requirement	Т	F	F
Resource available	Т	Т	F
Actions			
Resource allocated	Т	F	F

2.2.2.1 Decision tree

A decision tree is a tree where each node represents a feature (attribute), each link (branch) represents a decision(rule) and each leaf represents an outcome(categorical or continues value). For example, in determining whether to play outdoors or not (yes/no decision), the attributes of rain, temperature, humidity, and wind may be considered. For example, a simplified decision tree, in its tabular (and not visual tree) form, may be:

Table 19. <u>Decision Approach > Decisioning</u>: In the table, the decision to play as the node, branches out into a probability of conditions.</u>

Outlook	Temp.	Windy	Humid.	=	Play
Sunny	Hot	High	False	=	No
Rainy	Cool	Normal	False	=	Yes
Overcast	Cool	Normal	True	=	Yes
Sunny	Mild	Normal	True	=	Yes

2.2.2.2 Decisioning numerical processing (cognition)

Numerical processing (cognition) is composed of the concepts of (cardinality and ordinality):

- Quantity ('how many?')
 - Denote numerical quantities (i.e., cardinal[ity]; e.g., 'three trees', '3').
- Serial order ('which position?')
 - Signify position in an ordered sequence (i.e., rank, ordinal[ity] meaning; e.g., 'third tree', '3rd').

Cardinal statements (factual inputs; "judgements") can be used as numerical representations of the intensity of alignment [with an objective, preference, and/or requirement direction/result]. Cardinal statements can be used to express the relative importance of alternative [decision] solutions.

To generate a paired comparisons, one [controller] must answer (inquire and resolve) both quantity (cardinal) and serial (ordinal) kinds of question(s):

 Given a criterion or property, which of two sets (solutions, projects) is more important (of a higher priority) according to this criterion, and how much more important (relative standardized priority) is it?

After generating a matrix of paired comparisons for a criterion, the controller uses it to derive a scale that represents the relative importance of the alternatives. When several criteria are involved, the final decision [selection between alternatives] is based on a scale for comparing the criteria and on the several scales of the alternatives with respect to the criteria. The overall importance of the alternatives with respect to all criteria is obtained, if the criteria are independent from the alternatives, by multiplying the weights of the alternatives under each criterion by the relative importance of the criterion and adding over all the criteria. If there is uncertainty either in the judgments of the criteria, or in the judgments of the alternatives or both, the uncertainty is perpetrated to the scales and thus to the final outcome.

2.3 Solution determination

A.k.a., Solution selection decisioning; decisioning to determine how to select the optimal design.

Here, solution selection/determination involves programmed/-able decisioning on how to select the optimal design[-ed] solution. Design optimization requires the sensation and integration (i.e., exploration of) all available possibilities for an optimal solution configuration based on a set of requirements. The selection of a [solution] configuration for [solution] actualization is accomplished through the [economic] solution-decisioning system.

NOTE: Algorithms and robotics will drastically change the design and build process.

The ability to select a societal-level solution reveals the potential of an explicit (and open) model for societal operations.

2.3.1 Decision variable determinationacceptance methods

In concern to the decision-solution solving/determination methods, there are multiple types, the most common of which are:

- **Feasible** solution method A solution is resolved into a selection by conforming [a structure] to constraints. Note that the constraints must not limit the success of resolving the problem.
 - Here, the decision variable is a 'constraint'. The constraint(s) are the barrier for acceptance.
- Threshold solution method A solution is resolved into a selection when there is coherence between the resulting value and a pre-determined value (i.e., when a value meets or exceeds a pre-determined value then the selection taken as a decision). being at most a certain value (percentage) away from the optimal objective value, and not worse than some pre-defined value. Technically, a threshold is a composite constraint (a numerical-value determined by identifying the "level" for that which will and will not be selected as an acceptable decision).
 - Here, the decision variable is an objectively pre-determined value that acts as a barrier for acceptance.

2.3.2 Utility decisioning

Utility refers to the presence of some purposeful existence, a service (function or operation). Here, utility is a term used to describe the measurement of "usefulness", the measurement between the expectation of a purposeful existence and the presence of that purposeful existence. The a utility model, feedback on an action may be based on its outcome (as more or less

aligned with a given direction).

In the ideal, every decision about life can be reduced to a single number known as 'utility', which can be maximized or minimized. The utility value is the expected degree of desirability of some future sequence of events. Utility valuing is a clearly definable and justifiable basis for decisioning. The axioms that derive the basis of utility functions follow strictly from the basis that humans must take decisions. Whenever there is a choice, there is obviously a ranking, and when there is ranking + uncertainty there is a numerical scale.

NOTE: Intelligent agents perceive utility in actions.

'Utility' provides a number-value describing (answering the question), "How in alignment with a given objective is a given decision option?"

NOTE: In economics, utility is a term used to describe the measurement of "usefulness" that a user obtains from any service (good). "Usefulness" can have an objective relations, such a real human needs/requirement (as it does in Community), or it could have no objective relations, such as a subjectively interpreted want (as it does in the market-State).

In engineering, every high-level decision can be reduced to a single number-value known as 'utility'. Utility is the numerical degree of desirability of some future sequence of events, which has an expected value, and can be maximized by the process of engineering. Here, utility is a clearly definable and justifiable basis for decisioning. Every decision taken can be viewed as a comparison between the utility gained from pursuing one option or another toward the completion of an objective(s).

The axioms that derive the basis of utility functions follow strictly from the basis there exist decisions [that must be taken prior to action].

- 1. Whenever there is a choice, then there is a ranking of options.
- 2. Whenever there is ranking (of options) and uncertainty (of environment), then there is a numerical scale.

CLARIFICATION: *If there is an objective and a choice, then that means one choice-option is better and another, or others, are worse.*

Sometimes there is a voluntary choice and other times the environment (or world) pre-determines ("forces") the choice. If societal/life decisions can be defined in this way, then they can be encoded, turned into a procedures and made into a programs, and a machine can run them.

At a social level, utility is sometimes divided into:

- Decision utility values and requirements.
- Procedural and experienced utility well-being.

In utility theory, stakeholder value is represented by a normalized absolute relation between the possible levels of fulfillment [of a requirement] and the perceived/ absolute value to the user.

2.3.3 Production variance

A.k.a., Production uncertainty.

In the general operation of a community-type societal environment, there are no unexpected variances in production; there is no need for business "flexibility" as there is in the market where societal service operations are not harmoniously project planned. When societallevel planning is possible, then human fulfillment can be systematically planned for. At the end of this solution to our societal project, is a greater state of individual competition or a greater state of individual cooperation as an evaluative success screening criteria for execution.

2.3.4 Design decisioning

Each design decision in the entire design process is checked by logical proof at the time that the decision is taken. These checks should be automated as far as possible in standard design automation tool-sets. These tool-sets must be based on a wide and deep understanding of the laws of the relevant branch of science. These must be formalised in sufficiently strict mathematical detail that it is always possible to calculate or prove that a product conforms to its design, and a design satisfies its specification. This can be done only in a mature branch of engineering science in which the basic foundations are sufficiently developed that the consequences of every design decision can be effectively calculated by software. This is far from trivial, since implementations, designs and specifications are usually expressed in different notations, appealing to different concepts and conceptual frameworks, and describing phenomena on widely different scales of space and time.

2.3.5 Human-centered decision system design

A human-centered (a.k.a., human required) decision system protocol is necessarily constrained by humans in the following necessary ways:

- 1. The system is programmed and monitored by humans (i.e., by human requirements).
- 2. The system is contextually informed about what humans require (i.e., by issue requirements).
- 3. The system is appropriately uncertain about what humans require. The system is appropriately uncertain so that the system further inquiries about what humans require (i.e., the system must accept and integrate feedback, so that the system

doesn't irreversibly destroy things that are actually required).

2.4 Decisioning uncertainty

There are two types of decision uncertainty:

- 1. Uncertainty about the occurrence of future events.
- 2. Uncertainty about the range of solutions used to resolve requirements.

The first is beyond the direct control of decisioning, whereas the second is a consequence of the amount of information available when the decision is occurring.

There are situations where a measure of uncertainty is necessary to decide whether it is:

- 1. Optimal to proceed with the current optimal solution, or
- 2. Optimal to acquire more information to remove some or all of the uncertainty.

Uncertainty about human objectives (requirements, preferences, etc.) leads to deferential behavior. In other words, a decision system that accounts for uncertainty can be programmed to inquire more deeply into and/ or refer to new human articulations when there is uncertainty in a current decision space. In other words, the system that resolves decisions can (or, cannot) account for uncertainty, and when a sufficient threshold of uncertainty is present, it can (or, cannot) defer to [new] human articulations/requirements. Here, "to defer" refers to deferring the selection of a single decision determination/solution until sufficient information is present to resolve the uncertainty.

2.5 Wrong decisions

If a "wrong" decision is taken, it results, quite often, in deviations from expectations or from expected operational outcomes. It is the work of information coordination and control to ensure that such deviations can be picked up quickly and dealt with before more damage is done.

PROCEDURE: When a key indicator is not attained, the information systems will flag this exception.

2.6 Decision gating

Decision gates (a.k.a., stage gates, phase gates, decision way-points, decision points, etc.) act as points where a decision space exists that must be resolved prior to life cycle progression.

• In concern to engineering, decision gates are

typically synchronized with the commencement and termination of a system state change.

• In concern to life cycles, in general, every stages/ phases provide a decision gates.

In a life cycle, at each gate, several decision options are open. The most common are decision options are:

- Proceed to execute the next stage.
- Continue the current stage until the designated exit criteria are satisfactorily met.
- Return to a previous stage in order to conform to a revised purpose, or a new or preferred solution option(s).
- Hold the project activity until evident uncertainties or shortcomings are resolved.
- Terminate the project due to critical changes or an inability/excessive risk to complete.

System stages need to be terminated by well-defined, objectively assessable achievement states. As a result, stages are predominantly overseen according to their work product status, and generally by an evaluation criteria profile of achievement across a range of these work products.

3 [Decision] System life-cycle

A decision system based on information about what humans require, in combination with software development, computing power, and mathematics. A decision system, as part of a unified information system structures the new system with information. The general, operational decision system is split into decisioning levels, according to relevant criteria, each level being composed of one or several decision spaces ("decision centers" or points). The information system contains the information needed by the decision system, and must structure it in a hierarchical way, according to the structure of the decision spaces (centers).

QUESTION: *How well did we do with that prior decision, in terms of its results and what was expected?*

The de-composition of a decision system is performed according to two different axes:

- The vertical axis is coordination (i.e., is the coordination axis).
- The horizontal axis is synchronization (is the synchronization axis).

The de-composition in levels for coordination is based on temporal characteristics. The couple of temporal characteristic which defines a level of decision is composed of: The "horizon" (the internal of time over which the decision extends (i.e., remains valid), and the "period" (the interval of time, over which the decision is open/re-considered). The criteria for decomposition for synchronization is a functional one. The origin of this de-composition comes from the "theory of project management", particularly the need to synchronize the flow of information, of products/systems/deliverables with the use of resource.

• A decision system is a set of decisions taken with 1 function and 1 level.

A structured approach uses specifications to organize and communicate that which exists and that which could and/or should exist in the real world, given what is known and a direction. The structured approach principally has four life-cycle phases:

- 1. Initialization
- 2. Analysis
- 3. Design
- 4. Implementation

Navigationally speaking, a structured approach to navigation together involves, at least the primaries of navigation:

1. Sensing (genetics, environment, habitat, resources,

etc.)

- 2. Mapping
- 3. Planning
- 4. Find optimal actions and course

INCLUDING: Optimal travel route (plan) and travel time estimation (schedule).

4 [Decision] Computation

A.k.a., Computational decisioning, algorithmic decisioning, algorithmic control, conditional programming, computational intelligence, decisioning computation, decision support.

Computers perform logic operations. A computation is a logic operation process performed (run or activated) on a computer. Computational decisioning uses information and an objective function (technique) to determine parameter values from operational data. Therein, computational models are built in the virtual world, which can then be made a dynamic system that humans and other systems can feed input to. Computational models will process the input and then provide an output. Intelligence is a computational resource.

"The world we live in today is made of computers. Our homes are designed with computers. We don't have cars any more, we have computers we ride in. We don't have airplanes any more, we have flying Solaris boxes with a bunch of SCADA controllers. A 3D printer is not a device, it is a peripheral and it only works connected to a computer. A radio is no longer a crystal, it is a general purpose computer with a fast ADC and a fast DAC and some software. The grievances that arose from "unauthorized copying" are trivial when compared to the calls for action that our computer embroidered reality has created."

- Corey Doctorow

4.1 Intelligence

APHORISM: One is limited by one's unintelligence in understanding the intelligence of others.

Possibly, intelligence is the ability (and/or power) to shape the world in a way that satisfies (results in the fulfillment of) an objective. Subjectively speaking, something that is more intelligent than "you" is more powerful (has more ability) than "you" to change the world. When an intelligent agent interacts, it evolves according to the quality of its choices during the interaction. For the intelligent agent, there is a reality frame in which choice is present. Intelligence is sometimes referred to as information composed of data that has been integrated (or, had valuable "meaning" added).

Intelligence is doing the right thing at the right time. Intelligence is the ability to meet goals (across a diverse range of environments), and to do it flexibly as opposed to rote; it includes optimization, as a narrowing of the future possibilities into greater certainty.

One definition of intelligence is - being able to build an accurate and detailed model of the surrounding world. To consciousness, a more accurate and detailed model means that situations will be better understood and

decisions will have a greater confidence of being correct and good. Intelligence allows for greater empathy by being more able to model, and hence, understand the [thinking and behavior of] others. In systems thinking, intelligence is the ability to follow and generate patterns. Intelligence changes the future implications and probable consequences of current decisions.

Intelligence is a tool for resolving inquiries and problems. It is a search in some environment for answers. Intelligence is what is used when there is no immediate answer or solution to a problem. In other words, intelligence is what someone uses when s/ he does not know, initially, what to do. It is possible to perceive intelligence by observing what people do when confronted by a problem or a new situation. In this sense, intelligence is an emergent process. To a consciousness, the ability to extract and/or produce significant information from a situation is intelligence. Intelligence is applied on the part of consciousness to gather and process information into an actionable form (i.e., into a form that is usable for decisioning).

Intelligence is a tool; it is an intentionally influential way to accomplish goals. How those goals are selected is a different issue, that is where values become relevant.

It is important note here that that concepts like 'love' and 'intelligence' cannot perform motions; because, they are already concepts that are in motion (i.e., they are dynamic concepts, verbs). Here, intelligence includes speed and time, like power (which, is another verb).

In a sense, intelligence is a continuum with two ends, fluid intelligence to static intelligence.

- 1. Fluid intelligence the process of considering information that does not fit into a previously accepted view of reality or possibility.
- 2. **Static intelligence** the lack of a process of considering information that challenges an established belief (accepted view).

The substitution of belief for fluid reasoning nonoptimal, because belief cant be used to increase the certainty of decisioning to correct orientation when it strays of the course of mutual human fulfillment. Hence, in a sense, the substitution of belief for rational decisioning could be considered immoral.

Intelligence is decision support that seeks to answer a specific question for a specific decider (i.e., for a specific deciding entity or decision group). The decider is the specific human being or system that has to take a decision. Useful intelligence is information applicable for decision support; it is the collection and integration processes that facilitate the resolution on a decision space. Intelligence can be conducted in secret, and it can be conducted in the open (in the commons where it is visible to all).

Secrecy in decisioning at the level of society is often used to avoid accountability and to do unfulfilling things in the name of another, without being discovered. Openness is subject to audit, to visibility, to exponentially distributed quality control through the iterative planning and coordination of open commons for access and contribution. Collections, integrations, and resolutions that are secret cannot do not take advantage of available human and technical potential.

Nature creates [as far as is known] two types of intelligence:

- 1. **Neural networks** (individual intelligences) neural networks are individualized unites of comparatives with input, adaptation, and output components.
 - An integrating, self-adaptive network.
- Swarming collectives (social intelligences)

 Swarming collectives are composed of individualized neural networks that move together as one to navigating entity, avoiding predators, discovering opportunities, and sharing resources.
 - A cooperating, socially-adaptive network.

Societal engineering in a community-type society must necessarily must account for both neural network intelligence and swarm collective intelligence.

APHORISM: Engineers doesn't care what is believed; they care about what is.

4.1.5.1 Intelligent agents

Intelligent agents are capable of, and act through: reasoning, learning, planning, analyzing, and decisioning. Intelligent agents are about acting in a way that is expected to achieve objectives. Intelligent agents behave different given the two types of environments:

- 1. If the environment is deterministic (i.e., static), then intelligent agents are planning and searching.
- 2. If the environment is stochastic (not precisely predictable, i.e., dynamic), then the intelligent agents are using [Markov] decision processes (MDPs) and [reinforcement] learning.
 - The [Markov] decision process model contains: A set of possible world states, *S*. A set of possible actions, *A*. A real valued influence (reward) function, *R*(*s*,*a*). A description *T* of each actions effects in each state. The [Markov] assumption property is that the effects of an action taken in a state depend only on that state and not on the prior history.
 - Deterministic actions: $T : S \times A \rightarrow S$. For each state and action a new state is specified.
 - Stochastic actions: T : S x A \rightarrow *Prob*(S). For each state and action a probability distribution is specified over next states, representing the distribution: P(s' | s, a).

4.1.5.2 Machine intelligence agents

Artificial intelligence could be used to scan for errors in societal computation.

5 [Decision] Meta-decisioning

Decisions that define the global decision system for a society determine the framework (including: objectives, constraints, resources, methods, measurement criteria, etc.) through which that society continues to exist (i.e., determines its sustainability). The composition of the decision system could be called a meta-decision as it involves decisions concerning other decisions. Note, that it is not always easy to draw a distinction between these two types of decisions (i.e., decisions that are about the decision system itself and decisions that are not).

5.1 Model integrity

Model integrity ensures trust in the model's predictions by understanding and quantifying margins and uncertainty.

5.1.1 Provide trust in model-based predictions with quantification of margins and uncertainty

Blackburn et al., (2016:48) provides an informed example of the analysis of margins and uncertainty in the context of a device. Take for instance a device that is subject to heat, and there is a need to assess some type of thermal uncertainty quantification for that device. The results of an experiment with that device under thermal conditions are reported in a probability distributed bar graph. Blackburn et al., characterizes the margin and uncertainty of the results:

"The Mean of the temperature: T, to the lower bound of the threshold (e.g., 72 degrees) characterizes the Margin, and the Standard Deviation (T) characterizes the uncertainty."

Quantification of margins and uncertainty applies to the lifecycle of an entire product system, with a focus on (Blackburn et al., 2016:49):

- 1. <u>Specification of performance</u> characteristics and their thresholds.
 - Performance is the ability of system/component to provide the proper function (e.g., timing, output, response to different environments) when exposed to the sequence of design environments and inputs.
- 2. <u>Identification and quantification of performance</u> margins.
 - A performance margin is the difference between the required performance of a system and the demonstrated performance of a system, with a positive margin indicating that the expected performance exceeds the required performance
- 3. Quantification of uncertainty in the performance

thresholds and the performance margins as well as in the larger framework of the decision.

In general, there are two types of uncertainty that are that account for, quantify, and aggregate (Blackburn, 2016:49):

- Aleatory uncertainty (variability) Variability in manufacturing processes, material composition, test conditions, and environmental factors, which lead to variability in component or system performance
- Epistemic uncertainty (lack of knowledge) - Models form uncertainty, both known and unknown unknowns in scenarios, and limited or poor-quality physical test data. Models inherently have uncertainty.

The statistical tolerance interval methodology is an approach to quantification of margins and uncertainties for physical simulation data. There is a newer second approach, that of probability of frequency distribution, which is commonly used in computational simulation QMU applications. The probability of frequency distribution approach involves (Blackburn et al., 2016:50; Newcomer, 2012):

- **k-factor** margin divided by uncertainty (M/U).
 - Margin (M) difference between the best estimate and the threshold for a given metric
 - **Uncertainty (U)** the range of potential values around a best estimate of a particular metric or threshold

The k-factor provides required engineering analysis to ensure the collected data sample includes measurements that may be used to infer performance in actual use. Additionally, it is necessary to understand the performance requirement to understand the performance threshold and associated uncertainty:

• **Threshold** - A minimum or maximum allowable value of a given metric set by the responsible system.

The probability of frequency distribution method addresses the situation where a performance characteristic has shown the potential for low margin or a margin that is changing (likely getting smaller or there is greater uncertainty) with age. (Blackburn, 2016:50)

5.1.2 Model validation

Uncertainty quantification for simulation models is not strictly limited to model validation. Model validation is the process of comparing model predictions to observed responses for the purpose of assessing the suitability of a particular model. When experimental observations are available for validation assessment, analysts may use the same observations for model calibration. Model calibration is the process of adjusting internal model parameters in order to improve the coherence between the model predictions and observations. If internal model parameters are allowed to be adjusted in this manner, this means that there is some amount of uncertainty associated with the true, or best, values of these parameters. And uncertainty associated with model inputs directly implies uncertainty associated with model outputs. (Blackburn, 2016:60)

Model validation and simulation qualification are ways to ensure "integrity" of the models prediction information. Rizzo (2015) has developed the "Real Space" model validation approach, which was formulated by working backwards from an end objective of "best estimate with uncertainty" (BEWU) modeling and prediction, where model validation is defined as: the process of determining the degree to which a computer model is an accurate representation of the real world from the perspective of an intended use of the model. However, the interpretational and implementation details can still vary widely. (Blackburn, 2016)

Hierarchical model validation:

- Seeks to expose key physics and material models that are brought together, and asks are the combined products validated at various levels of aggregation? "right for the right reasons".
- Seeks to catch interactions and emergent behaviors not present in validation of separate models.
- Must consider "traveling" or "linking" variables that bridge modeling levels.

6 [Decision] Control

A.k.a., Coordination control, change control, flow control, organizational re-alignment/adjustment, decisioning, decision control, orientational control, error correction, issue coordination, monitoring, planning, deciding, purpose, etc.

Once an organisation identifies a direction, it can start measuring (evaluating) progress toward that direction, while reorienting accordingly. Here, to control is to use a referential direction and method to resolve an [orientational] decision space, so that the next iteration of some [oriented] system aligns more greatly (and not less) with that direction [of motion]. Take note that control is a navigational term, which conceives of the ability to intentionally reorient a system in motion. Control is required for a system to respond to external variables (by isolating a state from external influences). In a control system (a.k.a., closed loop control system) there exist [at least] two systems-level inputs (beyond the axiomatic system inputs, open system inputs) necessary for controlling change within the system based upon an awareness of external conditions.

CLARIFICATION: In concern to project coordination, a project's lifecycle process groups have processes, and control happens concurrently (i.e., as those processes are executed).

Control refers to being able to direct and select change. There is control[lability] wherever there is a decision [space]. Change coordination (change management) coordinates (manages) the evolution of a system throughout all stages of its life cycle. Changes to a system are made based upon a change control (coordination or management) system. Change management is the practice of tracking and administering changes and is a key part of project and every system.

Control is power/ability, sufficient, to alter fundamental conditions (so as to shape experience toward an objective). It is important to recognize that control does not necessarily mean to give subjective power to one personality; control can be person/subject independent. For instance, by sharing an adaptive system (both individual humans and their societal system) has sufficient access to modify its' system [to organize/orient optimally]. An adaptive system, a system that cooperates internally, is likely to have a view of control that involves an open source, a shared, source for its [societal operating] protocol. An adaptive societal system has a shared societal system specification as a source of information and decisioning for its own system.

Control also consists of procedures that determine deviations from plans and desired states, and that indicate, and execute corrective action regarding these deviations. This entails gathering data on the state of the output, searching for deviations from the plan, and adjusting the input based on the evaluated results of the output. Project control thus establishes a relatively closed system of causes and effects. It also reduces the risk of failure and the effect of residual complexity and ambiguity.

Control can only be applied (executed) over the components internal to a system. Feedback mechanisms ensure the system has the information necessary for error correction. Control (and also feedback) presuppose planning, at least in the form of setting goals and performance levels, as plans furnish the baselines and standards of control.

Control is:

APHORISM: *If you truly want to understand something, try to change it.*

- Decisional information processing and error correction.
- The ability to form a [computational] "space" where a decision can be executed as a solution to intentional motion in an environment.
- The process of ensuring that executed operations proceed according to some plan by reducing the difference between the plan (or goal) and the executed reality, by correcting for differences.
- Pre-deciding/pre-planning the change of a system. Control [theory] is based on the explicit premise that the change of a system is, or can be planned. Note that controllability and optimal control usually are recognized as the characteristics (Read: problems) of modern control theory.

The dimensions of control are temporal (linear in progression; or input, process, and output modeled):

1. Pre-action control (preaction)

- A. **Standards control** formally identifies what and how action is to be taken. Standards are a form of precontrol, because they are developed and set prior to action.
- B. Feed-forward control conduct forecasts, budgeting, and use real-time computer systems to determine optimal actions.
- 2. Concurrent action control (action)
 - A. Execution control (a.k.a., concurrent control) is exercised thorough supervision and monitoring.
- 3. Post-action control (postaction)
 - A. Feedback control used to evaluate past activity in order to improve future performance. It measures actual performance against a standard to ensure that a desired result is achieved. Feedback control is reactive (i.e., corrective action takes place after the fact). It may be necessary to change the way information is processed based upon the information received.

- B. **Post control** identifies deviations from standards and calls for corrective action (is similar to feedback control).
- A 'control system' is:
 - A system with the ability to control its own (or others) outputs.
 - An interconnection (dynamic) of components forming a system configuration that will provide a desired system response given a knowable input.
 - A mathematical composition of differential equations. The set of equations can appear in different forms like; ODE (finite dimensional control systems), PDE (infinite dimensional set-up), integral equations and so on. PDE's can be of different types; elliptic, Parabolic or hyperbolic.

Project 'change control' is:

• A process to control the necessary changes that happen during the life-cycle (or lifetime) of a project, or other, system.

There are two principal views into a control-type information system:

- **The development view** A control system design and development view (control builder)
 - The control system is designed, built, and evaluated.
- The deployment view A control system deployment view (controller)
 - The control system is moving information and executing pre-decided decisions.

'Controllability' (the ability to control) is:

- The ability of a system['s dynamics] to be intentionally modified by some environmental or supra-system entity (e.g., a user). Here, usability is sub-condition of controllability.
- A basic property of systems that is indicative of the ability to control.
- The ability to steer/navigate a given system.
- The ability to design control inputs to steer (adjust, correct, change, etc.) the state to arbitrarily values. Observability is concerned with whether without knowing the initial state, one can determine the state of a system given the input and the output.
- The logical determination, leading to the subsequent selection, of a solution.

A system is controllable if:

• The control is "powerful" enough to steer (change/ adjust) the system from any initial state to any desired state in some finite time (t). Control accounts for (i.e., the following matter significant for effective control of a system):

- 1. Object Shape, and the composition of volumes.
- 2. Motion Time, and the sequence in which actions are taken.

More technically, 'controllability' is the ability to change ("steer") a system to any desired value in finite time, and provide simple closed-form expressions (math to hardware and software encodings) for constant positive control functions (or transition rates) that asymptotically change ("steer") the system to the desired value. <u>Algorithms</u> encode a pre-determined process for determining the constant positive control value that asymptotically "steers" the system to the desired value.

Observability (the ability to observe, monitor) is a necessary condition for controllability. Without observability, there is no coordination and/or no verification of control.

Control is an organizational [coordination] function. Control checks for errors in the oriented result, decides, and takes corrective action, so that deviation from objectives, requirements, standards, etc. are minimized and states goals of the organization are achieved (in the desired manner). Today, control is a "forseeing" (i.e., probability-based) action/activity, whereas the earlier concept of control was used only when errors were detected (would a change then be taken). Control in coordination ("management") means:

- Setting standards
- Measuring actual performance
- Taking corrective action

As a forward/probability integration tool, control functions to monitor completion of the work, indicates on current progress, and match conditions to quality output, over time and simulated.

Control involves looking at the variance between the work performed in project execution, against (Read: in comparison to) what it was required ("should") look like as a realization.

INSIGHT: There is a difference between a controlled fire and a fire that burns down a house. Just as the dose makes the poison, the structure makes the control.

6.1 Control and coordination (and communication)

A.k.a., Direction, control, communication; command, control, and communication; the service triade.

Any system capable of effecting an environment through some interface must sustain a system for control of the effector and coordination of information, which is accomplished through shared communication within the system. The control and coordination in human beings take place through an integrated nervous hormonal system called, the endocrine system. In order to communicate control and coordination signals throughout a system, a common model and method of modeling is required.

Through certain decisioning in a dynamic environment the service triad becomes visible:

- 1. Control without control, certainty of service is low.
- 2. Coordination without coordination, accessibility of service is low.
- 3. Communication without communication, viability of service is low.

6.2 Controllability pre-requisite to validity and reliability (error correction)

QUESTION: What is controlled? A system's software and/or hardware [as discrete logical elements in a dynamic] is controlled. What is there to control? The flow of information and changes/modifications to materiality (software and hardware).

Controllability is a prerequisite for the evaluation of validity and reliability. In order to make research results controllable, researchers have to reveal how they executed a study: how were data collected? How were respondents selected? What questions were asked? Under what circumstances was the study executed? How were data analyzed? How were conclusions drawn? The detailed description of a study enables others to replicate it, so that they can check whether they get the same outcomes.

Reliability is a concept that seems to be easy to grasp but nevertheless difficult to define. In general, something is called "unreliable" when it cannot be depend upon, when it cannot be trusted. For example, a car that occasionally fails to start is unreliable. A person who does not keep his promises is unreliable. The general association of reliability with dependability and trustworthiness holds for research as well, but it has a more specific interpretation.

The results of a study are reliable when they are independent of the particular characteristics of that study and can therefore be replicated in other studies.

A common strategy to determine the reliability of a measurement is to repeat it. By repeating a measurement, one can determine to what degree measurement results differ from each other. If there is no difference, the research results seem to be independent of the specific characteristics of both studies. Repeating a measurement has at the same time the advantage that measurements can be combined in order to increase reliability. Combining measurements may consist of calculating the mean of a series of values, but it may also consist of an attempt to reach consensus on the interpretation of qualitative data. It is better to take average of several imperfectly reliable results than to trust one of them, since the average is less dependent on the specific characteristics of one of the studies. Doing more measurements is therefore another common strategy to improve reliability. This will be elaborated in the following discussion of different types of reliability.

Some instruments of data collection and analysis leave more room for biases (biased interpretations, active or passive) than others. Reliability is served by using a multiple reliable data inputs. This approach is often called triangulation. Triangulation is the combination of multiple sources of evidence.

Differences between the circumstances under which a measurement can be executed are another source of unreliability. Validity is a major criterion for the evaluation of research results.

In general, validity is defined by employing the epistemological notion of justification: a research result is valid when it is justified by the way it is generated. The way it is generated (method) should provide good reasons to "believe" (be willing to use) that the research result is true or adequate.

Thus, validity refers to the relationship between a research result or conclusion and the way it has been generated.

This definition of validity implies that validity presupposes reliability. If a measurement is not reliable, this limits our reasons to believe that the research results obtained with it are true. On the other hand, reliability does not pre-suppose validity. One can have a perfectly reliable measure, which does not yield valid research results.

Construct validity is the extent to which a measuring instrument measures what it is intended to measure (De Groot 1969). Thus, construct validity refers to the quality of the operationalization of a concept. Construct validity is high if the way a concept is measured corresponds to the meaning of that concept. For example, a measuring instrument that is intended to measure employee satisfaction, but only asks for the attitude of employees towards management, has a low construct validity.

There are two sides to construct validity: (1) the concept should be covered completely, and (2) the measurement should have no components that do not fit the meaning of the concept. The components of a measurement should be both adequate and complete.

Construct validity can be improved by repairing the flaws that were detected, either by including new components to a measurement or by deleting existing items. Construct validity concerns the measurement of phenomena. Internal validity concerns conclusions about the relationship between phenomena. The results of a study are internally valid when conclusions about relationships are justified and complete.

A conclusion about a causal relationship is internally valid, when there are good reasons to assume that the proposed relationship is adequate. In order to establish the internal validity of a proposed relationship, one has to make sure that there are no plausible competing explanations. If a correlation is found between phenomenon A and phenomenon B, one may be tempted to conclude that A is a cause of B. However, correlation is a necessary, but not a sufficient condition for causality. It may also be the case that B is the cause of A, or that both A and B are caused by a third phenomenon, C.

Studying the problem area from multiple perspectives can facilitate the discovery of all causes.

External validity refers to the generalizability of research results and conclusions to other people, organizations, countries, and situations.

How can it be guaranteed that what works in one organization also works in another organization? This questions the external validity of a study.

6.2.1 Error corrected control

Error correction facilitates the identification and removal of bad ideas from encoded (or, probable to encode), society. A system that is stable and resolves errors correctly is likely to iterate the error out before grievance rise to the level of people wanting to use violence. Those who use violence believe that conditions are so bad that they need to take aggressive action to creates stability. And, what is required for community in early 21st century society is stability despite rapid change. Such community-type societal stability despite rapid change requires organizations of sharing and collaboration, of observation and criticism, and of transparency and integration. True societal error correction necessitates contributors who are also users among a social community population of inter-connected users. Hence, the first psycho-sociological need/issue of trust.

6.2.2 Trust and service

QUESTION: Are designs and actions facilitating, or taking away from, high trust within a society.

No one needs to trust in the service system to fulfill needs, because there is evidence through its transparent design and operation. In community there is trust at the technical level, because everyone knows the who, what, when, and where continuously and simultaneously, if desired; there is a unified information system available to all.

Society is [in part] an intangible commons that everyone benefits from or suffers under. The intention is a high trust commons where fulfillment is in abundance because it has been coordinated to be so. Therein, global access is maintained by a unified information system that re-orientationally encodes the experience of greater freedom, justice, and efficiency over time, to sustain/evolve humanity's capacity.

In a community-type society, everyone knows who did what, from the ground up (i.e., accountability and traceability), and so, there is trust from the ground up. When systems are known because the developer, the material, the composition, the reasoning, the logic, the method, and all the significant data about the system is available, then trust is high. In a community-type society, users who are also contributors have access to the system's design and operation. There is trust when there is verifiability (evidence), memory, and certainty. By maintaining and contributing to an intentionally designed and unified model, individuals are contributing to a high trust, cooperative commons, which regenerates everyone's comprehensive fulfillment.

INSIGHT: Controlling information is a good thing for the people controlling the information. When all of humanity controls the information, then that is a good thing for all of humanity.

6.3 Integration control

Integration and control are related concepts:

- The concept of integration is characterized by connection and alignment. Integration means completeness and closure, bringing components of the whole together in a[n operating] system.
- Control is a conception, interrelated with integration, characterized by movement (flow) and probability alignment. Control means the completeness of an intentional change in a probable environment.

6.4 Voluntary control

Voluntary control is a willful control of behavior. Direct voluntary control refers to actions that a person chooses to perform. Indirect voluntary control refers to actions that a person lacks direct voluntary control over, but the person can cause them to happen if s/he chooses to perform some number of other, intermediate actions. For example, a person untrained in music has indirect voluntary control over whether s/he will play a melody on a violin at some future point in time. Voluntary control is guided and monitored by an intention.

6.5 Loss of control

It is possible to more greatly understand 'control' by understanding the loss of control. When is 'control' lost? In other words, when does a system user no longer have the ability of 'control' over that system? Logically, control is lost (i.e., there is the negation of control-ability) when a control system is pursuing different objectives than its designers are intending (expecting).

NOTE: Subjectively speaking, in terms of technology, when does humanity lose control? Humanity loses control when the technical system, the machine, is pursuing a different objective than the one humanity wants (or

otherwise needs) it to pursue.

How do "you" (the controller) lose control, even when you are the designer and the user?

- 1. "You" lose control by not being both the designer and the user, and therefore, not accounting for the system['s cycling] as a unified whole (i.e., by not recognizing that "you" are both the designer and the user).
- "You" lose control when the system or organization is pursuing a different objective than you. For example, when the organization pursues money sequencing over human needs. Control is lost when the machine (or societal system) is pursuing a different objective then the one that is desired to be pursued. The problem comes from optimizing machinery (systems)in50 which objectives are fed (input).

How do you lose control (even when you are the designer)? You lose control when the system or organization is pursuing a different objective than you. For example, when the organization pursues money sequencing over human needs. Control is lost when the machine (or societal system) is pursuing a different objective then the one that is desired to be pursued. The problem comes from optimizing machinery (systems) into which objectives are fed (input).

Two core principles and one stabilizing principle (three principles):

- The systems only objective is realization of human needs. Note it was originally: the machines only objective is realization of human preferences. This means the machine has no objective at all, not even to preserve its own existence. Because, in order to preserve the fulfillment if human needs the machine is going to "want" to preserve its own existence. If the machine is given another reason to act, then there is a conflict between human needs (or preferences) and the machines desire for selfpreservation; and, that conflict should not exist.
- 2. The machine will be uncertain about what human needs (or preferences) are. The machine must always inquire into the users needs and objectives, and not presume user needs or objectives. The machine/system must be designed with a protocol that doesn't assume where assumptions affect results. This principle exists to prevent error analogized by "The King Mitus problem", where the king specified the wrong objective and everything he touched turned to gold including his family, which is not what King Mitus wanted. An active societal-level machine that believes it

knows the objective is likely going to pursue the objective regardless of individual humans flagging of the objective as an impediment to human need fulfillment -- since the machine knows the objective and has done the optimization, it knows that the action it is taking is correct, regardless of human noise to the contrary. The objective is a sufficient statistic, and subsequent human behavior is irrelevant once the objective is present. Hence, making the machine uncertain about the objective, the machine is then open, and in fact, has an incentive to acquire more information about human preferences. And, the human(s) "making an issue" (i.e., flagging as an issue) something that the machine is doing is clearly more information about human needs (or preferences)...and the machine should account for this new information (because presumably the machine was previously violating or hindering some human need/preference).

These two principles work together to make machines/systems differential to humans/users, such that they are willing to accept redirection (I. E., controllable). The machine/system has a protocol that asks permission (inquiry threshold gate) before doing anything that might have a negative effect (because they are not sure and lack sufficient information). Thus, machines will allow themselves to be switched off -- one way to prevent negative outcomes (a lack of or inhibition of user fulfillment) is to allow oneself to be switched off. There is a positive objective (or incentive) to allow oneself to be switched off; whereas if you are 100% certain of the objective, then the machine has no incentive to allow itself to be switched off ,and in fact, the machine has an incentive to prevent itself from being switched off.

3. A principle for stabilizing ("grounding") the conception of human needs (requirements, preferences, etc.). The decisions that humans take (as in, human behavior) provides information about human needs (and preferences). And, the reason that is problematic is that humans can deviate from behaviors that are optimally fulfilling given what is known and available. Human understandings, visions, and expectations of what a fulfilled life is supposed to look/be like can become highly derailed to the point that it produces extreme dissatisfaction. Humans can, and can not, act rationally. To act rationally is to act toward the fulfillment of human need, optimally, given what is known. Individual actions may, or may not, match [the fulfillment of] needs/preferences, optimally,

given what is, and what is known.

6.6 Controlled execution

Through the controlled execution of a project plan, there is the potential for the coordination of all action, including human, hardware, and software leading to the designed realization of human need fulfillment via a global habitat service system (with local habitat-city systems).

The execution can be algorithmic, but still free and freeing for the individual user (as benefactor of a social orientation toward that value orientation). An algorithm can be unbiased, whereas human individual decisioning is more likely to contain errors. The decisioning-error consistency issue (i.e., the error between multiple individuals who are expected to determine the same solution, but do not because of human bias) can be done away with when algorithms are used.

7 [Decision] Change control

NOTE: Change necessitates the conception of time, because there is a <u>time before the change</u>, then there is <u>the change</u>, and then there is a <u>time</u> after the change.

In general, change control is a process for resolving and evaluating change. Uncontrolled changes cause problems (e.g., rework, degraded quality, unpredictability). Change control starts with a change request (clarified issue, formal proposal to modify). Here, control is the pre-defined/-planned or developed [decisioning] process that approves or deny the change request. Change control starts with that which exists (informational-material), upon which change requests (issues) are articulated.

Here, it is important to acknowledge that uncontrolled changes to a complex living or societal are likely to cause problems.

State transition diagrams are generally used to visualize the life-cycle that a change request goes through as it goes through the change control process.

Change requests upon that which already exists can be caused ("triggered") by:

- Corrective actions
- Preventative actions
- Defect repair actions
- Update actions

The basic change control work-flow (process, control board, controller) determines the changes resolution, by:

- 1. **Evaluate** change request (and impact analysis)
 - A. **Approve / Reject** (not approve) change (decision)
 - (If approve, execute change) Verify actual changes occurrence (or, non-expected occurrence).

For a project, the formal request is to modify any/ some project-related information, such as (here, the decision is organizational-societal and must meet social requirements; social inquiry processes):

- Deliverables
- Indicators and metrics
- Time
- Quality
- · Objectives and scope
- Procedures

For a engineering, the formal request is to modify any/ some technical, solution-related information, such as (here, the decision is scientific-technical and must meet engineering requirements; technical inquiry processes):

- Function
- Performance
- Indicators and metrics
- Time
- Quality
- Objectives and scope
- Procedures

Each type (project and engineering) influences (has inputs) and constrains (i.e., some inputs are conditional) the other.

Change control involves a defined and executed [decision space resolution, information logic flow] process:

- 1. *Objective* of change/decision space.
 - All changes/decisions have a stated/claimed direction.
- 2. *Define* a change/decision process.
 - All changes/decisions must follow this predecided process.
- 3. *Monitor* execution of change (as action on a selected change/decision solution).
 - All actions upon change decisions must be observed to *have occurred*.
- 4. Evaluate all occurrences to synthesize a new alignment solution as an iteration of the objective and the change/decision process.

Documenting the change elements includes:

- 1. What is the requested/required change issue articulation
- 2. What are the reasons for the requested/required change issue articulation
- 3. 3. What are the probabilistic implications for the change at a given level:
 - A. Task implications
 - B. Resource implications
 - C. Schedule implications

7.1 Control protocols

Controls protocols constructed within a common environment must be informed by methods of objectivity (e.g., visualization and systems science - methods capable of producing common understanding and common action). In other words, the [decision] control protocols must be constructed objectively in an open social environment from common information sources (a unified information system), while the information actively processed through the control protocol is also sourced from some commonly objective method (e.g., a logic sensor).

7.1.1 Controller

In traditional control, the controller is viewed as a machine (system) that is able to realize the abstraction (resolution) of a discrete-time difference equation in an ideal (optimal) way. The fact that computations take time, along with the fact that the amount of computations that can be performed in parallel is limited by the number of processors available, is relevant. A controller follows (executes) control protocols.

In the context of control as an applied usability function, a controller is the system designed and activated to express a control protocol (a program) in the presence of new information which it will and/or is processing, the pre-structuring decision so that the output is as expected [in a design specification].

A controller performs three main operations:

- Sampling During sampling, the output of the process under control (i.e., the input to the controller) is obtained using.
- Computation During computation, the output of the controller (i.e., the control signal) is calculated as a function of process output, the desired value, or the reference value for the process output and the internal state of the controller.
- Actuation During actuation, the control signal is effectuated.

A common practice is to split the controller code into two parts, Calculate Output and Update State, and to organize the controller code as follows: Sample, Calculate Output, Actuate, and Update State. The Calculate Output segment contains only the part of the control algorithm that depends on the current input signal.

7.2 Control system elements

A control system consists of a combined open- and closed -loop system structure.

An Open [-loop] system structure

An open system maintains [at least] the following elements:

- 1. Input
- 2. Process (activity)
- 3. Output

Take note here that open-loop systems are (generally) not sufficient for controllability.

7.3 A closed [-loop] system structure (feedback)

A.k.a., Closed-loop (feedback) control

A system with the ability to control its own outputs (and thus, orientation) also maintains a feedback signal and the logically ability to correct motion is closed by some signal-to-noise ratio-degree. A control system structure maintains the open system structural elements, as well as two additional elements:

- 1. **Feedback signal** the environment's response to an output as a 'measure' taken using a sensor. A response and/or occurrence, or lack thereof. Acquisition refers to the collection of feedback as data about change, or lack thereof. Once there is a signal, that can be used as feedback, the system can learn and reorient.
- Control[er/evaluator] a determination of error between a desired value and feedback value. The error determines the selected correction (or solution).
 - The controller contains the instructions which are programmed: the algorithm.
 - The execute function.

Decisioning necessitates information feedbackintegration loops, because [accurate] information is that which allows for accurate control.

A control system needs information about the expected behavior of the controlled the system; it requires knowledge, predictability and probability. The control system matches its response (Read: match control) to external information. In order to adjust its matching (Read: match control) in a dynamic environment, it must get "follow-up" (Read: feedback) information from the controlled system.

An 'activity' is a process of transforming [processed] objects (that are inputs) into other processed objects (that are outputs). The activity/process can coordinate its "running" by the use of a processor (Read: activity control; activity controller). The controlled system may be called physical and/or operating, because it operates in the physical. The controlled system transforms inputs into outputs.

NOTE: When applied to the habitat service production system, then inputs are raw materials and outputs are finished physical products, the operational habitat service system is the top-level system.

7.3.1.1 Testing, feedback, and automation

In general, decisioning service must have a model of the world that can be tested. Testing provides correlationally observed information as feedback used to adapt the next iteration (or movement) for an optimal trajectory, given a more known environment. Automation is made possible only because of the presence of such feedback -- if there is no true [closed-] loop, then there is no automation. In an automated system, sensors and instrumentation sends information back to the controller, closing a causal loop (iteration, cycle) in which the effects launched earlier registers, and an effect circles back to modify (or inform the modification of) the directing source producing a newly solved and selected direction (action, movement, etc). More generally, this is called a feedback control loop.

7.4 The change control process

The whole change control process is followed to ensure that changes to a system (service) are introduced in a way that meets requirements. Change control processes reduce the possibility that unnecessary or damaging changes will be introduced to a system (e.g., introducing faults or undoing decided changes), while ensuring the alignment of the system with that which is expected of the system by its user(s).

Change control is based three principles:

- Principle of observation: A change can be observed in an intervened environmental system. Perception (input) of feedback as a signal, from the environment. The fist stage of control. In order to change, there must be information about the environment.
- 2. **Principle of cognition:** A cognition system can self-select among a set of possible directions (alternative configurations of a . **Information processing** of an environment with previous memory of an environment can self-select among a possible set of directions (because of past experience and the formation of predictive models).
- 3. **Principle of navigation:** A change can result in the observation of more alignment or less alignment with an environmental direction. **Action (output)** on misalignment (error) can correct orientation in an environment to align more greatly with an environmental direction. This is the third state of control.

In other words, coordination functions include:

- Observability ability to sense a system change.
- Plannability ability to pre-decide intentional change to a system.
- Controllability ability to intentionally change a system.

These three principles allow for the construction of a process that can control change toward more or less fulfilling states of the world.

The axiomatic/basic coordination-control (controllability)

model is:

- 1. Signal
- 2. Analysis [of signal]
- 3. Correction [of signaled system]

[Project] Control is a [project] coordination function intended to achieve defined objectives within a predetermined process, involving:

- Setting standards (setting direction)
- Observing action (monitor execution)
- Measuring performance of action (actual vs. standard, expected as a gap, evaluate execution)
- Taking corrections (to align more greatly with standard design, adjust direction by setting new standards)

Another basic control loop model is the OODA[E] control loop cycle, consisting of the phases of:

- Observation (new information set)
- **Orientation** (integrate into whole information set)
- **Direction** (re-run decisional processes)
- Action (execute decision solution selection)
- **Evaluation** (evaluate solution selection result/ impact, as observation and re-orientation)

A general information change control process is:

- 1. Identification of occurrence of change (data).
- 2. **Documented record** of occurrence of change (data).
- 3. **Evaluation** of occurrence of change (data).
- 4. **Determination** of occurrence of next change ("data-driven" decision).
- 5. Change of state.

A simplified control (targeting, benchmarking) process is composed simply of the following four phases:

- 1. **Planning:** identifying the process or function to be required and benchmarked (valued).
- 2. **Analysis:** collection of data and analysis of performance needs and gaps.
- 3. Action:
 - If the system already exist, the only action is measurement.
 - If the system is being developed, then the two actions are: development and measurement.
- Review: evaluation of benefits, monitoring of improvements of the whole process, restart process.

All control happens within a decision space, within which information flows toward a resolution to that space. An issue is the instantiation of a new decision

space. Therein, information moves through the following [control] phases (note these all control phases, and the process is called the control process because its purpose is the controlled resolution of the space...so that alignment is possible):

- Control flow of issue
- Record *flow of* issue
- Assess flow of issue
- Propose resolution to issue
- Action on issue
- Observe resolution of issue
- Review of issue

Because change control is goal-oriented, it requires the following informational systems goal-construction processes:

- Awareness (of information) construct awareness
- Desire (for information) construct desire
- Knowledge (of information) construct knowledge
- Action (upon information) construct action
- Cycle (of information system) construct cycle

From an imperative for change view, the basic changecontrol process could be viewed as:

- 1. **A need emerges:** A need for change emerges or is created, and someone, the change initiator, sees this need and articulates it.
- 2. **Decision preparation:** In this phase the change initiator does preparations with the goals of identifying, analyzing, and modeling alternatives, and scheduling resources.
- 3. **Decision point:** Go/no-go execution by committal of resources and action in time.
- 4. **Evaluation:** The result of the decision (go/no-go execution) is compared against the need through validation.
- 5. **Verification:** The acceptance of the design of a solution comes through simulation, testing, and formal verification methods.

System (to be changed) view (of the change control process)

From a systems change/development view,, the change control process could be viewed to involve the following six phases:

- 1. **Define** (perceive) source association.
- 2. Plan (objectives scope) organize intention.
- 3. Analyze (assess) identify patterns.
- 4. **Synthesize** (conceive and design) form a specification.
- Build (prototype > construct pre-assembly > deliver to > assemble and/or utilize) - take action on (

execution of) actionable specified information.

6. **Review** (evaluate, test and adapt) - determine the impact (effect) of the result.

NOTE: Herein, the purpose of memory is so that the navigator doesn't repeat mistakes.

More completely, a system's change control process involves:

1. Defining (identifying need for system change)

- Design space creation through definition of required change (a need, objective, goal, intention, inquiry, etc.).
- 2. Planning (coordinating change, system development process)
 - A. **Associating** (with a strategic objective) requirements and surveying, as well as performance indicators.
 - B. **Analyzing** problem contextualization and situational integration in order to define system elements and patterns.
 - · Analytics measurements are compared against a baseline or benchmark to establish whether something has changed. A comparison identifies change between now, and how it was before the [control] intervention. This means, the status and state must be known before the intervention (called a baseline). A baseline requires that all indicator measurements be conducted before any change is made (before implementation), which are logged for comparison. These numbers can also be used to determine what level of change is required to have the necessary impact (i.e., to inform the targets). Note here that there must be a problem or question to continue to the design phase.
 - C. Designing (system design progress, developing)
 - Targets (benchmarks, baselines, "metrics") measure performance against specific target values. Target values may be determined from (a) a previous measures, (b) a predictive model, (c) or set value "goal". In this context, benchmarks and baselines are generally prior measures, used as controls against which new measures are compared. Take note that targets are defined in planning and control, and can take different forms (e.g., achievement, reduction, absolute, zero). A target is a value assigned to a performance indicator. In navigation, the target is the direction.
 - 2. Ranges targets have ranges of performance

(e.g., above, on, or below target).

- 3. Encodings (associate indicators with target values) ranges are encoded in systems, enabling the visual display (visualization) of performance (e.g., green, yellow, red). Encodings can be based on percentages or more complex rules.
- 4. Time frames (schedules) targets are assigned time frames by which they must be accomplished. A time frame is often divided into smaller intervals to provide signals (mileposts) of performance along the way.
- 3. Acting (implementing, deploying, creation, developed)
 - Activities and Tasks precise activity, program, task, or process executed with a set of resources and efforts. Note that 'action' is a recursive concept: everything that happens by intention is, technically, an 'action'; every phase of creating together involves 'actions'; and at the same time, it is an 'action' that encodes a newly designed and determined state of an engineered system into the environment (generally, as part of the habitat service system).
 - Integration and Testing test units/modules and integrate all units and test whole integration.
 - Maintaining (sustain change) sustain the operation of the desired solution (state, status, or dynamic).

4. Measuring

• Measure - determine the new value(s) through the measurement process.

5. Reviewing

• Evaluative analytics (modeling and statistics) measurements are compared against a baseline or benchmark to establish whether something has changed, and if necessary, whether that change is in alignment or out of alignment with a given direction. A correction may be required if the solution does not meet [the requirements set for] the problem's resolution.

*Note, this can all occur in parallel, or series, or any combination thereof. In societal systems engineering, the general social-level project case is that these phases are expected to occur in parallel (even if that may not be the case at any given moment in time.

7.5 Change control [reliability] factors

The common factors that influence the reliability of control in a project are:

• Project Definition (Scope)

- Project Execution Planning
- Project Control Planning (Resources and Timing)
- Progress Measurement
- Schedule Development and Tracking
- Costs and Cost Budgeting
- Change Coordination
- Risk Coordination
- Progress Audits
- Metric Trend Analysis
- Schedule Forecasting
- Resource Forecasting
- Communication Efficacy
- Teamwork Optimization
- Accountability
- Project Control Audits

7.6 Control alignment (measured corrections)

The primary, axiomatic conceptions necessary for control[ling] alignment in a dynamic/emergent environment include:

7.6.1 Indicator

The direction of meaning assumed by a measured value is called an **indicator**, and the selected expected takes the name 'baseline', 'target', or 'metric'.

7.6.2 Baseline

The baseline is the reference to compare with actual (current) values, and by comparison, obtain an understanding of error between that which is actual, and that which is expected.

Generally, these concepts carry the meaning of a specified level of desired output. In that sense, a **baseline** (a.k.a., benchmark, target, deadline, etc.) is the value of an indicator expected to be achieved at a specified point in time. Therein, a deadline is a target in time, also represented by a value. The purpose of baseline data:

- To provide a description of the status and trends of environmental factors against which predicted changes can be compared.
- To provide a way of measuring actual change by monitoring once a project has been initiated.

7.6.3 Index

An **index** is a set of related indicators that intend to provide a means for meaningful and systematic comparisons of performance across programmes that are similar in content and/or have the same goals and objectives.

7.6.4 Standard

A **standard** is a set of related indicators, benchmarks, or indices that provide socially meaningful information regarding performance. A standard is a formal document that may be used for formal comparison.

7.6.4.1 Criteria (checklist) for setting a target and/or standard

In the common real world, there is only one way of referencing (sourcing) a target and a standard:

- Societal scientific standards, set by the experience of scientific observation over time, and cognitive analysis. Therein, ranges of values are observed in the data over the duration of a time series, which are remembered and integrated into a comprehensively predictive societal model. Therein, scientific standards are developed through measured observations and the application of processing logic [models]. Among society, the observations themselves are (*must be*) objectively verifiable to anyone with the same capacities (e.g., sense organs and intelligence). Anyone should be able to:
 - Take the same measurement and get the same result,
 - And then, integrate those measurements into a commonly logical, predictive model, and get the same result.
 - Can anyone take "this" measurement and logic, and get the same result? If not, then something needs re-working.

8 [Decision] Control system design

The [engineering] design and development of a control system (i.e., control engineering) is not limited to any engineering discipline or systems type. Control systems engineering (or control engineering) is an engineering process that applies automatic control theory to design systems with predictably desired behaviors in control environments. Control systems engineering may be used to design systems where fed-back information is used to correct system alignment. Control systems engineering is the original informed gating process, where the controller is the gate, and it is informed by inputs and feedback. The controller compares the output with the desired output, computes for the error, and adjusts the inputs and/or the structure of the system itself.

A control system (also called a controller) coordinates ("manages") a system's operation so that the system's response approximates intentionally programmed ("commanded") behavior. A common example of a control system is the cruise control in an automobile: The cruise control manipulates the throttle setting so that the vehicle speed tracks the commanded speed provided by the driver.

Within the human body there are hierarchies of cooperative control systems functioning to fulfill the will of the expressing consciousness. Automated technology is the materialized expression of information passing through this process. For instance, the following is something that all of humanity has in common: the control system engineering of the behavior of a door handle in terms of equations for input (applied force), disturbances (watery palms), and output (door opens and closes) so that it is understood how the system can be controlled.

In years past, mechanical or electrical hardware components performed most control functions in technological systems. When hardware solutions were insufficient, continuous human participation in the control loop was necessary. In modern system designs, algorithms and embedded processors have taken over most control functions. A well-designed embedded controller can provide excellent system performance under widely varying operating conditions. To ensure a consistently high level of performance and robustness, an embedded control system must be carefully designed and thoroughly tested.

In control system engineering, the controller (option selector) needs enough data before a decision determination can be taken, otherwise no decision is taken. A societal system is a closed-loop control system where outputs are measured and compared against real fulfillment. Any given society, like any complex technology is a multi-variable control system.

NOTE: Control can only occur through a functional control unit, often called a controller.

A controller is a decisional/instructional logic

processing unit that executes the flow of information through a decisioning structure. In order to correct an observed error in direction, a controller (set of information processing rules) determines a selection among a set of probable options. In order to take the selection, there must be a source of reference for the resolution of the probable into a selection. The [algorithmic information] controller takes the tasks of project coordination in its decisioning and executing functions.

Within the Community's unified information system, the Decision System acts as the controller. It is a transparent decisioning process (a gating process) that adjusts the state of the habitat based on feedback.

The supra-process of control systems engineering involves descriptive and deterministic information sets:

- 1. A control systems engineering project must describe:
 - A. The *behavior* of a system.
 - B. The system in terms of *inputs*, *disturbances*, and *outputs*.
 - C. The *conceptual operation* of the system.
 - D. The *mathematical operation* of the system.
- 2. A control systems engineering project must determine:
 - A. The *behavior* of a system.
 - B. The *inputs* and *outputs*, and *plans* for *disturbances*.
 - C. The conceptual operation of the system
 - D. The *mathematical operation* of the system.

Every intentionally designed control system, including that of society itself, follows the same objective processes:

- 1. Goal setting (Direction)
- 2. Data collection & Problem definition (Discovery & Definition)
- 3. Synthesis (Design)
- 4. Production (Produce)
- 5. Feedback (Compare)

Control system engineering provides society the flexibility ("privilege") to guide and orient various human made processes, according to the situation and criteria that are visible to everyone. This is how the InterSystem Teams themselves operate. And strictly those process and situations, whose causes and effects are voluntarily known to us. We never control an undefined system.

Systems engineering initiates with:

- 1. Identification and definition.
- 2. Parameter assignment (of effects and results).
- 3. Measure parameters.
- 4. Mathematical modeling, including order of system linearity. That system is then visualized in either

time domain or in frequency domain as per the system allows the ease of mathematics.

- 5. Algorithms become tested against models.
- 6. Algorithmal optimization occurs.

A control system itself consists of three axiomatic concepts:

- 1. System an interconnection of elements and devices for a desired purpose.
- 2. Control System an interconnection of components forming a system configuration that will provide a desired response (or state).
- Process the device, or system "under" (or with) control. The input and output relationship (common to all systems) represents the cause-andeffect relationship of the process.

Control [system] engineering tools include, but are not limited to:

- 1. Control flow graph a statement and the flow of control. Uses statements, such as if, then, and else, to control the logic in the program.
- 2. Problem-solution tree (objective trees).
- 3. Logical framework analysis (DFID model).
- An outcomes chain shows the assumed causeand-effect relationships between immediate, intermediate, and ultimate outcomes/impacts.

The design of a control system has three principal problems:

- 1. Optimal control problem (minimize certain criteria)
- 2. Controllability problem (the state belongs to a certain target set)
- 3. Stabilization problem

A control problem is an information package with the following elements:

- A set of equations, known as 'state equations', which are known as the 'controlled system'; this is an input-output system. State equations involve:
 - A. Input function, called controls.
 - B. Output known as the state of the system, corresponding to the given input (control).
- 2. An observation of the output of the controlled system (partial information).
- 3. An objective to be achieved.

8.1 Testing orientation

A test is a subjection to conditions that show the real conception ("character") of the thing.

NOTE: At the unified societal level, testing is a

continuing operation to provide information throughout the complete evolution of the system.

The purposes of testing include:

- A test may be performed to see whether a certain configuration or item is feasible.
- A test may be used to determine which of several configurations is the optimum with respect to performance, reliability, cost, modes of behaviour under varying conditions, etc.
- A test maybe used to make more sensitive comparisons to further improve economy, maintenance, use of standard parts, and so on.
- A test may be used to demonstrate whether the item is adequate to meet the requirements of performance and reliability.
- A test can be used as thorough investigation of the latent capabilities of the item under severer or more diverse conditions than those immediately anticipated.

The quality objectives of testing are:

- Minimize the number of tests required.
- Define exactly what requires testing.

8.2 Decision space sub-composition

Decision objectives:

- What are the expected performances/states/results of this decision?
- Outputs that the system must match to input objectives.
- The objective is the "thing" (i.e., directional information, goal, or issue) the user puts into the common decision space once its code/protocols are "complete".

Decision constraints:

• Decision constraints are limits of/on the potentiality of the decision variable.

Decision variable (action variables):

- A process and/or output.
- A variable within a decision space.
- A variable for which a best (optimal) value is to be determined during the process of deciding.
- A quantity or quality that the decisioning system controls (i.e., the user or decision controller does the controlling).

8.3 Decision accountability via access control

An access control protocol ensures organizational (e.g., societal) requirements are described clearly and consistently. Access types (a.k.a., "rights" or "privileges") represent the pre-defined protocol decided (i.e. "authorized") behavior of a subject. Access types are the pre-defined categories of resource access.

The life-cycle of identity and access coordination ("management") is:

- 1. Configuration [of identity and access] phase
 - A. Registration create identity as an 'account'.
 - 1. Community access.
 - 2. InterSystem team access.
 - B. Provisioning
 - 1. Issue unique name (identifier).
 - 2. Logically associate the name with a real world attribute(s).
 - C. Authorization (a.k.a., Access control) the process where requests to access a particular resource are accepted or denied based on a preprogrammed algorithm (i.e., the execution rules that determine what information or physical system the user may access, ensuring the correct allocation of access after authentication is confirmed [as "successful"]. Access 'control' or 'authorization' is the decision to permit (0, "go", true) or deny (1, "no go", false) a subject access to system objects (network, data, application, service, etc.).
 - Allocate access by pre-determined decisioning protocol (i.e., grant access by the controller/ authority).

D. Termination

- 1. Authorization [of access] revocation removal of the ability to see the information.
- 2. Credentials deactivation
 - i. For example, removing "oneself" from accountability on an InterSystem team, or as the user [required to care-take] of a service [object]; or deactivation in the situational-incident case of a decision protocol violation.
 - ii. Clarification: If [protocol-controlled, authorized] access is revoked, the user can still log in by using the authentication credentials. On the other hand, if the credentials are revoked, the user is no longer able to log in, and cannot access any information. Even if the credentials have been revoked it is still possible that the user is authorized for access. The

reason for credential revocation can be, for example, that the credentials have been stolen by attackers. The user must then be provisioned with new credentials in order to authenticate and log in to the account.

- 3. Account deactivation
 - i. For example, death, role/team exit.
- 2. Operation [of identity and access] phase
 - A. Identification claim identity with unique name.
 - B. Authentication the process where a given identity claim is "proven" with credentials.
 - C. Access control (a.k.a., Authorization) assign access by allocating resources in the system.

Authentication and access control are symmetrical steps during the operation phase of identity and access coordination ("management"; identity and access management, IAM).

8.4 Rule-based systems

A.k.a., Conditional programming, software, Al.

Rule-based systems allow for specification of knowledge in design and implementation of knowledge based systems, and provide a universal programming paradigm for intelligent control, decision support, situation classification and operational knowledge encoding. What is simplistically envisioned is a uniform, tabular scheme of single-level rules that form a 'data'based system.

8.4.1 Rule-based systems and decision support

In its basic version a rule-based system (RBS) for control or decision support consists of a single-layer set of rules and a simple inference engine; it works by selecting and executing a single rule at a time, provided that the preconditions of the rule are satisfied in the current state.

8.5 Propositional logic

A.K.A., Sentential logic and statement logic.

Propositional logic is a simple logical system that is the basis for all others. Propositional logic is the logic of the ways of joining and/or modifying whole propositions (i.e., claims, statements, expressed as directional linguistic sentences) to form more complicated propositions, (statements or sentences), as well as the logical relationships and properties that are derived from their formation or lack of formation. Propositions are claims, such as, 'one plus one equals two' and 'one plus two equals two', that cannot be further de-composed, and that can be assigned a truth value of 'true' (valid statement) or 'false' (invalid statement). From these axiomatic propositions, complex formulas may be structured using "Boolean" operators. Boolean algebraic operations is the algebra of logic. Boolean operations concern variables to which discrete logic may be applied, such as, 'two plus two equals four' and 'Sun is farther from the Earth than Venus'. Logical systems formalize reasoning and construct programming languages that formalize computations at various levels of information abstraction.

In all cases of application, a designer must define the syntax and the semantics. The <u>syntax</u> defines what strings of symbols constitute formulas (programs, in the case of languages), while the <u>semantics</u> defines what formulas mean (what programs compute). Once the syntax and semantics of propositional logic have been defined, a designer can show how to construct semantic tableaux (a valuing, prioritizing decision matrix that has meaning to a user being designed for), which provide an efficient decision procedure for checking when a formula is true.

A formal mathematical proof is written out as a sequence of lines, each of which makes a mathematical statement that is always true. We will use capital letters P, Q, R,... to stand for the individual lines of a proof. The first line of a proof is an assumption. Each of the following lines is deduced, by application of some rule of logic, from one or more of the previous lines of the proof. The last line of the proof is often called its conclusion. The simplest rules of logic mention only the initial assumption and the final conclusion. These are separated by a conventional symbol (the "turnstile", +):

• P + Q

The meaning of this basic statement of logic is that there exists a valid proof which begins with a line stating P (input), and ends with a line stating Q (output). Each of the (process) lines in between follows from some previous line or lines by some [discoverable or designable] rule of logic. A rule of logic has a conditional form, with a horizontal bar separating a list of conditions from the conclusion:

- P ⊢ Q
- R ⊢ S

8.6 Decision support

A.k.a., Rule-based multi-criteria decision support using rough set approach.

Sets of condition (C) and decision (D) criteria are semantically correlated. Herein, the criterion (q) is part of the set condition (C) and decision (D).

8.6.1 Equality notation

• In mathematics, **equality** is a relationship between

quantities (or expressions) that have the same value (or representation); whereas, the negation of equality is, **inequality** (**not equal**), a relation that holds between two values when they are different.

- a = b a is <u>equal</u> to b.
- $a \neq b$ a is <u>not equal</u> (<u>inequal</u>) to b.
 - a < b a is less than (inequal by degree) to b.
 - a > b a is greater than (inequal by degree) to b.

8.6.1.1 Inequality notation

- \geq At least [as good as].
 - $a \ge b a$ is at least [as good as] b; a is equal to or greater than b; a is not less than b; a is possibly the same, or is possibly better than, b; a is as good as or better than b (a is as good as, <u>maybe</u> even better than, b);
 - Most if not all *a*, *b* most, if not all [people] prefer [choice/decision/possibility] *a* to *b* (wherein, for example, "most" may be 90%).
 - *a* is equal to *b*, but it is not under any circumstances greater than *b*.
- ≤ Not at least [as good as].
 - $a \le b a$ is not better than b; b is least [as good as] a; a is equal to or less than b; a is possibly worse than b; a is not better than b; a is as good as or worse than b (a is only as good as, but maybe worse than, b);
 - Fewest if not all a, b fewest, if not all [people] prefer [choice/decision/possibility] a to b (wherein, for example, "fewest" may be 10%).
 - *a* is equal to *b*, but under some circumstances less than *b*.

8.6.2 Decisioning inequality relation

- > preference of either strict or strong.
 - a≻b preference of either strict or strong for *a* over *b*.
 - **Definition of strict preference:** a≻b *if and* only *if* a≽b and *it is not true that* b≽a.
 - a≻b⇔a≽b&¬b≽a
- ≽_q At least as good as (weak preference relation, outranking).
 - in the context of criterion $q \in \{C \cup D\}$
- $x_q \succeq_q y_q x_q$ is at least as good as y_q on criterion q.
 - The first option, x, is at least as good as the second option, y, but the second option, y, is not at least as good as the first option, x (given a decision based upon at least one condition and a criteria for the result).

- "If" presence, context or given.
 - "If" hypothetical context.

8.7 Decision problem generates

The problem of what is a decision has been addressed in the Decision System Specification. The resolution of a decision space given time and material computational resources can be sub-divided [at a high-level] into:

- A **decision problem** is a computational problem that can be posed as a yes-no question of the input values (i.e., a problem with a yes or no answer).
- A **decision procedure** is a method for solving a decision problem, given in the form of an algorithm.
- A **computational problem** is a mathematical object representing a collection of questions that computers might be able to solve.

Therein, an analysis formulates a decision problem, requiring some computation to be performed by some algorithm (i.e., some computer to execute an algorithm) providing a result that is expected to be used in order to present an optimal selection relevant to the decisioning system's decision problem.

NOTE: These computational [decision] systems are sometimes known as decision support, decision assistance, and artificial intelligence.

To community, there are two decision system axiomatic principles (or, hypotheses):

- It is possible to establish a common framework under which any formal [community] decision can be formulated.
- Form an algorithmic point of view, any decision problem can be reduced to an optimization problem.

A decision problem is most readily visualized as a sequence of pattern aggregations along a hierarchy of values and likelihoods

8.8 Decision system conception

CLARIFICATION: There is computer logic and algorithmic thinking behind the formation of information and decision models.

The modelling process follows a relationship between the user (client) and the decision system (analyst), follows (conceptually) a sequence starting with the user providing ground information, which through learning protocols is transformed within primitives, and through modeling tools are transformed into the input to some decision method. A decision problem is resolved by

8.6.3 The semantics of "if"

finding an appropriate partitioning of the set *A*, relevant to the decision systems objectives (or, concerns, values, preferences, etc.).

- **Ground information** contains the problem description and the preference statements (Read: the value set, or the preference/opinion set). The user's perception of the problem.
- **Learning protocols** are procedures allowing to identify preference statements within the user's discourse and to translate them in ordering relations. To complete this action, the set on which such relationships applies needs to be established, conceptually represented as *A*, the problem statement and objective/preference relations upon
 - In part, learning protocols learn the needs (or preferences/opinions) of the user (client)
- **Primitives** are ordering relations learned using the protocols. The basic relation between primitives is symbolized as:
 - at least as good as, \geq
 - at least as good as (indexed) \geq_i
 - There are two parts to primitives:
 - Symmetric (the line "–") there is a symmetric (pattern) relationship between the starting information set, and the resulting information set.
 - Asymmetric (the curve ">") there is an asymmetric (differentiation) relationship between the start and the result.
 - Note: It could be said that a primitive forms a [reflexive] binary relation.
- **Modeling tools** are the analytical tools used in analysis in order to transform primitives in decision aiding models (e.g., the procedures allowing to construct a value function, a set of constraints, a probability distribution, etc.).
- **The input** is the information modelled in such a way that a decision process/method can be applied [to an new information set]. Thus, *A* will always be represent the set of alternatives (potential decisions) considered within either a model or by a method. Some part of the new information set *A* that represents the decision will need to be discovered (i.e., not readily available).

In the real world, in order to assess (analyze) the value (objective, preference, etc.) of each possible, predicted probability there are multiple possible information subsets that must be integrated. The user wants/needs to rank all possible [known/able] probabilities (i.e., results ranking).

A primitive direction for resolving the probable decision can be classified:

- "matters" for the user in the decision process? Set *A* can be described against a set of attributes *D*, each attribute being equipped with a scale from a set of scales *E*. Following measurement theory, such scales can be nominal, ordinal, ratio, or interval. However, this is just descriptive information about *A*. In order for value-based information sets to be integrated into the decision information set, there must be directional (or, preferential) statements. These are the norms, standards, or thresholds representing the value structure. For example, if there is the claim that *x* is needed or preferred, then it needs to be established what "need" or "preference" means and compare *x* to that "norm". Herein, two types of directional statements exist:
- **Comparative statements** where elements of *A* are compared among the, composed of one or more directional attributes, in order to express a direction (or, preference). For example: user *i* needs/prefers *x* to *y*; user *i* is fulfilled more by *x* to *y*; user *i* needs *x* more than *y*; user *i* values *x* more than *y*.
- **Absolute statements** where an element of A is directly assessed against some value system set (i.e., value structure), composed of one or more directional attributes. For example user *i* knows *x* as the direction; user *i* considers *x* as "worthy"; user *i* needs *x*; user *i* values *x*.
- Likelihoods (related to scenarios/contexts) in the real world, there is uncertainty to future conditions [related to survival and thriving, evolution and non-evolution], and therefore, there exists uncertainty in future conditions (which allow for direction to be taken).
 - Situational estimate statements the likelihood of an occurrence.
 - **Situational quantification statements** of uncertainty the probability of the occurrence.
 - Situational direction statements Under situation/context/scenario j, the user needs/ prefers x to y; or, under scenario j, x is required.

Note that values can be knowledge based or opinion-based (i.e., preferences without evidential reasoning).

8.8.1 Automated decision control

Automated decision control system involve, at least:

- **Computation** Computation is a type of information processing. Digital computation is the processing of discrete data through discrete states in accordance with finite instructional information.
- Instructions Instructions are executed by a

control unit (i.e., compute module; operating system OS; processor CPU, algorithmic logic unit ALU) while reading/writing data to memory.

• **Logic** - Instructions are executed by a logic program.

There are three primary types of resources required to solve computational problems:

- 1. Time
- 2. Space (materiality)
- 3. Energy

9 [Decision] Algorithmic control

A.k.a., The algorithmic method.

Simplistically, an algorithm is a description of how to carry out a task or process; and, there are algorithms for carrying out every kind of task/process. An algorithm is a set of rules (rule sets) applied over and over again to solve a problem. Then, to put a decision to test is to run a new issue through the algorithm and see if the problem remains. Algorithms could be viewed as an instructional circuitry (e.g., neural circuitry) that sends a signal (e.g., nerve impulse) to an actuator that controls a subsystem function (e.g., muscle relaxation, contraction). When there are actuators (i.e., actual outputs) it is the signals that get sent to the actuators that actually cause them to actuate (i.e., to move, vibrate, locomote, etc.). Traveling packets of information (e.g., nerve impulses, compression/rarefaction waves of some thing) move iterations of some thing, in the same pattern. To consciousness, algorithms encode abstractions with intention.

INSIGHT: An algorithm may be characterized as "fluid", because it is a structure for the flow of information.

Algorithms exist for nearly any motion of flow imaginable (Read: informational or material), from building a model plane to guiding an excavation machine. At the societal level, algorithms can inform the planning of society, and algorithms can carry out ongoing operational decisioning tasks for the continuation of society. Inputs and outputs are part of the specification (Read: communicated design) of a process, but are still independent of the processor that carries out the process. Every algorithm is a process.

INSIGHT: Patterns of traveling information in an information system can be modified to account for the whole direction of the information system. In other words, the habitat can be modified (as it is considered as a unified common information system) to account for the fulfillment of everyone and the environment.

Action become routines as algorithms, the result, the potential for automation. Repeated actions.

QUESTION: Ask not what a program does ask what a program does in a specific environment this is from ask not what a gene does ask what a gene does in a specific environment.

In information sciences, the following information sets concern directional information, and can be used to build (logically) a directional information system:

- 1. Directions (a set of completed determinations or decisions)
- 2. Instructions (sets of directions)

- 3. Algorithms (sets of instructions)
- 4. Control (purpose for directions)

Algorithms are:

- 1. Algorithms are deterministic.
- 2. Instructions are deterministic.
- 3. Instructions are the [deterministic] logic of a [deterministic] objective.
- 4. Instructions are the resolution logic for an objective.

An algorithm is:

- 1. Algorithm is a list of instructions that leads its user to a particular answer or output based on the information. An algorithm is a decision reel broken down to binary choices.
- 2. Math makes algorithms possible. If there is an algorithm, it can be solved mathematically.
- 3. Consciousness makes algorithms meaningful, and ultimately, useful.
- 4. Algorithms are a decision tree with one binary decision after another.
- 5. Algorithms are the foundation of computation. Computation plays an important role in what we can know and think.
- 6. Algorithmic systems how we know that.
- 7. Procedural language a set of instructions that can program a unified system of understanding.
- 8. Algorithm computational process.
- 9. Programmability
- 10. Associations positional notation, zero, decimal point
- 11. Algorithm any set of mathematical instructions for manipulating data or reasoning through a problem.
- 12. Algorithm is a method for solving a problem.
- 13. Efficiency and trade off of memory and accuracy.
- 14. An algorithm describes how to solve a problem.
- 15. Homeostasis the way a system responds to feedback to preserve its core patterns and identity (values).
- 16. Organisms are adaptive information systems.
- 17. Informational patterns are a central organizing logic for biological life. We inevitably come to depend on computation as a frame for exploring that premise.
- 18. Realities complex probabilistic process.
- 19. Feedback loop model for understanding how communication and control can be generalized across different system.
- 20. A unified understanding of the world.
- 21. Computers solve for *x* inquiry, given *y* information set, in a prescribed # of steps.
- 22. Effective procedure set of steps designed to

produce an answer in a predictable amount of time.

- 23. Function as a perpetual computational process
- 24. A process is something time-limited
- 25. In engineering a process is a method to solve a problem.
- 26. Processing carrying out instructions in a finite time.
- 27. An algorithm is a process that runs forever.

Algorithms embed directional information in code:

- 1. In the market-State, opinions are embedded in code.
- 2. In community, objective mutual values are embedded in code.

There are two types of algorithms operative at the societal-level:

- 1. Semantic-Numeric algorithms (numerical algorithms) algorithms based in computation (i.e., computational algorithms).
- 2. Semantic-Linguistic algorithms (linguistic algorithms) algorithms based in meaning to consciousness (i.e., mental algorithms)

The advantages to using the algorithmic method include, but are not limited to:

- 1. Objective
- 2. Repeatable
- 3. Efficient
- 4. Has modifiable and analyzable elements and formulas
- 5. May be objectively calibrated to previous experience

9.1 Algorithms versus protocols

Algorithms and protocols are similar. An algorithm, on the other hand, is a set of instructions that produces an output or a result. It can be a simple script, or a complicated program. A protocol is a set of rules that controls how a system operates. The rules establish the basic functioning of the different parts, how they interact with each other, and what conditions are necessary for a correct implementation. The different parts of a protocol are not sensitive to order or chronology - it doesn't matter which part is enacted first. Conversely, for an algorithm, the order of the instructions is important, and the algorithm specifies what that order is. A protocol doesn't tell the system how to produce a result. It doesn't have an objective other than a correct execution. A protocol doesn't produce an output. Conversely, an algorithm tells the system what to do in order to achieve the desired result. It may, or may not, know what the result is beforehand. (Acheson, 2016)

Simply,

- 1. A protocol is a set of rules that determines how the system functions.
- 2. An algorithm tells the system what to do.
- 3. The protocol is, and the algorithm does.

Take blockchains for example,

- 1. In blockchains, the protocol:
 - A. Tells the nodes how to interact with each other (without telling them to do so).
 - B. Determines how data gets routed from one node to the next (without telling the data to move).
 - C. Defines what the blocks have to look like.
 - D. Stipulates who decides which transactions are valid.
 - E. Establishes how consensus is determined (without dictating the procedure).
 - F. Identifies who maintains the ledger.
 - G. Delegates who determines how the rules of the system change.
 - H. Decides if identities are needed.
 - I. Determines who can create new coins (but not how).
 - J. Triggers procedures in case of error.
- 2. The algorithm, on the other hand:
 - A. Verifies signatures.
 - B. Confirms balances.
 - C. Decides if a block is valid.
 - D. Determines how miners validate a block.
 - E. Establishes the procedure for telling a block to move.
 - F. Establishes the procedure for creating new coins.
 - G. Tells the system how to determine consensus.

For clarification, the following terms are all related:

- Engineering principles this is what the system can do and will do [under these tested space-time conditions]. Engineering principles are essentially scientific principles in systematically technical practice.
- **Program** a set of formalized instructions.
- **Design protocols** this is what the designer/user wants the system to do as a requirement, and this is when (temporal) and where (spatial) we want it to do it. Notice the flexibility of the structure and the intentional directing of function [as the presentation of a design decision given what is technically possible and functionally desired].
- **Strategies** guide the design of protocols inside engineered systems; they structure the

determination of function at a conceptual level. Strategies represent the encoding of goals (i.e., directional ideas) into actions for decisioning. One of the most well-known books on competitive strategy is Sun-Tzu's "The Art of War". A strategy is the conceptual model that is to be encoded in to the boundary of a decision space in order to maintain a specific direction of alignment. <u>Strategy</u> focuses thinking, and <u>tactics</u> address actions.

- **Standards** can generally be defined as a prescribed set of rules, conditions or requirements concerning definition of terms and classification of components; specification of materials, performance or operation; definition of procedures; or measurement of quantity and quality in describing materials, products, systems or practices. Essentially, a standard is a [defined] "standard" way of describing something. It is "standard" in the sense that it is socially available for usage. Communities use 'technological standards' because they are the optimally integrated [given what is know] manner of operating voluntarily. Standards are compiled by volunteers.
- **Protocol** as a set of rules or conventions formulated to control the exchange of data between two entities desiring a connection. Protocols are required to define the exchange of control information between user device and the network [of user devices]. Basic elements of a protocol include data format and signal levels, control information coordination and error handling, and timing.

Notice the similarity between the definitions of the terms, "standards" and "protocols". A standard is just a set of more integrated protocols – protocols that have been structured into the habitat. The term protocol just refers to any protocol anywhere in the system, it might be in a standards document or it might not. In Internet development terminology, individual 'protocols' are tested and verified, and eventually integrated into the form of a persistent collection of commonly utilized protocols known as 'standards'.

9.2 Computational algorithms

NOTE: Some algorithms are better than others, even if they produce the same results, such as the number of steps it takes or how much memory is used.

Algorithms are the operative basis of computation. An algorithm is the specific steps (method|procedure|instruction) used to compute the computation. The technical name for a procedure with a finite number of steps is, 'algorithm' (a.k.a., formal - can

be described in a finite number of steps). Computational functions are the implementation of algorithms. To describe the algorithm the user must describe what is being accomplished by the code. The user visualizes the function as code, and provides an shareable-observable rational description (the user can logically described, a sufficiently observable for understanding, unified and not dichotomous reshapeable-environment). Operations (e.g., division, put 3 pebbles in 3 baskets) in a material environment are examples of an abstraction. The splitting of unification, as division, is commonly considered the first operation (i.e., in operation that takes the shape of individual-conscious conception and social-behavioral/job tasking). A field related to computational solid-condensed matter is computational statistical mechanics, which deals with the simulation of models and theories using numerical operations as mathematics. Computation is a determinable set of programmable "digits" composed of either bi-nary (2; 0 or 1) or tri-nary (3; 0 or 1, or, both-or-probability). For instance, in binary-transistor computing there are two states, "on" or "off". "Analogue" is said to have three states, the true-and-real state of "on" and "off", and the addition of a probability (or, variability) between "on" and "off", at some calibrated degree of accuracy in conceptual-numerical alignment. Computational solid state physics (bio-physics) is the highest level of understanding scientifically knowable about how to intentionally control matter by its re-programming.

Computational solid state physics uses "density function theory" to calculate the properties of solids in a bi-nary (digital) or tri-nary (quantum) environment/ physical-locale. Mechanical systems can be binary ("on" or "off") or trinary ("on" or "off" or "variable between", variability). Quantum systems can be trinary ("present", "not present", "probably between", probability). Here, entanglement means that two separate geometric shapes form a unified relationship, known as a "loop" (or "connection", "link", "relationship", "rope", etc.). Information systems can be trinary ("awareness", "nonawareness", "certainly between"; "certainly" means to have the ability to objectively-observe, and thus, consciously obtain usable information via certainty of the condition of presence, or not presence). Consciousness has awareness of shapes in an environment. Consciousness to remain in-existence in this environment of shape with its present boundary requires specific internal boundary organizations of shape and external (socioeconomic) boundary organizations of shape (Read: the total environmental conditions as states and resources). Conditional operators operate only on Boolean values (a 'Boolean' is a type of variable that represents one of two possible values, either "true" or "false". Therein, a variable is an identifier to a location in the computer's memory that stores a [meaningful] value. Computational object 'types', such as String, Integer, Boolean, floatingpoints (etc.), classify a variable enabling it access to, or to be accessed by, various methods reserved strictly for that particular type. A variable of type 'Boolean' consists of one of two values - usually 1 and 0 - used to represent true and false (0 generally is equivalent to false; and anything not zero is the equivalent to true). Boolean data simply refers to the logical structure of how the software language is interpreted to the machine transistor (or quantum) language.

Three common algorithm processes of benefit to a human user are:

- Data gathering (e.g., sensors, data models)
- Data manipulation (e.g., algorithmic/procedural editors; the user states the intention, the procedural algorithm produces the result, data tests for rationality; FormIT software, Dynamo Studio extends building information modeling with the data and logic environment of a graphical algorithm editor the system has the logic and the user hooks up the nodes to conform the systems result to an intention)
- Data optimization

An algorithm is an intentional method of information processing that will output a specifically expected result. The design of the algorithm by the user is the control. The user may even follow a control protocol to design the algorithm. Through new information, memory, and protocol, the user can measure the outcome of a controlled adjustment to alignment to an uncertain environment (in which the algorithm learns and operates).

Algorithmically enabled capabilities include:

 Integration of the cognitive fields, such as Decision Theory, Discrete Mathematics, Theoretical Computer, Science, Artificial Intelligence, Mechanism Design.

Algorithmic decision theory on the optimal algorithmic decision [information] system. Algorithmic decision theory, is otherwise known as computational complexity theory, and is most often applied as Decision Support to a User.

INSIGHT: Mathematicians almost never disagree on what is proved accurate (there are exceptions, but they are extremely few). Mathematicians may disagree on what is interesting.

The type of model applied, determines the type of control available. A unified societal system is likely to apply systems language and intuitive systems interfaces:

- Systems-set theory
- · Algorithmic-decision theory
- Computational-complexity theory
- Decision-support

All algorithmic programming involves the following core elements:

- 1. Variables are stores in many types of information
- 2. Conditional statements that can do different things based on the variables. This is the ability to test a variable against a value and act in one way if the condition is met by the variable or another way if not. These are also commonly called programmers if statements.
- 3. Functions are blocks of reusable code (instruction/ procedure) that perform a task.
- 4. Arrays store multiple variables (are groups/tables of variables).

An algorithm is a description of how a specific problem should be solved. The main problem in algorithmic design lies in the ability to rephrase a problem in terms of algorithms.

Algorithm design generally involves:

- 1. Comprises a set of instructions for completing a task.
- 2. Moves the problem from the modelling phase to the operation stage.
- 3. The set of instructions should be sequential, complete, accurate and have a clear end point.
- 4. If intended for a computer the algorithm must comprise a series of tasks written in a way that the computer is able to perform.

The process of designing a computational algorithm for a human problem involves:

- 1. Develop algorithms from user problem statements.
- 2. Express the solution to computer oriented problems using pseudocode.
- 3. Proficiently transform designs of problem solution into a standard programming language.
- 4. Use an integrated programming environment to write, compile, and execute programs.
- 5. Apply debugging and testing techniques to locate and resolve errors, and to determine the effectiveness of a program.
- 6. Apply standard/structured programming techniques including design approaches, use of functions/methods, use of documentation, and avoidance of excessive branching.
- 7. Proficiently use fundamental programming and linguistic elements including definitions and variable declarations, use of data types and simple data structures (arrays and objects), decision structures, loop structures, input and output files, and functions/methods.

"We live in world that is exquisitely dependent upon science and technology, and yet, most of the world does not understand science and technology." [This Carl Sagan quote can be reframed to state, "We increasingly live in a world that relies exquisitely on computing, and yet, most of the world does not understand computing."] - Carl Sagan

9.2.1 Complete algorithms

A complete algorithm meets the following criteria (being requirements of a 'good' algorithm):

- It must provide the correct output based upon the input.
- It must be composed of concrete-actionable steps.
- There can be NO ambiguity of the flow of the algorithm.
- The algorithm must have a finite number of steps that is determinable.
- The algorithm must terminate or complete.
- An algorithm implements a data structure.
- An algorithm includes a method of operation [to do work, to process information].

An algorithm is a repeatable set of instructions; it has a fixed set of instruction; it operates on a fixed set f inputs; and an algorithm has a fixed set of responses to a given event/occurrence (i.e., to what is going on). In mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state.

Determinability is the quality or state of being determinable or determinate.

If all the inputs are the same, all the processes are the same, then the system (the algorithm) becomes deterministic.

An algorithm can be [accurately] unbiased, whereas human individual decisioning is more likely to contain errors. The 'decisioning-error consistency' issue (i.e., the error between multiple individuals who are expected to determine the same solution, but cannot, because of human bias, can do so when a transparent algorithm is used.

9.2.1.1 Static/dynamic modeling and algorithmic modeling

From a users perspective, there are two different applications of modeling:

- Visual modeling (mostly for self-understanding and social-communicating).
- A static/dynamic model is a 1D, 2D, 3D, or 4D model

(i.e., static/dynamic dimensional models).

- Procedural modeling (mostly for creation/ generation).
- An [algorithmic]* model gives the user the capacity to play with slider to conform a design to an intention provided by an algorithmic [pattern recognition]** infrastructure.

*Because all modeling is algorithmic to begin with.

**Because all algorithms require some 'pattern recognition' (and also, 'pattern solution') operation.

With these tools, users can model multiple options for solutions most efficiently.

9.2.1.2 Computer assisted craftsmanship (CAC)

Augmented decision support efficiency in design. A system that provides design options. The computer can create all the design iterations and provide an explanation of each (e.g., automating the decision system's technical parallel solution inquiry). The computer analyzes the different design options and selects the optimal based upon a parallel socio-decisioning design process (a.k.a., the decision system's social parallel solution inquiry protocol). This structure allows for not only the application of efficiency in design, but documentation also.

9.2.1.3 Computer assisted fabrication and robotics.

Computer numerical control (CNC) converts the design produced by computer software into numbers for fabrication.

9.2.2 Algorithmic optimization

A.k.a., Algorithmic optimality, environmental algorithmic optimization.

It is common to classify algorithms into exact and approximate. Exact algorithms guarantee that no other schedule performs better than the one obtained with respect to the objective sought. The so-obtained solution is named optimum or optimal solution. Alternatively, approximate algorithms do not guarantee that the solution is optimal, although, in some cases, it is possible to estimate the maximum deviation from the optimum.

In the market, greater interoperability is the unification of working system standards. Just as there is physical waste, there is data waste that occurs when groups don't work together and information systems don't share improvements to the whole information set [without trade or currency]. Whenever a model has to be remodeled in another software, then there is data waste (data inefficiency increase) is to not have interoperability.

9.2.2.1 Optimality

In programming, "you" can move from point 'a' (e.g., the

goal) to point 'b' (e.g., the realization) in many different ways, but there is only one that is most efficient (given what is known; given the language). And, given, time (as a measurable dimension) always moves forward linearly. Here, effectiveness refers to how off (or, out of) alignment "you" are from point 'b' when "your" movement is complete (or, finished).

9.2.3 Types of information system algorithms

NOTE: At the societal level, algorithms are either opinion or values embedded in code, and they are deployed in specific ways by their owners of the algorithm (i.e., the owners of the capital).

There are a different types of algorithms that relate to society, including but not limited to:

9.2.3.1 Evolutionary algorithms

Evolutionary algorithms (EAs) permit flexible representation of decision variables and performance evaluation and are robust to difficult search environments, leading to their widespread uptake in the control community. Significant applications are discussed in parameter and structure optimisation for controller design and model identification, in addition to fault diagnosis, reliable systems, robustness analysis, and robot control. Algorithms are used to automate decisioning and control of engineered and dynamic systems.

9.2.3.2 Search algorithms

If the process of looking for a sequence of actions that reaches a goal is called 'search', then a 'search' algorithm takes input as a problem and returns a solution to the problem in the form of an action sequence (Russel, 2015).

The conceptual flow of a search algorithm is:

- 1. Formulate goal
- 2. Formulate problem (states and actions)
- 3. Find solution via algorithm

9.2.3.3 Algorithmic control systems and networks

Accurate control is enabled by an objective, algorithmic decisioning process. These control systems ensure that the requirements of the population are met within the network of habitat service system. Many of the habitat service system's control system are automated, and some are hybrid (human and machine automation).

In concern to an algorithmic decision system, to put a decision to test is to run a new issue through the algorithm and see if the problem remains.

9.3 Algorithmic computational ability: generative design

A.k.a., Procedural design, designing through

algorithms.

Generative design tools use computation and an algorithm (with a relationship to real world physics) to synthesize structure and relationship (i.e., geometry). The computer generates (i.e., "comes up with") solutions based on algorithmic input and new conditions. This algorithmic computational ability to synthesize new useful information facilitates the resolution of welldefined problems.

Generative design involves the input of goals (objectives) and constraints (limitations) forming specific parameters. Then, the computer explores the entire possible solution space for an optimal design. In the generative design process the computer provides all the options, the optimal solution, and all the data to support them, based on the rules the user generated, as an intention, into the information computing system. Herein, optimization occurs under the condition of remembering data to more completely inform (i.e., reinform) decisioning. For instance, a single building, or whole city can be optimized for light views, floor plans, or configurations. The computer can use requirements and pre-existing programmatic information to produce an optimal socio-spatial solution for the next iteration of a given sub-system of a material habitat service system.

In intuitive option engineering, a designer has access to an intuitive interface that facilitates a user in creating multiple design options and the selection of one, given a set of programming and a new intention for creation.

9.4 Algorithmic terminology

Common algorithmic terms include, but are not limited to:

- Computation automated calculation
- Automation A platform/system that doesn't need human interaction because hardware and/or software are capable of performing the task.
- A program composed of specific instructions that perform a specific task when executed.
- Cybernetics is the inclusion of algorithms into societal and material systems. What place do algorithms have in a materialized society. Control and community I action between humans and machines.
- For example, suppose x,y belongs to (0,1). x and y are variables and values between these variables regulates i.e. 0 and 1 are parameters. It can happen with any equation and basically with constraints.
- A **constant** is something like a "number". It doesn't change as variables change. For example 3 is a constant as is π .
- **Constraints** bound a parameter or variable with upper and lower limits.
- Mathematically, a **variable** is a symbol that has

multiple values, in other words the value of it varies depending on conditions.

- A **variable** is the way in which an attribute or quantity is represented.
- Variable constraints may be expressed as absolute numbers or functions of parameters or variable initial conditions.
- A **variable constraint** is included in the variable declarations section along with the initial conditions.
- A **parameter** (usually *t* or *u* signifying time) is similar to a variable in that the value also varies (but is normally defined as being within a certain area), however a parameter is a 'link' between two other variables.
- A **parameter** is normally a constant in an equation describing a model (a simulation used to reproduce behavior of a system).
- Mathematically, a **parameter** is a constant that defines a class of equations.
 - The equation for an ellipses: $(x/a)^2 + (y/b)^2 = 1$
 - a and b are constants.
 - When the entire class of ellipses are the topic, then the constants are also parameters, because even though they are constant for any particular ellipse, they can take any positive real values,
- All parameters are constants, but not all constants are parameters.
- A variable is an element of the domain or codomain of a relation. Remember that functions are just relations so the input and output of functions are variables. For example, if we talk about the function x->ax+3x, then xx is a variable and aa is a parameter -- and thus a constant. 33 is also a constant but it is not a parameter.
- Variables need not be the input or output of a function. They could define a relation, as in x2+y2=r2x2+y2=r2, the circle with given (parameter) radius r.
- A "known" variable is typically a value that the conditions of the problem dictate the variable must take. For example if we are discussing an object an free fall, then acceleration is a variable. But physics puts a constraint on the value that that variable may take -- acceleration in free fall is a=g≈9.8a=g≈9.8. Thus, though aa may be defined as the input of a function, it must take a "known" value. Thus it is a known variable.
- The Pythagorean theorem states that a2+b2=c2a2+b2=c2 for sides a,ba,b and hypotenuse cc of a right triangle. These are parameters -- thus they are also constants

9.5 Instruction

The instruction is the fundamental unit of work. Instructions are also data. Instructions are elemental operations that a central processing unit (CPU or cpu) executes, such as math commands. Every computer program ever made is composed of instructions. Instructions are unique bits of data that are decoded and executed by a [central] processing unit's operations. The entire list of instructions a CPU supports is called an instruction set. A CPU is an instruction processing machine [that fetches, decodes, and executes instructions]. A CPU pulls information from outside of itself, performs operations within its own internal environment, and then returns data back to an external environment.

Three basic types of instructions:

- 1. Computational instructions (ADD, AND, OR, NOR, ...) - data processing
- 2. Data movement instructions (LD, ST, ...) data storage and movement
- 3. Control instructions (JMP, BRnz, ...) data control

Informational elements required for processing data:

- 1. A memory unit contains the instructions and other data.
 - Store and retrieve data
 - Store and retrieve instructional data
 - Store and retrieve non-instructional data
- 2. A processing unit performs arithmetic and logical operations
- 3. A control unit interprets instructions:
 - Fetch the instruction from memory
 - Decode the instruction
 - Execute the instruction

Control mathematics:

- 1. Uncertainty principle (probability mathematics)
- 2. Differential equations (algebraic mathematics)
 - Fourier transforms a mathematical machine that treats signals with a given frequency

9.5.1 Instruction cycle

An instruction cycle is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions.

The instruction cycle is:

- 1. Fetch
- 2. Decode
- 3. Execute
- 4. Memory (optional)

9.5.1.1 Clock-rate (Instruction 'execution' rate; timebase)

5. Write back to memory

A.k.a., Clock speed, instruction execution rate, time-base.

Clockrate (clock speed) is the number of operations a system can do in time (generally, seconds). Clockrate is the rate at which the central processing unit (CPU) executes. It is the pulse that is generated to make sure everything in the process or synchronized, and with each pulse, instructions can be executed. In concern to computation itself, clock rate is the three phases of the cpu (fetch, decode, execute) loop continuously working through the instructions of the computer program loaded in memory. Synchronizing this looping machine is a clock. A clock is a repeating pulse used to synchronize a cpu's internal mechanics and its interface with external components. CPU clock rate is measured by the number of pulses per second (Hz). The clock speed is typically the speed that instructions can be executed. The throughput of a cpu (the amount of instructions that can be executed) determines how fast it is.

10 [Decision] Control logic

Control uses systems-based logic-state models to resolve a given issued decision spaces. In logic, a model is a type of interpretation (meaning) under which a particular statement is true (discrete logic).

10.1 Societal control logic

For societal design, the given true socially organizing statement is:

• A solution is possible to the problem of coordinating a societal organization for the optimized fulfillment (requirements) of each and every common, individual human, given what is known and available. More simply, it is true that humanity can design, operate, and update a societal model through to materialization that fulfills all human need requirements optimally for each and every individual, given a common environment. The condition (for a solution, change, to be selected as true, approved) is that it is possible to organize and coordinate a societal formation that fulfills everyone.

10.2 Logic Models (true decision packages)

Logic models are pre-packed sets of decisional information used to predict "truth", as an optimal selection among decision alternatives. A logic model presets the flow of information in order to reach a "true" result.

Logic models can be broadly defined into three categories (all of which are related in a unified logic system):

- **Conceptual-linguistic** there are linguistic models, which take many forms and allow for logicalconceptual information processing in order to resolve the design and selection of an optimal decision space and initiate the change to the configuration of the information environment.
 - **Standard** by specification modeling, organizing concepts that represent real-life behaviors and interactions, conditions and objects, into a usable and shareable standard.
- Mathematical-numerical There are mathematical models, which take many forms and allow for logical-mathematical information processing in order to resolve the design and selection of an optimal decision spaces and initiate the change to the configuration to the

environment. Logic models allow for the logically optimal resolution of a problem-solution space, to take a decision and initiate to the environment to make it most closely represent the decided design.

- **Formal** by mathematical modeling, organizing variables that represent real-life behaviors and interactions.
- Scientific-observational There are also scientific models, which apply conceptual abstraction to empirical observation to create a meaningful visual representation of the complex real world reality. The highest form of this visual representation is a simulation of the dynamics of the real world. Within a scientific model, information processes through mathematical models. Scientific models allow for the predicting of behaviors in the real world.
 - **Empirical** observable data, taken over time from the real world, showing specific patterns.

When humans observe nature, they are observing patterns of behavior. Scientific models (with logic models therein), are predictive models of nature's behavior. And, these prediction models allow for technology; they are the foundation of all human meaning associated with the creation of technology. These logic models are used to develop technology. They are capable of doing so, because when "you" know how nature behaves, "you" can intentionally rearrange the environment to allow for different (and more expanded) functioning, more easily. Therein, technology can be intentionally used to augment and expand on our own capabilities, and therein, likelihood of flourishing.

10.2.1 Logic model elements

In general, the basic elements of a logic model include:

- 1. **Situation** the current problem and all contextual information.
- 2. **Input** the resources to be used in processing and the output formation itself. For example, materials, energy, human effort, and active services supporting the organization's output resolution operations.
- 3. Activities (organization, sub-system, process, program, etc.) the tasks and actions to produce the output.
- 4. **Outputs** the output service and/or object itself composed of a subset of all the inputs (as a new environmental configuration). For example, services and their products provided by the activities, organization, and wastes.
- 5. **Outcomes** the effect of the new service and/or object on the environment and the environment's effect upon it. Here, outcomes are often subdivided temporally into short-, medium-, and long-term

outcomes.

- 6. **Mental model** the prior meanings and relationships.
- 7. **External factors** environmental issues that influence the situation, but over which the activities can have little control.

11 [Decision] Monitoring and evaluation

A.k.a., Coordinated indication/-ing, unified monitoring and evaluation, monitoring and evaluation to adjust orientation by given information and direction, adjustment recognition.

The purpose of monitoring progress toward a direction is to adjust the orientation given an uncertain environment.

- 1. There is indication.
- 2. Then, there is decision.
- 3. Then there is indication.
- 4. Then, there is evaluation.

The purpose of indication is to correct for misorientation in a dynamic environment, given a defined direction.

11.1 Indicators

NOTE: Most organizations have an organizational measurement plan and a set of measures.

The purpose of indicators is to provide factual arguments (decision packages) to inform decisioning (optimally, or even at all). Indicators evaluate the completion ("success") of an organization or a particular activity [in some way]. How to choose indicators always depends on the organizational level measuring [the occurrence and/or the performance]. Wherever there is a potential for observation, or a decision, there is an indicator. Indicators provide a common basis for decisioning. All indicators flow into decisioning as packages of potentially applicable data. Indicators inform decisioning and represent the ability to integrate that which is sensed (by observation) into a pre-existing information space; indicators are a conceptual interface between the environment where uncertainty exists, and the unifying information system itself. A given set of indicators is supposed to represent the best available knowledge on the state of a given system. With that knowledge, the indicator should have an optimal information space within which to measure the completion/achievement of a given objective (e.g., key performance indicator). In the context of decisioning, an indicator is a piece of information, or a set of information, that informs and resolves (Read: facilitates the optimal resolution of) the gated (0,1) inquiries necessary for the resolution of a decision, given requirements and knowledge (in simplified market language, "it helps the decision-maker assess and resolve the situation").

NOTE: Work products (deliverables) are primary, tangible indicators of performance.

Indicators are used for determining, monitoring, and

detecting the impact of a specified change on a given model.

NOTE: Every environmental interaction requires an 'indicator' to have useful meaning of the data.

An indicator is a piece of formalized information, which is produced (regularly), and which measures the realization (informational/materializational) of an action of the achievement of an objective. Therefore, an indicator is necessarily linked to an action variable (i.e., the concrete implementation of a decision) or an objective (according to the coordination model).

Action variables relate the options the decision space (decision controller) has within the limits of the imposed decisioning constraints. The decision system uses these action variables, which correspond to effective decisioning, to rectify the functioning of the production system to optimize the achievement of objectives.

There are several definitions of the term, 'indicator', that mostly differ according to the degree of restriction of what an indicator helps assess. Therein, an indicator is a direct or calculated measurement, which is expressed either quantitatively or quantifiable.

Indicators are, or become, the information pools into which new data from an uncertain environment is categorized. Effectively, an indicator is a measure that will become more coherently understood over time (as information moves through the life-cycle or "chain").

NOTE: Essentially, an indicator is the whole information system meaning behind a single non-project related, new indicator, as well as, the name for an indicator of the performance (efficiency and effectiveness) of a process under system control operating for the objective of the system. The indicator indicates to the designer that some sub-operation may, or may not, require changing.

Confusion sometimes comes with the term 'metrics'. In common parlance, the word 'metric' is applied to all the following:

- An observed data point, a measure, is called a metric or indicator (i.e., a singular point of data in the information space).
 - A metric or indicator is a specified goal-objectiveexpected value after a change, to which a newly measured value (or first metric) will be compared (i.e., the analyzed objective result of comparison, as a singular point of data in the information space).
 - Analyses produce statistics (sometimes, "metrics") as new data with probable meaning [to the larger information space].

An indicator is an information reference for coupling observations and analytical outputs in an [uncertain] environment with internal meaning (with measure and metric as possible sub-associations). An indicator allows (enables) for meaningfully measuring quantity and/or quality of some thing. Here, quantity typically relates to function and quality typically relates to the performance and/or condition of the environmental state of relationships among functional entities at a given point in time, which could be the next societal solution re-orientation. Naturally, indicators are used for orienting in space, time-memory. Therein, indicators [are developed to be] a common basis for communicating, understanding, analyzing, and deciding upon information to be integrated from an uncertain environment.

CLARIFICATION: Each category of service (industry) in an input-output table of active operations is an indicator, because it holds values (metrics) with the potential to indicate (a more optimal direction/change in a commonly uncertain environment).

When there is a project-level information space, there are project-level progress indicators to collect and process information concerning the uncertainty of the project's execution itself. Project indicators are one view into the project plan. The engineering information set, within the larger and more unified societal information set, has its own complex set of indicators.

Indicators are useful for indication of:

- Magnitude
- Urgency

Indicators can measure changes in (i.e., collect/categorize pools of data for):

- Quantity
- Quality
- Behavior
- Combination of any, or all.

11.2 The 'indicator'

The term "indicator" is derived from the Latin "indicāre", which means to announce, point out or indicate. An indicator is an information representation that provides anindication,a[ninformation]pointer,totheenvironment for common discussion (communications) and common integration (applied processing logic). Thus, an indicator is a conception, useful in its design to 'indicate', mark, or signal the condition (feedback or not, presence or not) of something (i.e., some environment), which is knowably associated with a category (of understanding) in memory in the information system. More technically, an indicator associates meaning (i.e., a meaningful relationship) with a parameter, or a value derived from parameters, which points to/provides information about/describes the state of a phenomenon/environment/area with a significance extending beyond that directly associated

with a parameter value. Because the conception of an 'indicator' is that of associating meaningful information within an information system, indicators are of significant use in science (experimentation), engineering (design and creation), and decisioning. Therein, indication allows for recognition of change, as well as accurately informing change. Indication is essential for design, change control, the monitoring of change, and the evaluation of change. Indicators allow for the planning and coordination of change in an environment. Indication is an evaluation process (tool) that serves to identify a problem (in navigation), quantify it, and measure the success of intervention (changed orientation). It is a measurable variable adopted for cooperative creation. Essentially, an indicator becomes a referential information aggregate in an information system that simplifies complex information to improve awareness, understanding, communication, and decisioning. Indicators give data directional value (to a user or system) by converting them into information that may be of navigational use.

An indicator points to positions of change relevant to a given system (of information). Therein, the environment indicates change, and the observer records the occurrence of change through the use of a categorized identifier, or indicator. Indicators are a principal [social] communication tool (construction) that categorize and summarize data on complex environments for application in decisioning. Therein, a metric is a specific instance (sub-element) of a scientific indicator, itself indicated by a 'measure'. Indicators are used in measurement, and change selection (i.e., "control"), because indication is the logical link between observation and recognition of [an] existence and change [therein]. Therein, indication signifies (to consciousness) known, or possible, causeeffect relationships. An indicator links to a [scientific] measure or [performance] evaluation.

In an information system, indicators are used to translate (interface) data into relevant information for common understanding and decisioning. The idea of an 'indicator' carries more meaning than just a 'variable', to which meaning is attached. An indicator is a variable, a data category, for a complex array of information about a real world situation. When accounted for in real time, indicators provide a simplified or synthesized view (i.e., consolidation of meaning) of existing conditions and trends, which inform the selection of an optimal decision (as a state change to the extant world). Essentially, indicators are a data communications and decisioning tool.

In an information system, an indicator is a variable associated with something existing, that may possibly change, and may be of significance, in the environment, or expected to be in the environment. The purpose of an indicator is exactly what its name suggests — to indicate an environmental behavior or other occurrence (past, present, future, for actual, expected).

An indicator is a measure for analysing (evaluating/ assessing) the effectiveness of how a specific activity is applied in a service (on a project) with an objective for function and performance.

NOTE: The useful application of an indicator is dependent upon the ability of the decisioning structure to use the indicated information in an effective manner.

In order to have use (i.e., practical application) in an information system that resolves a materialized environment, indicators must be objectively verifiable -- anyone [in the materialized environment] with the same capacities should be able to take the same measurement and get the same result. Wherein, those who use indicators in the system ask, Can anyone (given the same capabilities), take this measurement and get the same result and consolidated understanding? if not, then the indicator needs re-working.

Indication always links, explicitly or not, to a conceptual model of how the real world works (or is expected and/ or predicted to work); because, indication is a sub-activity of the larger information system (i.e., an extension of it). In network terminology, indication is the iterative, useful recognition of elements (nodes and relationships) in a network.

CLARIFICATION: Indicators may be used to perceptually establish (i.e., indicate) whether change has happened. A signal received from the environment is matched against an analysis of previous signals to determine whether change has occurred. In the case of engineering, the signal and/or change is compared against the expected signal and/or change to determine alignment with a set of requirements relating to a direction and/or state change.

The value of a measured indicator is quantitative to researchers, because the type of questions being answered through the usage of indicators requires counting. For example, It happened? (yes or no), and to what extent (or non-extent) did it happen (geometry, degree)? Because indication occurs in time, indicators are generally expressed in terms of numbers or percentages.

Challenge: Providing relevant information to decisioning within constraints of time and other factors, and in a form which all those involved can appreciate and accept is a societal design problem, requiring the selection of information that is directly relevant to the task at hand and necessitating translation of this information into a consistent, coherent form.

In practice, the value of an indicator is generally scaled relative to a "reference" state (i.e., a predicted value) assessed by each decision space for a hypothetical undisturbed state. Scaled indicator values can be aggregated or disaggregated over different axes representing spatio-temporal dimensions, or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states (e.g., optimal situations or minimum sustainable levels). Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations.

11.2.1 Indicator de-composition

An indicator may be broken down into the indicator descriptor itself, and its reason objective, its measure.

- Indicator description (descriptive feature; e.g., number of service distribution units per city population)
 - H. Objective (quality criteria; e.g., measures the accessibility of a given service system to the population)

The phased (flow) of information through a monitoring and analysis system includes the following elements:

- **Observations**, when organized systematically provide,
- **Data**, that contain basic information an can be ordered into
- **Statistics**, either quantified at cardinal/fixed interval scales or non-quantified in ordinal ranking, further processed into
- Indicators, designed to express
- **Structure or Change**, of phenomena (an uncertain environment) related to which are linked
- **Societal Issues and Objectives** (socio-technical, and scientific, concerns).

11.2.2 Indicators categorize statistics

Raw data (such as, hourly air pollution levels), is aggregated and summarized to provide statistics (such as, 24-hourly mean air "pollution" levels). The statistics (i.e., statistical outputs) might subsequently be analysed (i.e., processed to form a more complete output), to provide further statistics for the resolving of more detailed questions. The indicators categorize the statistics (logically order the information in a more unified system).

11.2.3 Indication provides newly ordered information to decisioning

In decisioning, a one-to-one relationship between any two areas of a decision-solution space, and its awareness (or acquisition of awareness), occurs through (by means of) 'indication'. Indication, in an informational system, occurs through [the presence of sensed] indicators.

The produced statistical data (in the information system) can be re-expressed in the form of indicators (for example, the number of days on which air quality incident threshold is exceeded). Or, the number of people gone without access to a sufficient hydration source in a 24 hour period.

11.2.4 Indication uses visual language

The use of visual language always involves:

- A vector is a number of indicators presented simultaneously to give a visualization of environmental conditions (a.k.a., an environmental profile).
- A scalar is a single number generated by aggregation from two or more values (a.k.a., an index).

11.2.5 Indicator timing

Any sort of continuous monitoring of an indicator is not leading or lagging, it is real-time. However, indicators can have time* references, wherein an indicator is leading or lagging in the context of a specific goal.:

- Continuous monitoring of indicator in real-time.
- **Time lagging indicators** are those that indicate what has already happened (past, history).
 - Performance indicators related to the valuable <u>outcomes</u> of the goal (or, in the context of the goal).
- **Time leading indicators** are those that indicate what may happen (future, probability trend).
 - Performance indicators related to the <u>success</u> <u>factors</u> of the goal (or, in the context of the goal).
 - Find *success factors* by doing cause-and-effect analysis, and through user articulation, feedback.

*Generally, in the measurement of project performance (MPP), there are two types of indicators, lagging indicators and leading indicators. A whole performance measurement system must have both leading and lagging indicators.

The same indicator can play a role of leading or lagging metric depending on the context.

Lagging indicators are indicators, after execution, that indicate that an adjustment, re-alignment, and/or correction is required [in decisioning and/or the social space], because the result is off user expectation and/ or requirement.

Before the portable carbon monoxide detector was invented, coal mine workers brought canaries into the coal mine *to have* an early warning indicator of the dangerous level of carbon monoxide gas. In the context of, "people have to leave coal mine", the death of a canary was a leading indicator. In permaculture, vineyards may plant roses next to the vines. Roses, being more susceptible to fungal disease, serve as an early warning signal (leading indicator) to start action upon a vine fungal prevention/landscape re-orientation plan for the vines. Today, continuous chemical monitoring is possible.

In the managerial sense, the performance of an

employee or sub-contractor, in the sense of the efforts, can be measured by the number of calls made, sales techniques used, leads quality, etc. Then, take note here that in community, there is not "management", in the conventional sense of one of the principles, "manage by motivating". In community, those who contribute are intrinsically motivated, performance evaluation as ones intrinsic drive, is otherwise a health-restorative issue.

"How can we measure the performance of that sales person?" This question is not a question that is asked in community; because, it is not computable in the decision system. People who contribute are assumed to contribute from a place of intrinsic (self-)motivation. The word, contribute, means self-motivated action to facilitate the fulfillment of everyone.

11.2.6 Characteristics of indicators

All indicators maintain the following characteristics:

• Meaningful, transparent, intuitive (easy to integrate) to communicate, valid, useful, and timely.

An efficient communications approach is to discuss with the team the requirements and other "success factors" that lead to the expected outcomes, both at the interteam level, and at the accountability level of each.

11.2.7 Identifying and defining indicators

Therein, the following principles required to define indicators:

- **Comparability** results that are comparable with respect to time, or from one process to another. Indicators must allow comparisons to be made and must reflect changes of environmental impacts.
- **Target orientation** –the selected indicators should pursue improvement goals that can be influenced by the organization. Indicators lead specifically to a goal, and may thus be said to be of value.
- Accuracy and precision These indicators must represent the environmental performance as accurately as possible and provide a precise (as possible) visualization of environmental problem areas as well as improvement potentials. How the process and value is represented to the organization.
- **Continuity (current baseline or benchmark)** the same data collection criteria in every period, comparable intervals, and measured in comparable units (to compare indicators). Historical data is required. A trace back of data is required.
- **Timeliness** the indicators should be determined in short enough intervals in order to have the opportunity to actively pursue and influence the target values, and to avoid providing outdated information. A level of frequent check

• **Clarity** - the indicators fit into a more unified model of understanding representation of the whole system.

NOTE: *Metrics should be automated, because manual counts by humans are often riddled with errors and get neglected.*

The real world is knowable, and it provides feedback through environmental indicators. An **environmental indicator** is a numerical value derived from actual previous measurements of an environmental system (e.g., pressure, state or ambient condition, exposure, health, or condition) over a specified geographic domain (volume) whose trends over time represent and bring awareness to underlying trends in the condition of that environment. Environmental indicators indicate what is (or is not) occurring in an environment.

There are two main types of environmental indicator:

- 1. Status indicators (indicator of current state/ condition): What is going on now?
 - Neutral interest in condition. <u>No orientation/</u> problem space.
 - Positive direction condition of interest. More positive means solutions ("good"). The current state/status could indicate a solution presence.
 - Negative direction condition of interest. Less positive (negative) means problems ("bad"). The current <u>state/status could indicate a problem</u> presence.
- 2. **Trend indicators (indicator of change over time):** has the status (condition/problem) changed (improved or gotten worse)?
 - For example: % change in forest cover; and, % change in GHG emissions.
 - The current <u>trend could indicate a problem or</u> solution.

NOTE: Because there is only one Earth system, for all types of phenomena, status and trend indicators apply.

11.2.8 Indicator effectiveness

To be effective, indicators must meet the following criteria:

- **Credible** valid and reliable data based on scientifically sound measurements.
- Salient of relevance to the optimal resolution of the decision space.
- **Comprehensive** easy to explain in terms of whole system.

To be useful, indicators must meet the following objectivity criteria:

- **Definability (precision):** Indicators must not be ambiguous. Otherwise, different interpretations of indicators by different people implies different results for each and a negation of indication.
- **Reliability:** Indicators must be reliable to yield the same results on repeated trials/ attempts when used to measure outcomes. If an indicator doesn't yield consistent results, then it is not a good indicator.
- Validity: Indicators must be valid, described by measuring true (or false) alignment of expectation, with a current measure.
- Measurability: Indicators must be measurable. If an indicator cannot be measured, then it should and must not be used as an indicator. To be measurable, an indicator needs a corresponding means of verification.
- **Practicality:** In categorical cases, although an indicator could be measured, it is impracticable to do so due to the social, resource, or process constraints.

To develop indicators, there must first be an interest in the environment formed through an issue, goal, or question.

If the indicator measures an increase or decrease, then a starting point is required, a "baseline". What is the measurement at the beginning in order to measure the increase, or decrease.

All indicators should contain the following information sets:

- Quality
- Quantity
- Time
- Location

11.2.8.1 Qualities of indicators

There are certain qualities that indicators must have (Note that only number 1 must be valid for the information indicate):

- 1. Principally, every indicator is part of a coherent and more unified system.
- 2. Be informative about the trends and changes of the state of the environment.
- 3. Be able to recognize and demonstrate the emergence of problems.
- 4. 4. Be valid in the methodological sense (i.e., a change in the indicator identifies a change real world ("phenomenon") measured.

11.3 An 'index' (an indication data-base)

An index aggregates multiple indicators (often, in a data-

base format). Think of the index of a book. Each index listing is an indicator to a point(s) in the book where the word, and accompanying topic, are present.

An indices is a piece of formalized information (a measurement) that is not directly linked to an objective or to an action variable will be called an index (and not an indicator_ an index is either a one-off or a regular measurement.

Therefore, an index is either:

- A subject for which an objective cannot be set (for example, an element of the environment that cannot be controlled, as in the availability of a resource...).
- A subject that has not yet been controlled.
- Can be used to help build the representation of a problem by assessing the existing situation.

An index becomes an indicator should the organization set an objective intended to change the situation, and thus, the value of the index. The measurement, therefore, becomes an indicator of the achievement of this objective.

11.3.1 A visual index

Indicators are typically visualized and arranged in indicator systems or indicator models.

11.4 A simplified information system definition of an 'indicator'

An indicator is a variable that associates a measure of one aspect (attribute) of a system (natural or human), or measure an expected outcome, with a larger information system. An indicator aggregates and associates evidence that a certain condition (or certain result) has, or has not, occurred from the perspective of the information system.

11.4.1 Indication in a directional information system

An indicator is a descriptor (generally associating linguistic and numerical attributes) that is representative of one or more internal system and/or external environmental conditions. As a descriptor, an indicator is a sign or signal that descriptively relays a complex message, potentially from numerous sources, in a simplified and useful manner. When the observer (intentional processing unit) has an expectation (a goal through to requirement) from the internal sub-systems, or the environment, then intentional evaluation can be applied to the question of whether current or future probable systems and/or environments align with the expectation. In other words, if there is a direction (within the information system) set by goals through requirements (etc.), then current measurements can be compared in alignment with those that correctly meet the goals (and complete the requirements):

- 1. The type of indicator that only associates is generally called a scientific. This type of indicator characterizes the current state (dynamic, etc.) of a system.
- 2. The type of indicator that only evaluates resolution from the user-perception is called a quality (or performance, progress, etc.) indicator. A performance indicator characterizes the current or expected status (state, dynamic, etc.) of a system (internal or external), and tracks or predicts significant change.
- 3. The type of indicator that only evaluates resolution from the engineer-perception is called a quality (or performance, progress, etc.) indicator.
- 4. The type of indicator that only evaluates risk is called a risk (or effectiveness) indicator. Note that, risk may exist in the acquisition of a scientific measurement, and hence, would have associated risk indicators. Risk may exist with any issue and any action. Continuous risk assessment (risk evaluation) can be accounted for, and projects, tasks, or actions that pose a risk that exceeds threshold can be put on hold or cancelled, which at risk project can be notified so corrective action can be taken.

DEFINITION: A project, in an information system, is a sub-directional sub-system (package, packet) of information (i.e., it is a sub-group of information that has its own direction and control within the larger system).

11.4.2 The directionally relevant indicators

A common indicator hierarchy:

- 1. Goal (vision and objective) Look for and define a question and/or goal.
- Success indicators (goal completion indicators)
 Look for and define for the critical success indicators for the goal. What are the requirements of the successful result?
- 3. Performance indicators Look for and define the performance and/or quality indicators of that success.
- 4. What are the metrics, the specific value of the goals.

11.5 Information system perception of [habitat] relevant indicators

The high-level indicator breakdown structure for [habitat] construction is:

identify the level of significance of an indicator from an organization (societal) perspective, the design specification or standard, patterned and predictable information.

- **Project layer** temporal coordination measured indicators between decided and acted information.
- Service layer physical measured indicators obtained through physical sensor and models.

In application, this high-level breakdown becomes an organization of:

- **Societal [Information system]** System transparency indicators.
- **People [contribution InterSystem team system]** - System understanding (reason, quantity, quality, feel) indicators; visual corroboration.

Materializing new habitat service iteration through a calculation system that uses the indicator types:

- **Basic indicator** calculation formula is either a direct variable from the monitoring system (application response time), or a combination of several monitoring variables (transactions per second, tps).
- **Composed indicators** use other indicator values as inputs, such as application energy performance (ratio of tps and power).
 - Power; time; memory; processing

11.5.1 A data definition of Indicator

An indicator is a variable, and a variable is a name for a location (carrying more meaning) in memory, and used to store a 'value'. The indicator associates (i.e., "tells you") what is going to be measured (i.e., what is of significance). The means of verification relates to how that which is significant will be measured. The indicator, which is an entity, has the attribute of a 'numerical value', representing an actual number, proportion, percentage (i.e., rate).

11.6 Societal conceptual indicator types

In application in a societal information system, there are several types of indicators.

11.6.1 Performance indicators

Performance (a.k.a., Results and Output) indicators measure the results of action (efficiency and effectiveness), providing a measure of the efficacy of an activity. In order to ensure optimal performance, indicators are needed in order to enable the decision controller (or decision space) to compare the results of action with the objectives for action.

• Concept layer - the concept layer aims to

Performance indicators are the results of the previous decision as evaluated against requirements. Performance indicators measure a/the performance, to understand better how performance is occurring (i.e. how well things are working, to introduce corrective actions, to validate results, to improve accountability, etc.).

A performance indicator is a specification (a plan, a decision solution) that allows for comparison between itself, the target, and some execution, the actual result.

Performance indicators include the following two additional characteristics:

- · Actionable (a measurement of ability)
- · Achievable (a measurement of ability)

In application, a performance measure is an aggregate [measure] that signifies (describes) the human-relevant condition of an ecosystem, or one of the ecosystems critical components/dynamics. Wherein, an indicator may reflect: biological, chemical, or other physical attributes of an ecological condition. Performance indicators are used to monitor the progress toward and objective.

A performance indicator is a 'strategic instrument' (tool capable of being integrated into the unified information space), which allows for some user (or group of users) to evaluate performance against targets (intended/ expected, demanded performance).

A performance indicator must have a target measure. There must be a target measure (or metric), because the organization is being moved [by change] toward an objective target.

In other words, an indicator has a metric that measures the direct results of decisions as to the overall direction of the organization. Technically, a performance indicator is not an 'objective' measure, since the measurement is not independent of the observer. In the contrary, the indicator is defined by its decisions ("author") in accordance to the type of action conducted and the goals pursued.

Herein, a performance measurement system is an information system that allows a user to track the execution and results of an objective (strategy) through the monitoring of performance indicators.

11.6.1.1 Performance indicator formatting

It is always necessary to define clearly each indicator with fundamental parameters.

- (Label, name) The symbolic identification of the indicator.
- (Optimal relationship articulated) The objectives (requirements) of the indicator.
- (Issue articulated) The problem drivers (issues) related to the indicator.

A performance indicator becomes an objectives [chain] combining associated decision variables.

A performance indicator is: the objectives [chain] and decision variables.

- 1. A reference model, which gives a structure of the HSS system.
- 2. A structured approach, leading step-by-step from an existing system state to a future one.
- 3. Various modeling formalisms to describe the components of the structured system (graphic formalisms, entity/relationship formalisms).

The habitat service system (a.k.a., production) is classified by discrete service processes. The global model is composed of the description of the physical, decision, and information systems.

Performance measures include:

- Output: Tangible and quantifiable results from efforts entirely within the project/activity, not involving interactions with individuals or organizations that are not project/activity members. Examples include planning workshops and conferences, staffing and equipment plans, publications, reports, draft standards or codes, software, algorithms, assimilated data.
- Outcome: Measurable results of projects/activities. Examples include new expertise, knowledge, or capabilities; adopted codes and standards; and practitioner acceptance.
- Impact: Substantial, positive changes enabled by, or due to, project/activity outputs and outcomes, including impacts on other agencies, industry, or society. Changes are associated with external entities, not internal to the project/activity.
 Examples include changes in societal behavior, changes in building codes and standards, etc.

11.6.2 A scientific indicator may be defined as

An aggregate as a measure, index of measures, or a model element, that signifies (characterizes) an ecosystem, or one of its components. A scientific indicators are used to monitor the ecological environment.

Not all indicators have to have targets; they could just be reporting patterns of change.

11.6.3 An environmental indicator may be defined as

An environmental indicator is a variable related to any aspect of the environment, supposed to respond to modification, and representative for a delimited area. It is a variable for which a value in the reference state can be estimated. The set of indicators should cover as homogeneously as possible all aspects of the environmental system, an any addition of a new indicator should result in the addition of information.

An environmental indicator might refer to the density, abundance or distribution of a population, a taxonomic, functional or genetic metric, a behavioural parameter, or any other natural parameter fitting the definition.

11.6.4 An engineering indicator is

An indicator is used for the visual detection of the completion of a particular behavior (and/or reaction). Engineering indicators are used to monitor the progressive development and operation of a system.

Engineering indicators support the effective decision control of habitat systems by providing visibility into the current, as well as, expected project performance and potential future states.

INSIGHT: The specification of functional requirements involves mathematical concepts (e.g., number, and operation) and their metrics and indicators that quantify and evaluate them.. The specification of non-functional requirements involves calculable concepts (e.g., quality, accessibility, productivity) and their metrics and indicators that quantify and evaluate them.

11.6.5 From an environmental coordinator perspective, an indicator is

An indicator is a characteristic or an entity that can be measured to estimate (predict) status and trends of the target environmental condition and/or resource, over time. Wherein, the numerical attribute of an indicator is a quantitative datum (value, level, etc.) that reflects (shows) the presence or amount, quantity, of a factor under observation by the system.

The conception of indication has three directability characteristics:

- Indicators indicate environmental nodes and relationships. These type of indicators are often referred to as environmental indicators, or scientific indicators. There is are no directional "value" weights applied to them. They are indicators of extant quantities, or not, objects, relationships, and dynamics. The directability here is the measurement process itself, for which there are three types:
 - A. Non-experimental research Only measure once and no information need to compare over time or group. Non-experimental research can express if some event/behavior took place, describe the details, and concurrent occurrence (is this occurrence associated with another

occurrence), but it cannot say that one thing caused another, there is no causality.

- B. Quasi-experimental research = group 1 and group 2, compare.
- C. Experimental research = group 1 (intervention) and group 2 (control), compare
- 2. Indicators indicate environmental significance (i.e., indicate something significant in the environment). Indicators represent data (of significance about the environment) whose meaning is consolidated and expressed at a higher level than the information upon which the data themselves are based. A factor (i.e., indicator) in the environment is carrying capacity. The directability here is the alignment, error and its correctability.
- 3. Indicators express a link between the environment and an intended outcome. These indicators are set by understanding prior data (as baselines, targets, benchmarks), and evaluated against incoming actual data to determine error and inform the control (i.e., correction) decision ... in order to maintain course (or the direction of human and ecological flourishing in the case of community). The indicators holds the "baseline" or "target" information on an issue of concern and presented in a form which informs an algorithmically pre-determined [common, objective] decision space. The directability here is the potential for alignment, error and its correctability.

11.6.5.1 Indicators as an objective expression

In objective expression, indicators are generally quantitative variables. They are expressed in single terms or brief descriptions, and in their container are generally the following associations:

- Of a quantity.
- Frequency of event.
- Result of a scoring (weighting and/or comparing) system.
- They can also be qualitative indices.

11.6.5.2 The indicator's metric view

An indicator is sub-classified as a metric, or a classified combination of metrics, that provides insight into (accounts for) the process, project, or product itself (i.e., accounts for the status or state of a system). Indicators (a type of inquiry identifier) define a trace from inquiry to that which is required to resolve the inquiry. Indicators are necessary for directional comparison and knowing whether something has occurred. If a metric reflects performance, it is a performance indicator. If a metric reflects risk, it is a risk indicator. Indicators are derived from questions, which are themselves derived from goals and objectives. Indicators are sub-composed of metrics. There are two types of change control indicator; one type of indicator that signals positive progress or quality, and another (risk) that signals delay or damage of progress or quality:

1. Environmental indicators (scientific and

resource indicators) - indicators that indicate the state, status, or health and/or availability of an environment. General environmental indicators include the measurement of: humans; other living beings; ecological resources/services; knowledge (scientific); and equipment (infrastructure, components). An indicator is a linguistic representation that points to some signalled existence in the real world. An environmental indicator is an attributive, measurable characteristic of the environmental state. Scientific indicator is a single piece of information which acts as a surrogate for an environmental variable to serve a particular use or interest". Environmental variables and Environmental indicators. Each environment variable is analysed separately and an indicator representing this particular environmental aspect is adopted to monitor a phenomenon in time, in space, or to estimate progress toward goals that should be reached. An environmental "indicator" is a scale indicating various degrees of environmental quality with regard to a particular environmental variable. A scientific indicator is a linguistic representation of something dynamically observed in the real world.

Performance/quality indicators (a.k.a., "good" indicators, quality indicators, a type metric; positive progress; results indicators) - indicates the quality or state of a system; it is the goal of an expected performance in/through time. An performance indicator is a linguistic representation of something specified through requirements as being in the real world. A performance metric is something that can be pointed to in an information system or a physical system that indicates a quantitative use (i.e., is something useful) based on one or more metrics, observations, or both. Performance indicators (and their metrics) represent a desired state or status. Performance indicators indicate that which is desired from a project, process, or product. Performance indicators are factors that a system needs to monitor (and benchmark). To engineers, performance indicators indicate functions and quality indicators indicate conditions required from a system. Generally, performance indicators are quantitative variables, and are defined with a threshold (or standard) value. An objective to be reached or maintained can, at times, be considered an indicator without establishing a threshold as long as requirements are defined precisely. Performance indicators evaluate how successful a service system is at meeting a service directive, objective or requirement. Performance indicators define and measure ("express") progress toward the successful completion of a process or project. Performance indicators define and measure performance (progress) relative to project or process, organizational goals (objectives). Once an organisation has analysed its mission and defined its goals, it needs to measure progress towards those goals. A performance indicator expresses the achievement of a desired level of results in an area relevant to the evaluated entities activity. What are the "success" factors of the project/process? Performance indicators ask if a project/process is on track, or its results were as expected, and if not on track or as expected, where not.

- A. What are past goals (past performance indicators)?
- B. What is current goal (current performance indicator)?
- C. What is future goal (future performance indicator?
- 3. Risk indicators (a.k.a., bad indicators potential negative progress) - indicators of the potential to express negative change progression. Note that 'risk' is a measure of the probability that a negative outcome will occur. Risk indicators indicate an undesired state or status, one that could harm, delay or damage. Risk indicators may provide an early warning of increased risk exposure (i.e., metrics to define and measure risks). By monitoring risk indicators, the problems expressed by them are possible to identify early, whereupon a proactive (planned) approach of mitigating risks before they escalate and have more serious consequences occurs. A risk indicator (a.k.a., effectiveness indicator) is a sign that an incident may occur, or is occurring.

Scientific performance indicators include:

- Performance indicators express positive (i.e., evolutions) and negative (i.e., problems) change of progression.
- Scientific indicators record intentional change.

Performance indicators components:

- The measure What is being measured.
- The target The expected value.
- The source System of input of the data.

• The frequency - how often to report.

In this case, a metric is essentially a target - a quantitative value for a goal or objective.

Performance indicator sub-types:

- 1. Count indicators How many, raw count.
- 2. **Progress indicators** What percent complete of objective.
- 3. **Change indicators** percent increase (possibly, compared to some prior date).

NOTE: Performance metrics data that indicate a problem area should not be considered "negative"; instead, these data are merely an indicator for [process] improvement, and an opportunity to be better.

A **metric** is something set up as an example against which others of the same type are compared. A metric (a sub-type of indicator) is a collection of the same type of data used to understand and change optimally over time across a number of unified dimensions or criteria. Specifically, a metric is a quantitative [statistics] measure of the degree of alignment to which a system, component, or process:

- · Possesses a given attribute, or
- · Describes a given event, or
- Predicts a given trend.

A metric is an aggregation of one or more measures to create a decision context (a.k.a., actionable information context, intelligence context). Actionable information is information that can be used in system control decisioning. Technically, every measure is a 'metric' when associated with contextual information. In this sense, metrics are the numerically counted values (measures) and their meanings (units and indicators). A metric is any contextualized measurement; it may refer to anything in the real world, which can be counted ("measured"). Any real world measure could be a metric. Metrics involve properties of the environment that can be measured directly.

A performance metric is a quantitative measure or derivation from two or more measures, which may not necessarily indicate something useful to particular observers. It is a measure of something that does not necessarily indicate something useful to particular observers.

Metrics for organizations include:

- **Time** hours or days elapsed from the time a request is made until evaluation is complete (t_{queue}).
- Effort person-hours to perform evaluation, (w_{eval}).
- Time hours or days elapsed from completion

of evaluation to assignment of change order to personnel, (t_{eval}).

- **Effort** person-hours required to make the change, (w_{change}).
- **Time** required hours or days to make the change, t_{change}.
- Errors uncovered during work to make change, (e_{change}).
- **Defects** uncovered after change is released to the customer base, (d_{change}).

A **measure** (a type of indicator) is the directly recorded observable value or performance. A measure is measurement of the value of a specific characteristic of a given entity (collected data). A measure is a quantitative indication of extent, amount, dimension, capacity, or size of some attribute of a product or process. A measure is, How much there is of some thing that "you" can quantify. Measures enter an information space as data -- a collection of facts and/or statistics for reference or analysis.

11.6.6 Applied societal control indicators

The common societal indicator types include:

- Resource indicator (RI)
- Environmental indicator (EI)
- Material [economic-access] indicator (MI)
- Human indicator (HI)
- Social indicator (SI)
 - · Indicators of well-being
 - Indicators of social cohesion Can't measure social cohesion directly, but...
 - · Indicators of human fulfillment
 - Indicators of human capability (capacity).

For example,

- Air condition is a metric, because it can be measured.
 - Air condition is a performance indicator for the habitat service system, because the organization is concerned with the impact upon and change of air condition.
 - Air pollution is a risk indicator for the habitat service system (health, safety, security, and environment).

11.6.7 Common societal indicators

Common societal indicators include, but are not limited to:

• Hours used vs. hours estimated vs. hours remaining through statistical calculation upon the log time data. Wherein, time is logged continuously and/or regularly (i.e., time tracking occurs).

- **Resource loading (per person)** through statistical calculations and algorithmic expressions determines if the system (person or otherwise) is carrying too many tasks (i.e., too much responsibility). Wherein, time is logged (i.e., time tracking occurs).
- **Earned value analysis** a method of measuring a project's progress at any given point in time, forecasting its completion date and final cost, and an analysis of variances in the schedule and resource requirements as the project progresses.
 - Potentially ineffective projects ("Projects at risk") - projects with the potential to harm the functioning of an optimized and adaptive, resilient and regenerative [community-type] societal system.
 - Effective projects ("Healthy projects") - projects with no potential to harm the functioning of an optimized and adaptive, resilient and regenerative [community-type] societal system.
 - Ineffective projects ("Trouble projects") projects possessing the potential to (*future*), or actually harming (*present*), the functioning of an <u>optimized and adaptive</u>, <u>resilient and</u> <u>regenerative</u> [community-type] societal system.
- Estimated priority ("Estimated value" and "Estimated profitability) through estimated, predicted consequences to human and ecological fulfillment caused from a[ny given] state change to the material (or otherwise conscious) environment. Wherein, value is traced through to need. In other words, orientation is traced to reliably direct toward a set direction[al heading], and a test is predictable, regularly.
- Average time tasks take to stay in each stage of the process.

11.6.8 Societal indicator types

There are three indicator types for any society:

- 1. **Systems-based indicators:** Indicators that relate more to the coordination and the information system; societal systems level. Indicators that relate more to the coordination of the societal system.
- 2. **2. Operations-based indicators:** Indicators that are relevant to the functioning of an organization's infrastructure (e.g. machinery, operations); potentially site-specific. Indicators that are relevant to the functioning of the societal system's structure.
- 3. **Behavior-based indicators:** Indicators that measure the behavior or actions of individuals or groups (in the workplace); people-to-people interactions related to work; useful at site-specific

level through society level. Indicators that measure behavior or actions of individuals or groups in InterSystem Team Service.

11.6.9 Living environmental indicators

A total living environment has three primary types of indicators:

- Environmental condition indicators (ecosystem service indicators).
- Indicators of societal coordination (societal/ social performance indicators, social cohesion and fulfillment indicators). These indicators are otherwise known as human development indicators. These indicators indicate the fulfillment of human needs, requirements, and capabilities. These indicators refer to the requirements of the unified societal system.
- Indicators of operational coordination (operational performance indicators). These indicators are otherwise known as human service indicators. These indicators indicate the quality of the service [by the operational habitat service system]. These indicators refer to the requirements of the materialized habitat service system. On an activity level, it allows the assessment and control of ongoing processes and environmental impacts.

To living beings, indicators and metrics conceive and resolve decisions. In the real world, there are two primary types of environmental [performance] metrics, each defining a set of correctly orienting metrics for a specific environment:

- For ecosystem services, defining the right metrics involves scientific investigation into the global ecosystem (i.e., the global habitat service system). Services at the planetary scale.
- For the human service system, defining the right metrics involves the engineered construction, and scientific investigation of, the societal habitat service system. Services designed by humans for humans.
- For the personal system, defining the right metrics involves the knowing of ones own capabilities through regular practice. The personal practice of capability as a service to oneself.

11.6.10 Ecosystem service indicators and metrics

Global environmental indicator's indicate the state/ status of the planetary [environmental] ecosystem, given what is known. These indicators include:

- What is necessary for all planetary life.
- What is necessary for human life.
- What is necessary for individual flourishing.

Humanity requires an ecology (ecosystem services to feasibly provide for itself on any major scale. Humans can purify air for themselves on an astronaut navigated spacecraft, but on earth, plants and other systems perform this operational service.

At a high-level, every ecosystem service is an environmental indicator. There are six major environmental indicators to determine the health of ecosystem (i.e., ecosystem sustainability):

- Biodiversity number and variety of organisms in an area.
 - Genetic diversity code for re-configuring provides resilience within a population.
 - Species diversity variety of living beings
 - Ecosystem biodiversity looking at planetary ecosystem.
- Extinction rate rate at which species disappear.
- Food production the amount of food an environment can produce.
- Temperature and CO2
- Population size relative to carrying capacity.
- Resource depletion rate.

11.6.11 Societal information system indicators

Information organizational indicators (i.e., in the real world and in an in an organizational systems context, there are two usages of indicators):

- Conceptual (indicates potential meaning, understanding) - structure a conceptual framework for understanding and working with information and problems therein. Conceptual indicators make use of scientific values (to form the semantic structure of science).
- Decisional (indicates potential decision, selection) - the use of indicators to select decision options, resolve decision spaces. Decisional indicators make use of a <u>target value</u> (to take decisions once new data, new information, has arrived and integration is complete).

In the real world, the following types of indicators (and metrics) exist:

11.6.11.1 The scientific type (conceptual, to derive meaning)

• Scientific indicators - A scientific indicator is a single piece of information (a single identifier, with description) that associate the [real world] environment with [an environmental] variable

to serve a particular inquiry (use or interest). Simply, a scientific indicator indicates what is being measured with a symbol and accompanying description of what is being indicated in the context of all knowledge (i.e., all science).

- For example, a direct scientific indicator is 'water' (H20).
- For example, an indirect scientific indicator is 'biodiversity'. All indirect scientific indicators are made up of direct scientific indicators. Indirect scientific indicators are abstract groupings of indicators conveying greater meaning and allow for intentional re-orientation within a useful information space (i.e., within society).
- **Scientific metrics** a measure(s) in the context of the whole scientific use interest.
- Scientific measures a specific, point measure composed of a value and unit.
 - • For example, a direct scientific metric is 2.3Liters of H20 in Pond X. Note that, in general, it is the 2.3 that is referred to as "the metric".
 - For example, an indirect scientific measurement is the biodiversity of square kilometer X.
 Biodiversity is made up of multiple indicators, including number of species types, number in each species type, and size of region.

11.6.11.2 The performance type (decisional, to derive selection)

- Accuracy performance indicators indicates how well the system is performing, in a given environment, as compared to ("against") the specified system (with a descriptive requirements specification).
 - For example, correct classification of data points could be one indicator
- Accuracy performance metrics measures how well the system is performing, in a given environment, as compared to ("against") the specified system (with a set of requirement's metrics).
 - For example, check to "see" how many of the data points from a data set were classified correctly. The name for this type of performance metric is "accuracy". A metric of 20 classified correctly, and 10 incorrectly, which is 2 away from the 22 threshold. The metric indicates, when evaluated by the standard threshold of 22, that performance is below standard.
- Decision/Selection performance indicators - indicates which of a group (set, {}) of options (choices, probabilities) is better (positive, +) or worse (negative, -).
- Decision/Selection performance metrics input

into decisioning to resolve the determination/ selection (to determine, select) one probability path over another.

For example, one classification algorithm 'A' classifies 80% of data points correctly, and another classification algorithm 'B' classifies 90% of data points correctly. An observer with a decision space realizes [through this 'experience'] that algorithm B is performing better than (in comparison to) the other algorithm. Note, that there are nuances (intricacies) here.

11.6.12 Project life-cycle phase indicators

In general, every phase of a project will have its own indicators:

- **Input level indicators** survey of resources. For example, survey of availability of a specific type of water pump and horses that drink water to live.
- **Process level indicators** operational performance. For example, water pump performance.
- **Output level indicators** amount of output. For example, gallons of water pumped 3; number of buckets to carry 10; feet of leading rope prepared 40; bridles on horse 1.
- **Outcome level indicators** amount of outcome. For example, liters of water made ready for horse to drink 1; number of horses ready and willing to drink 1.
- **Impact level indicators** the environmental affect. For example, # of horses independently accessing water; # of gallons of water consumed by horses in the city 5.

11.6.13 Project and process indicators

Process performance indicators:

• On time delivery, user satisfaction.

Project performance indicators:

• Percent of project complete, milestones against target.

11.6.14 Project[-scale] indicators

 Process indicators (Process indicators indicate the change process) – indicators that are used to measure project process or activities. For example, in a water project, this could be: the number of chlorine dispensers installed at water points, or the number of households that have received training on chlorination of water.

- A. # of farmers supplied with drought resistant crops.
- B. # of community awareness meetings conducted.
- C. No of wells/dams constructed.
- D. No of farmers enrolled in crop insurance.
- E. No of irrigation systems constructed.
- 2. **Outcome indicators** (Outcome indicators indicate the short-term change) – indicators that measure project outcomes. Outcomes are medium impacts of a project. For example, in a water project, this could be: the proportion of households using chlorinated drinking water, or the percentage of children suffering from diarrhoea.
 - A. Proportion of food secure households.
 - B. Percentage of malnourished children under 5.
- 3. **Impact indicators** (Impact indicators indicate the long-term impact of the change) indicators that measure the long-term impacts of a project, also known as project impact. For example, in a water project, this could be: the prevalence of under 5 mortality.
 - A. Employment rates of the region
 - B. Prevalence of under 5 mortality.

11.6.14.1 Project metrics

- Effort/time per task.
- Errors uncovered per review hour
- Scheduled vs actual milestone dates.
- Changes (number) and their characteristics
- Distribution of effort on engineering task

11.6.15 Project progress indicators

Project indicators can have several uses and be of several types:

- **Monitoring** (the state of health/progress of the project in a common-parallel decisioning space)
- **Observing** (discrepancies in the memory-state of the project and the resulting deliverable of planned executions)
- **Analysing** (possible solutions 1. to project-level discrepancies, and 2. to system-level discrepancies)
- **Synchronizing** (activities and tasks with availabilities)
- Anticipating (issues, risks and improvement opportunities)
- Decisioning (optimal solution selection)

Five project indicators (five indicators for the assessment method):

- 1. Entry criteria (scope of process)
- 2. Cost of process
- 3. Duration of process

- 4. Resource of process
- 5. Expected criteria (scope of process)

TERMINOLOGICAL CLARIFICATION: *The cost, duration and scope of a project are sometimes called the "project management triangle".*

NOTE: *Additional indicators may be specified depending on the project.*

Project indication has three types of possible indicator values:

- **Planned value (PV):** the pre-decided value (e.g., budget or planned value of work scheduled).
- Actual value (AV): the actual resulting value (of work completed, for example).
- **Earned value (EV):** the "earned value" of physical work completed. This is a market-only term; there is no concept of "profit" or "market-State economic growth" in community.

11.6.16 Service indicators

There are two true services:

- 1. One support[ing] service
- 2. For the whole societal system

Whereas, 'technology' is "true" support, 'life' and 'facility' are "true" 'services'. Of course, technology support is also a type of service. In an operating system (societal), imagine technology support as the combination of firmware and hardware, which functions through physically and logically discoverable processes. In computing, this combination forms a computing platform upon which more complex computing operations can be run. For society, this means that (given what is known) the 'life' and 'facility' systems the two second layer platforms upon which the base, technological is formed. New experimental discoveries occur the Facility System and maintain operational processes protocols as common to all systems.

Each HSS has a set of indicators:

- Medical indicators health of individuals
- Energy indicators energy usage of individuals

From a general point of view, the term 'requirement' could be considered, "a thing that is needed or wanted". Requirements define the services expected from the [habitat service] system (functional requirements), and the [societal organizational decision-inquiry] constraints that the system must follow (i.e., obey; more practically, protocols-algorithms). Constraints may otherwise be known as non-functional, or qualitative (i.e., qualifying, constraining) requirements. Constraints place restrictions on the system been developed, notably in

the fields of usability, reliability, mobility, regenerability.

Each time a system must be designed or re-engineered the design/re-engineering decisions are composed and resolved ("taken") on the basis of objectives flowing as user requirements. This is the basis for all outputs, results, performance, process performance, quality, and assessment and evaluation.

CLARIFICATION: *The process named "requirements engineering" is 'the systematic process of eliciting, understanding, analysing and documenting requirements'.*

11.6.17 Societal service performance indicators

There are several levels of societal indicator representing the different layers of society:

- 1. **Systems-based indicators (project-based metrics, Level 0 indicators)** - Indicators that relate to the planning, coordination, and change control of systems (i.e., systems indicators). Everything is a project.
 - A. Systems-based metrics (project-based metrics), may include: Assess the status of an ongoing project; Track potential risks; Uncover problem areas before "critical" flag; Adjust work flow or tasks.
- 2. Societal-based indicators (Level 1 indicators)

- measure a societal system model's level of alignment with society standards. Indicators that relate to the design and functioning of the unified, societal information system (i.e., societal systems indicators). Indicators of their presence and functioning (as, how?, and how well?). Information system impact.

- A. Social system indicators
- B. Decision system indicators
- C. Lifestyle system indicators
- D. Material system indicators
- 3. Operations-based indicators (Level 2 indicators) - measure the habitat systems inputs, activities, outputs ('activities' are sometimes classified here, under 'outputs'), and performance. There are indicators relevant to the functioning of an organizations infrastructure, the network of integrated and materialized habitat service systems (i.e., city operations indicators). Habitat Service System Operations impact. For example, amount of hazardous waste, total resource operating cost, # of activities to maintain service system.
 - A. Life Support System
 - B. Technical Support System
 - C. Facility Support System
- 4. Behavior-based indicators (Level 3 indicators) -

measure the potential impact that the materialized habitat system's presence and activities have on its users (the community), its workers (InterSystem Team members), and the surrounding environment. Indicators that measure the behavior or actions of individuals or groups of actors, humans and/or machine (i.e., the behavior of humans and their services as indicators). Behavior impact.

 Ecological Service-based indicators (Level 4 indicators) - measure the operation of the ecological service system. Ecological impact. These indicators measure how the network of city systems, and their production activities (i.e., the operating services) affect the larger picture of an ecologically sustainable society. For example, % renewable materials used at a lower or equal to renewal rate, community quality of life, worse health status compared to other companies in industry.

11.7 [Decision] Indication interface

A.*k*.*a*., Dashboard, passive system interface, monitoring interface tool, visual data analytics tool, indicator display, analytical indicator visualization

In general, a 'dashboard' is a visual monitoring and data analytics interface for operating in a specific type of information space.

CLARIFICATION: Interface refers to a point of interaction between components, and is applicable to the level of both hardware and software (via an input/output system with associated protocols).

A dashboard is a screen/page (a digital-computational information interface) that indicates, items and/or issues, in some sort of priority. A dashboard is an interface with two possible functions:

- 1. Viewing the information sub-system
- 2. Executing analytics on indication and measurement data, including upon indicators, metrics, measured values, and synthesized data itself.

INSIGHT: A dashboard is a visual interface into decisioning. All decisioning is procedural. A dashboard is a multi-functional display; the ability to execute analytics and synthesize the results of a transparent decision resolution inquiry.

A dashboard is simply a monitoring and analytics interface into an information space. Dashboards provide an overview of current, past, and/or future, system status, including data about the events collected and generated by the system. A dashboard is a useful, highly customizable monitoring feature that provides actionable data given an objective direction.

NOTE: Analytics tools other otherwise known as discovery tools, because they synthesize new information from the information given (Read: prior available), and this new information may be said to be, "discovered".

A dashboard is a visual display of the most important information needed [by a user] to achieve one or more objectives; consolidated and arranged on a single window. All dashboards have a visual layout (predesigned to meets user requirements).

There are different names for different information space views, and hence, different names for different dashboard configurations:

- Project dashboards
- Evaluation dashboards
- Assessment dashboards
- Change control dashboards

A dashboard is a single place for viewing all key indicators (and metrics). A window into the overall assessment (health, progress, etc.) of all projects (or other directional information packages). A dashboard (and its backend) visually tracks all indicators, and provides raw, graphed, and calculated data. The system is [in part] capable of visualizing due to a backend tracking and statistical calculation system to which all project variables and metrics are available. Note that a metric appearing on the Community-user's dashboard is not necessarily a performance indicator.

The dashboard shows indicators, which carry pools of values associated with scientific measures and/or diagnostic measures.

- 1. Dashboard reporting (monitoring) of this operation.
- 2. Dashboard analytics (calculation on measures, and on, results). The sub-operation where new data is calculated in the system from prior.

In an integrated system, diagnostics are consistently run on sub-systems to ensure that they are functioning appropriately and to catch errors or potential further problems. Diagnostics are an essential element of the 'maintenance' operational process.

11.8 [Decision] Indicator assessment

A.k.a., Indicator analysis.

Analysis upon indicators may involve evaluation, assessment, or calculation.

11.8.1 Assessment (an analysis of results)

Information monitoring and analytics capabilities and tool.

Assessment and evaluation mean the same thing in an information systems context. However, evaluation is more commonly used in some engineering contexts, and assessment in some scientific-environmental contexts. Regardless of context, the meaning the re-solution [tool], is the same:

- Requirements are assessed through evaluation of a system's alignment with those requirements (validation and verification).
- Or, some variation of the same meaning, such as, An object and/or event is evaluated (to produce a new value for the environment) through an evaluation process (by means of a method) that compares states [wherein accurate information has been collected].

In general, the term, 'evaluation' connotes a direction of meaning (as in, engineering). And, in general, the term, 'assessment' connotes a meaning of direction (as in scientific research). Verification and validation data is used to determine the results of an evaluation.

11.8.2 Environmental impact assessment

NOTE: *The topic of 'environmental impact assessment' is discussed in the decision system.*

An environmental impact assessment identifies the various impacts (to all impactable systems) should a change (intentional or not) occur.

As part of the societal design process there exists a sub-decision module that conducts continuous environmental impact assessments on information passing through the decision system. An assessment provides significant information on indication and measurement, and may be used to decide, select indicators and metrics.

There are [at least] five impactable systems in human society (i.e., the primary types of environmental impact are):

- Social
- Decision (economic)
- Lifestyle
- Material (local habitats)
- Ecological (global habitat)

Evaluation through structured information flow:

- 1. Objectives identify objectives that establish a need.
- 2. Goal define one or more goals required to achieve stated objective.
- 3. Question develop one or more questions that

when answered, help determine the extent to which the objective or goal is met.

- 4. Indicator identifying one or me pieces of information that are required to answer each question.
- 5. Metric Identify one or more metrics that will use selected indicators to answer the question.

11.8.3 Assessment of the project's progress

In order to assess the project, it is necessary to define the assessment indicators, including the Key Project Indicators (KPIs).

A project's controlled execution uses the current project indicators to validate the conclusion of an expected project process (situation) at a specified project end time. Hence, in this case, monitoring is the comparison of a measurement-based estimation (e.g., derived from measurement of effort) with the respective project goal (e.g., total effort/resource budget [bounded access] of the project).

11.8.4 Project indicator and assessment

Indicators are widely used to measure the success (alignment) of any type of project, service, or product. At the project level, performance indicators are defined to assess the progress of the project. Project indicators informs decisioning, rather than being an end in themselves.

While a given task is under way, the execution of indication is applied to monitor changes to each indicator. By comparing them with the objectives (expected value, if present), it will be possible to detect deviations (in scheduling, performance, quality, materials, etc.).

Project indicators can have several functions and be of several types:

- Monitoring (the state of "health" of the project).
- Observing (discrepancies).
- Analyzing (possible solutions)
- Synchronizing (activities)
- Anticipating (risks and opportunities)
- Facilitating (decision-making)
- Characterizing project progress in a summarized form

Shared indicators include:

- Resources (l_r)
- Entry criteria (l_{en})
- Expected criteria (I_{ex})
- Duration (I_d)
- Cost (l_c)

11.9 [Decision] Indicator evaluation

Evaluation refers to the evaluation of alternative designs [given a set of social inquiry criteria for integration into our active specification]. Evaluations are carried out for each domain (i.e., each service system; such as, life support, energy, tech support). The evaluation is based on indicators that verify requirements.

In order to acquire and calculate change data, a systems-level change [control] process of evaluation must exist. Evaluation provides necessarily useful information on change in time (e.g., increase or decrease, improvement or decline).

Because evaluation is a time affected process, if an outcome (project, engineering, etc.) mentions (requires) an increase, improvement, or decline, then the indicator will need to be compared/measured at least 2 different instances over time (i.e., two temporally separated measurements must be taken), for example:

- Pre-testing, or a baseline [value] for initial conditions.
 - Prior measure(s) (pre-tests) from which a baseline (target, metric) has been composed and/or selected.
- Post-testing, or a post [value] for the new conditions (Read: value for conditions after the change was executed).
 - Baseline to current [actual, post-test] comparison.

This process of comparing over time is quasi (almost/ sort of)-experimental research.

11.10 Real world evaluations

There are two types of evaluation relating to the two measurement dimensions (categories of information) in the real world (two outcomes, one is scientific and one is engineered quality assurance).

11.10.1 Scientific evaluation (a.k.a., direct measurement and analytics)

Scientific evaluation involves the scientific method, and the real word, to collect and analyze data (i.e., to do true 'research'). Scientific evaluation produces and uses scientific indicators and scientific metrics. Scientific metrics (true research, facts) are the results of scientific experimentation.

The best way to establish change is to look for the occurrence of the indicators [of change] in two groups. One group is the 'target' group, to which an intervention is applied, and the second group is the 'control' group to which no intervention (or uncontrolled influence) has occurred. This process of comparison is often called [true] experimental research.

11.10.1.1 Experimental evaluation

Experimental evaluation refers to monitoring and

evaluation of outcomes under conditions of direct controls over inputs and processes. Experimental evaluation refers to more scientific usability tests where hypotheses are being made and tested, and statistical results are collected and processed. (Preece, 1993:117) In experimental and quasi-experimental evaluation, the estimated impact of the intervention [in the experiment] is calculated as the difference in mean outcomes between the treatment group (those receiving the intervention) and the control or comparison group (those who don't). This method is also called randomized control trials (RCT).

11.10.2 Quality/progress evaluation (a.k.a., effectiveness evaluation, performance evaluation, program evaluation, process evaluation, environmental evaluation, diagnostic evaluation, and indirect measurement, and "monitoring")

Evaluation toward (i.e., progress, performance, quality, etc.) goals. Effectiveness evaluation involves statistical calculation on collected real world data, true analysis. Quality evaluation produces quality metrics and quality indicators. Quality metrics are the result of statistical calculations. Here, evaluation exists to determine progressive alignment with a direction by the method of 'measurement'. Evaluation (and monitoring) is the process of collecting and analyzing measurement data (measures) to inform decisioning and ensure process results align with input objectives. Quality/progress evaluation answers the questions: What indicates achievement of objectives by a project or process, in time? What does not indicate achievement of objectives by a project or process, in time? How effectively is a project or process achieving objectives (directives and/ or orientations) in time? Questions related to a process (i.e., "What is the process for ...?") lead to implementation metrics. Questions related to effectiveness (i.e., "How effective is ...?") lead to effectiveness metrics.

To measure quality, there are [at least] the quality indicators and metrics of:

- **Correctness** the degree to which a system (program) operates according to specification.
- **Maintainability** the degree to which a system (program) is amenable to change.
- **Integrity** the degree to which a program is impervious to outside attack.
 - **Threat** is the probability (which can be estimated or derived from empirical evidence) that an attack of a specific type will occur within a given time.
 - **Security** is the probability (which can be estimated or derived from empirical evidence) that the attack of a specific type will be repelled.

- Integrity can be defined as: sigma (1 (threat x (1 security)))
- **Usability** the degree to which a system (program) is easy to use.

From the engineering perspective, quality is conformance to requirements (i.e., "this is what is required, and this is what is designed"). Requirements are the foundation from which quality is measured, because requirements become designs, which become actualized. From the user's perspective, quality is conformance to a design specification (i.e., "this is what was designed, and this is what was built").

11.10.2.1 Project evaluation (Project performance)

NOTE: The measurement of project performance is an assessment of the magnitude of variation from the original scoped baseline (i.e., from the requirements).

A project evaluation systems necessitates following lifecycle of information elements:

- **Inputs** Those elements that are used in the project to implement it. Inputs are what is composed to make the outputs. Time, resources, humans, equipment.
- Activities What the people and machines do in order to achieve the goal(s) of the project.
- **Outputs** The first level of results associated with a project. What has the project achieved in the short term. **Outcome** – The second level of results associated with a project. Usually refers to medium term consequences of a project. Outcomes usually relate to the project goal or aim. **Impact** – the third level of project results, and is the long term consequences of a project.

A more complete description of project evaluation is a follows:

- Input evaluation (input indicators and metrics): At the initial phase of a project, indicators are important for the purpose of defining how the intervention (state change) will be measured. Through the use of indicators, engineers are able to pre-determine how effectiveness (of the engineered system) will be evaluated in a precise and clear manner. Input evaluation involves the evaluation of those elements (as indicators) that are used in the project to implement it: time (availability), resources (availability), humans (availability), equipment (availability).
- 2. Process evaluation (a.k.a., formative evaluation, monitoring [project] progress, activity evaluation; process indicators and metrics)

determines the value alignment of a project/ program while the project activities are forming (in progress). Process evaluation involves the evaluation of those actions that people and machines do (execute) to complete goals and objectives. Therein, monitoring is a continuous process of observing and assessing progress. Monitoring involves conceiving and perceiving change to the progress of a process, and that progress can be evaluated [at least] quantitatively. Technically, it is the routine collection of data that measures progress toward achieving objectives using record keeping and reporting. Here, evaluation is the process of measuring 'progress' toward a given direction (e.g., goal or objective). Progress is the status of the current state of a system in relation to prior and/or desired states. Here, an 'evaluation' is a measurement of 'progress', which provides information relevant to the resolution of access, scheduling, and effectiveness of a project.

These are primarily process indicators; they indicate the change process itself.

During project implementation (project coordination), indicators serve the purpose of assess project progress and highlighting areas for possible improvement. In this case, when the indicators are measured against project goals, coordinators are be able to measure progress towards goals and inform the need for corrective measures against potential errors through to catastrophes.

Formative evaluations generally start with a baseline survey, carried out before an actual project is implemented:

- Ask context questions about relationship and capacity.
- Ask implementation questions about the quality and quantity of activities.
- For each question, then develop 'process indicators' that are measures of whether planned activities are being carried out, and how they are carried out. Process indicators indicate a measure of whether planned activities are being carried out, and how well they are being carried out.

The purpose for formative evaluation (monitoring) is:

- To keep processes/projects/programs on track.
- To assess the extent to which a process is having

its desired impact.

- To maintain transparency.
- To understand and support decisioning.

CLARIFICATION: Formative evaluation generally refers to evaluation during a project, and summative means at the end of a phase of the project or the end of the project itself. A wellconducted and well-planned project will have several rounds of evaluation, at varying levels of fidelity.

3. Output evaluation (a.k.a., summative evaluation, end-term evaluation, ex-post evaluation, outcome evaluation, and impact evaluation; output indicators, outcome indicators and metrics) assesses the final or overall [value alignment of the] result (i.e., product, outcome, output, impact, and effect). Although the concept of quality can be measured throughout, from the user's perspective, the concept of quality primarily applies here. Poor quality outputs indicate to the user poor quality inputs and/or processes.

It is intended to be carried out immediately at project or sub-project conclusion. Summative evaluation is carried out to evaluate project outputs and immediate outcomes, with results of the evaluation compared to the results at baseline. This evaluation generally informs all involved on the project of its success and is important for documenting success and lessons learned, and progressing at the supra-project level. At the end of every test through to final (and beyond) release, there is a summative evaluation.

Summative evaluations are primarily outcome indicators; they indicate the change to the web of life after the initial results on the change have returned, and are collected over a medium to longer duration of time.

Outcome indicators indicate change over medium and long-term periods of time. Summative evaluation occurs over time, and reveals the depth of the actual change. It is intended to capture the total impacts of the project's effect (output and activities) over time. Although not always conducted, a summative evaluation is usually the final evaluation associated with a project. If the project is a service, then every modification becomes a summative sub-component evaluation of the continuous formative evaluation of the projected service. Impact indicators indicate the long-term impact of a change. During summative evaluation, indicators provide the basis for which evaluation will assess the project impact.

The purpose for summative evaluation (which may be continuous as a service, like monitoring is continuous) is:

- To keep processes/projects/programs on track.
- To assess the extent to which a process is having its desired impact.
- To maintain transparency.
- To understand and support decisioning.

11.10.2.2 Qualitative and quantitative evaluation

There are two types of project evaluation: qualitative and quantitative. A balanced approach combines both qualitative and quantitative evaluation.

Qualitative evaluation involves (the subject), for example:

- 1. Asking users about their expectation of what the system will do and how it will function
- 2. Observing users interacting with a system while "thinking aloud" and noting areas that cause user confusion or frustration
- 3. Probing for suggestions from users and asking users about their level of satisfaction with the system

Quantitative evaluation involves measuring the following (work performance), for example:

- 1. Task Completion Rates: Percent of users who successfully complete each task
- 2. Time on Task: Time it takes for users to perform a task from beginning to end
- 3. Error Rates: Number of errors made during the course of a task

11.10.1 Evaluation as navigation

Evaluation involves the three navigational elements:

- Direction (goals and objectives, questions) the setting of a direction; what is to be accomplished, improved, expected? This includes long and short term intention(s) as well as broad to specific desired outcome/effect upon a system.
 - A. <u>Articulate the objective</u> (goal). All measurements have an objective that structures the measured response.
 - B. <u>Articulate a question</u> to refine the objective/goal to a quantifiable amount.

2. Indication (indicator) - factors that are significant to the successful completion of the direction (achievement of the outcome). Indicators measure success[ful accomplishment] of the direction. Indicators are composed of metrics, and metrics are composed of measures.

A. Identify indicators.

- B. <u>Identify metrics (measures).</u> Metrics indicate the measurements required to answer each question.
- Determination (evaluator, comparator, analytics) - was it accomplished as expected, and if not, what action is determined to correct alignment with direction. New value compared to baseline (benchmark as a selected historical, trace value).
 A. Calculate directional comparison.

Evaluation may involve calculating differences between temporal points:

- Current actualized ("current")- The current actualized state (may not align with specified).
- **Current specified ("target")** The current specified state (may not align with actual).
- Next predicted ("predicted") The predicted (next probable future) state.

11.10.1.1 Performance measurement

A complete performance measure includes:

- **NAME:** The use of an exact and expected (intuitive) name to avoid ambiguity.
 - Name of metric. HSS
- **PURPOSE/OBJECTIVE:** The rationale underlying the measure has to be specified, otherwise one can question whether it should be introduced. The relation of the metric with the organizational objectives must be clear. Typical purposes include monitoring of the rate of change, ensuring that all delayed services are eliminated, and ensure that the asset materialization is efficient and effective for everyone's fulfillment.
 - Reason for measure. Human fulfillment
- **RELATES TO:** The organizational (societal) objectives to which the measure relates should be identified, otherwise one can again question whether the measure should be introduced.
 - Description of what is measured. Unified information sub-space.
- **TARGET:** An explicit target, which specifies the level of performance "to be achieved" and a time scale for achieving it. A benchmark is another word for a target, and it means that some value is present. An appropriate target for each measure should

therefore be recorded. Typical targets include 99 percent, global human access fulfillment, given common resources and knowledge. By what percent per year are we achieving this on a local and/or global scale. Improvement year on year, ? percent closer to global human access fulfillment during the next ? months, and the target is to "achieve" 95 percent global human fulfillment (given what is known) for a population of 500 on 1295 hectares with on-time delivery by the end of next year.

- **Specification** of next system state, as planned in execution.
- Threshold calculation for each inquiry process.
- **The target value** is the optimal value [range] as within a range, per indication along the lines of a units of measurement.
- FORMULA: The formula—the way performance is measured -- to 'specify' affects how people behave. As a matter of fact, an inappropriately defined formula can encourage undesirable behaviours. The formula must therefore be defined in such a way that it induces good societal-organizational [ordering] practice. The exact calculation of the metric must be known to everyone. Also, what is/ are the units used (units of measurement must be known).
 - Measured procedure for how the metric is measured.
- FREQUENCY OF MEASUREMENT: The frequency with which performance should be recorded [and reported] depends on the importance of the measure and the volume of data available (in a technical solution space).
 - Measurement frequency for how often the measurement is taken.
- WHO MEASURES?: The person/system who is to collect and report the data should be identified.
- **SOURCE OF DATA:** The exact source of the raw data should be specified. A consistent source of data is vital if performance is to be compared over time.
- **DRIVERS:** As factors influencing the performance of entities in the decision space.
- **INTERSYSTEM TEAM:** The team accountability for ensuring the specified performance. The actions taken by accountable persons to change the performance.

11.10.1.1 The performance evaluation process

Performance evaluation (related to ISO 1400:2015):

1. Assessment via monitoring, measurement,

analysis and evaluation - Assess the organizations environmental performance in relation to society objectives.

- A. Internal "auditing" performs conformity assessment to the requirements defined by internal standards. How does a local system conform to the Society Standard with a set of requirements.
- 2. **Project review** review and evaluation for improvements, supra-system decision, and next steps.

11.10.1 The evaluation process

The following is a common example of an evaluation process:

1. Entry criteria of the process

Entry criteria (I_{en}) is the minimally acceptable inputs in order to perform the process. The values for this indicator are as follows:

- V^{pv}_{en} = the number of the inputs required by this process.
- V^{av}_{en} = the number of the inputs finished at this moment.
- V^{ev}_{en} = the number of budgeted inputs performed.

For example, the "Human Resource Plan Process" of PMBoK has four inputs: "project management plan", "activity resource requirements", "enterprise environmental factors" and "organizational process assets". If at the calculating moment, four inputs should be finished but only "project management plan" is finished, and the number of the budgeted inputs performed is 2. Then the three values are:

- V^{pv}en = 4
- V^{av}en = 1
- V^{ev}_{en} = 2

2. Cost of the process (Market only)

Cost (I_c) is the money allocated to the process. It will be used to evaluate if the process is over or under budget. The values for this indicator are as follows:

- V^{pv}_c = the planned value of the cost of this process (planned cost).
- V^{av}_c = the actual value of the cost of this process (actual cost).
- + V^{ev}_{c} = the budgeted cost of this process performed.

For example, a process had a cost allocation of 10 money. If the cost that has been spent for the current moment is 5 money, and the budgeted cost of the finished work of this process is 3 money, then the three

values are:

- V^{pv}_c = 10
- V^{av}_c = 5
- V^{ev}_c = 3

3. Duration of the process

Duration (I_d) is the money allocated to the process. It will be used to evaluate if the process is behind or ahead of schedule. The values for this indicator are as follows:

- V^{pv}_d = the planned value of time required of this process.
- V^{av}_d = the actual value of time spent on this process.
- V^{ev}_{d} = the budgeted time of this process performed.

For example, for a process requiring 400 hours of work, the time spent at the current moment is 200 hours and the budgeted time of the finished work is 300 hours. Then the three values for this indicator are:

- V^{pv}_d = 400
- V^{av}_d = 200
- V^{ev}_d = 300

4. Resource of the process

Resource (I_r) is the resources allocated to the process. It will be used to evaluate if the resource usage is over or under capacity. The values for this indicator are as follows:

- V^{pv}_r = the planned value of resource required of this process.
- V^{av}_r = the actual value of resource spent on this process.
- V^{ev}_r = the budgeted resource of this process performed.

For example, here the resource allocated to this process is 11 bricks; the resource assigned to this process is 9 bricks at the moment, and the budgeted resource of the finished work of this process is 8 bricks. Then the three values for this indicator are:

- V^{pv}_r = 11
- V^{av}_r = 9
- V^{ev}_r = 8

5. Expected criteria of the process

Expected criteria (I_{ex}) is the minimally acceptable outputs in order to perform the next process. The values for this indicator are as follows:

• V^{pv}_{ex} = the number of the outputs required by this process.

- V^{av}_{ex} = the number of the outputs finished at this moment.
- V^{ev}_{ex} = the number of budgeted outputs performed.

For example, the process "Quality Plan Process" of PMBoK has five: "quality management plan", "process improvement plan", "quality metrics", "quality checklists" and "project documents updates" expected outputs. If at this moment, two inputs should be finished but there is only "quality management plan" is finished, the number of the budgeted outputs performed is 1. Then the three values for this indicator are:

- V^{pv}_{ex} = 2
- V^{av}_{ex} = 1
- V^{ev}_{ex} = 1

11.11 [Decision] Evaluator

An evaluator is a statistical tool for comparison to provide analysis of a metrics, performance indicators and risk indicators, to explore trends, data patterns, and interdependencies for informing optimal decisioning, and ultimately the achievement of intended results. Here, process analytics are applied to indicators to produce actionable decisioning information.

QUESTION: *What is the actual progress against goals.*

In general, the first analytic process is the determination of the 'base rate' [of a change]. The **base rate** is a statistical measure of what percentage of a population has a particular characteristic. This statistic is then used as the base (or prior probability) upon which to compare other measurements.

Determination involves analytics (assessment):

- Assessment and analytic techniques provide the mechanism for measuring and evaluating the defined factors to evaluate progress and impact.
 - **Performance assessment** determine current and future performance by identifying performance indicators and measuring them over time.
 - **Risk assessment** determine current and future risks by identifying performance indicators and measuring them over time.

The primary three system change control evaluators are input, process, and output:

 Input indicators/metrics (Project indicators/ metrics, Project control) - measures of the project, used to monitor and control the project. Through continuous monitoring and control: the development space may be minimized by making adjustments necessary to optimize and avoid problems; and product (service) quality can be assessed (evaluated) on an ongoing basis, and the technical approach modified to improve quality. Project control determines the targets of 'resources' and 'timing' in a project:

- Resources (cost) alignment with required resources usage.
- Timing (schedule) alignment with required timing.
- 2. Process indicators/metrics (Project

coordination) - measures of the development process. Process metrics are collected across all project (forever), and provide indicators that lead to long-term process improvement. Process metrics reference/measure attributes of a process (people, environment, tools, techniques).

- Overall development time (% complete)
- Type of methodology used
- Work products delivered (productivity, work delivered).
- Human effort expended.
- Errors uncovered before release.
- Calendar time expended (% on-time delivery).
- Conformance to schedule.
- 3. Output indicators/metrics (Product indicators/ metrics, Service distribution)
 - Usage/productivity rate
 - Defect rate Defects delivered to and reported by end-users.
 - Change request rate
 - Resource usage / schedule variance
 - Quality alignment with required quality.
 - Effects alignment with [required] goals and objective (effect).

Table 20.	Decision Approach > Monitoring & Evaluation:
Table of project coordination metrics.	

Indicator Category	Metrics
Productivity	The number of (lines of code, modules, classes, deliverables, etc.) developed on time unit or per resource.
Quality	The degree of completion of project objectives.
Deliverables	The ratio between the achieved deliverables and the planned deliverables. The number of rewords because of no concordances between the specifications and the results.
Resources	Statistics regarding resource usage. Statistics regarding resource costs. Statistics regarding resources loading and distribution.
Risks	The number of identified risks. The number of raised risks. The number of avoided risks.

Control metrics are classified based on their roles, importance, and functionality:

1. Roles (evaluation)

- A. Forecasting (a.k.a., predicting) predicting project resources (cost) and timing (schedule) outcomes based on the current understanding of project progress and performance.
- B. Diagnostic signalling progress and performance issues to inform corrective actions.

2. Importance (prioritization)

- A. Priority (core) "must have" metrics that provide the greatest insight into project controls (resources and timing).
- B. Significant supplement or complement Core metrics as needed.

3. Functionality (application)

- A. Data (Data Collection)
- B. Information (Progress Measurement)
- C. Knowledge (Performance Assessment)
- D. Insight (Performance Forecasting)

12 [Decision] Quality indication

Quality ([high-level] "management") engineering indicators (quality assurance, performance indicators)

Quality is conformance to requirements. Quality is the totality of features and characteristics of a product, or service that influence it's ability to satisfy stated or implied needs. Fully satisfy user ("customer") requirements at the lowest resource usage. In engineering, service quality is now measured with performance-based measures. Quality is indicated by a source of/for feedback in order to re-orient the next state by controlling the adaptation.

High-level quality indicators are the quality and/or performance requirements, which are assessed through evaluation of a system's materializing/-ed alignment with it's [user] requirements (as validation and verification).

Quality is evaluated through feedback types:

- Metrics (an objective's criteria) provide ways of measuring each stated quality (objective). There may be multiple metric for each quality. At the level of systems engineering, metrics are measurable requirements -- requirements with an objective and/or subjective measure of progress or completion.
- Weightings (ranking) define the relative importance of different qualities in a particular problem environment.
- **Strategies** are methods for sustaining and/or improving the current quality and/or progress.

Project metrics are used, in part, to improve quality:

- 1. As quality improves, defects are minimized. A defect is a verified lack of conformance to requirements.
- 2. As defects go down, the amount of rework required during the project is also reduced.
 - As rework goes down, the overall project input (e.g., time, resources, cost) is reduced.

The three service quality indicators (factors) are:

- 1. **Service/product operation (system operation):** its operational characteristics (do they align, meet requirements, meet metrics); its operational characteristics.
- 2. Service/product revision (system revision): its ability to undergo change.
- 3. Service/product transition (system transition): its adaptability to new environments.

The system quality functions (factors/indicators) are:

• **Functionality** - the degree to which the system satisfies needs.

- **Reliability** the amount of time the system is available for use.
- **Usability** the degree to which the system is easy to use.
- Efficiency (optimality) the degree to which the system uses system resources optimally.
- **Maintainability** the ease with which the system may be repaired and enhanced.
- **Portability** the ease with which the system can be transposed from one environment to another.

System quality performance inquiries:

- What are the results of task or test execution?
- What are the results of their timings?
- What are the results of the comparisons and calculation of all data their timing(s).

High-level project-coordinator indicators of quality include [the performance of tasks]:

- The 'performance' [of a service system], in the context of an organizational outcome, can be measured (and have its quality determined) by [calculating] the number of tasks/projects closed.
- Is the number of tasks of another, related project, becoming sufficiently overwhelming that that system is flagging an alert (leading indicator)?
- Within the last # of days, how many tasks were not closed as expected? What is the user/requirements accessibility threshold for the closure of expected tasks (a lagging indicator)?

Quality can be simplified by measuring:

- Quality is specification driven does it meet the set requirements
- Quality is measured at start of life percent passing customer acceptance
- Quality is observable by number of rejects from customers

NOTE: The quality characteristics of a service or product (functional object) are known as the 'Determinants of Quality'.

12.1 Indicator(s) determinants of service quality

In the market, there are different theories of determinants of service quality, generally, satisfiers and dissatisfied with the following definitions:

• **Satisfaction** refers to the outcome of individual service transactions and the overall service

encounter,

• **Service quality** is the customer's overall impression of the relative inferiority/superiority of the organization and its services.

In the market there is an expectation-perception gap view of service quality (i.e., customer expectation and perception). There is business [management's] perception and business [management's] expectation, and there is the customer's equivalent. Therein exists "the zone of tolerance, a range of service performance that a customer considers satisfactory". The importance of the zone of tolerance is that customers may accept variation within a range of performance, and any increase in performance within this area will only have a marginal effect on customer perceptions. Only when performance moves outside of this range will it have any real effect on perceived service quality. There sets up a desire to conceal real quality on the part of the businessservice provider.

The following are how service quality was best understood in the literature circa 1995 (Johnston, 1995):

Parasuraman et al. (1985) provided a list of ten determinants of market-based service quality as a result of their focus group studies with service providers and customers:

- Access
- Communication
- Competence
- Courtesy
- Credibility
- Reliability
- Responsiveness
- Security
- Understanding
- Tangibles

Johnston and Silvestro (1990) suggested a refined list of 12:

- Access
- Appearance/aesthetics
- Availability
- Cleanliness/tidiness
- Comfort
- Communication
- Competence
- Courtesy
- Friendliness
- Reliability
- Responsiveness
- Security

Johnston and Silvestro (1990) went on to add the

customer's perspective to the 12 service quality characteristics. They identified five "customer" service quality determinants:

- Attentiveness/helpfulness
- Care
- Commitment
- Functionality
- Integrity

Walker (1990) suggested that the key determinants are:

- Product reliability.
- A quality environment.
- Delivery systems that work together with good personal service (staff attitude, knowledge and skills)

Grönroos (1990) postulated six criteria of perceived good service quality:

- Professionalism and skills
- · Attitudes and behaviour
- · Accessibility and flexibility
- Reliability and trustworthiness
- Recovery
- · Reputation and credibility

Albrecht and Zemke (1985) suggested:

- Care and concern
- Spontaneity
- Problem solving
- Recovery

Armistead (1990) split the dimensions into "firm" and "soft":

- The firm dimensions are time (including availability, waiting time and responsiveness), fault freeness (including physical items, information and advice) and flexibility (ability to recover from mistakes, to customize the service or add additional services).
- The soft dimensions are style (attitude of staff, accessibility of staff and ambience), steering (the degree to which customers feel in control of their own destiny) and safety (trust, security and confidentiality).

Essentially, there are several emotional and physical determinants users apply when evaluating (the satisfaction, fulfillment, etc., of) their experience. Generally, these include,

- Accessibility
- Service
- Expectations,
- Communication

- Competence
- Courtesy
- Credibility
- Reliability
- Responsiveness
- Product or service attributes (the tangible characteristics of a product or service, for example, if acquiring a car, its size, colour, shape and engine size)

The names of the determinants of service quality do not distinguish between the effect of the determinants in terms its creation of satisfaction or dissatisfaction in a service user. It is implicitly assumed that they are the two aspects of the same conception. For example, reliability was Berry et al.'s (1985) most important factor, which implies that unreliability will lead to dissatisfaction and that reliability will lead to satisfaction.

In community, there are only contributors, who are themselves the users. There are two socio-economic identities in community: the user and the InterSystem Team. In the market, there are at least three: the employer, the employee, and the customer. The competition for access that such a system sets up is likely to leads to significant diversions from real world understanding and fulfillment. Because, individuals of the same society are competing for access [to some thing] through a set of relationships based upon power over others, and not access cooperation through a perception of common heritage. Guest/customer satisfaction (dissatisfaction) has meaning in the market, but community has only users who contribute, there are no economic guests or customers. Hence, when the real world is more greatly considered, then creation and awareness more based in the real world where humans have needs that are fulfilled from particular organizations of the environment.

In community, there is no business (i.e., no monetary) gap between access to fulfillment (i.e., the "customer", or user) and the production of fulfillment services and goods (i.e., the "employer and employee", or InterSystem Team contributor). In the market there are a number of different sub-gaps, including the real world knowledge gap (engineering), then, the policy gap, the delivery gap, the communication gap, the customer gap, etc. In the market, there is a customer gap, as the difference between expectations and perceptions; there are also provider gaps:

- Not knowing what customers expect > ensure what customers expect, via research and analysis (or, user input, as well as, research and analysis).
- Not selecting the right service designs and standards > establish the right service quality standards, via management (or, decision analysis).
- Not delivering to service standards > ensure that service performance meets standards, via employees (or contribution to the InterSystem Team).

4. **Not matching** performance to promises > ensure that delivery matches promises (of the enterprise).

But, when all of the information is present because the service is designed to directly fulfill needs, then there is no provider gap.

Note: In engineering, service quality is now measured with performance-based measures.

In the market, there are customer expectations and perceptions. Customer expectations are the beliefs and assumptions of what an organisation's products, services and all-round customer service will be like. Customer perceptions are how consumers feel and regard an organisation's product or service after purchasing their product and using it first-hand. The company has a perception of the consumer's expectations, and the customer has a degree of expected service, and there are provider "gaps" in between. In community, however, service is derived from a open, transparent, and unified model, and hence, expectations become based upon the societal information system itself, and not on any specific business or industry (as in the case of the market).

- Accessible time
- Accessible space
- Accessible services

12.1.1 Validity (quality of information)

The term validity is used (by researchers) to characterize the degree to which information reflects the phenomenon being studied.

12.1.2 Reliability (trustability-testability of information)

Reliability, or the extent to which information is "trustworthy", can in principle be tested. It is "ensured" when indicators are unambiguous or measurements have no systematic errors. To test the data for reliability, several people independently using the same indicator for the same problem should obtain the same result. Sources and methods of acquiring information are decisive (in order to ensure reliable information).

INSIGHT: You can trust other people to do research and discovery for you, if they are following a transparent method and if their arguments are sound, free of bias and transparent.

There are two ways to ensure valid* information:

- 1. By choosing indicators that provide the most direct measure, and
- 2. By using several indicators that together comprise a good indication of the phenomenon describe[d by the indication].

NOTE: Unambiguity (Read: clarity and precision) is a precondition for dependable information.

12.2 False quality indicators (false indication)

There are also false indicators of quality (i.e., indicators that appear to stand on their own as a representation of quality, but require a larger context to be integrated). For example, 'total lifetime' in age (cycles around sun) is not an indicator of 'life quality'. Similarly, 'age at death' is not an indicator of the quality of the life. Here, what it *means*, or *is*, to be alive needs to be defined. As a definition, what does it *mean* and/or *require* to be 'alive'? Life is something that needs to be measured with a matrix that is more comprehensive and nuanced than minutes or years (time) or currency (market). Life is something that needs to be measured with a matrix that is more comprehensive and nuanced than minutes or years or currency.

A false indicator by itself:

• Total lifetime in age is not an indicator of life quality -- age of death is not an indicator of the quality of the life.

12.3 Requirements quality indicators

A.k.a., Requirements traceability ensures reliability.

The quality indicators of a requirements statements include, but are not limited to:

- **Imperatives** Command words (e.g., shall, must, is required to, are applicable to, should).
- **Directives** Words are often used to make requirements more understandable (e.g., for example, figure, table, note).
- **Continuances** Words that introduce more detailed specification (e.g., below, as follows, following, listed, in particular, support, essential, fundamental).
- **Options** words that allowing the developer latitude in implementing a requirement. this introduces risks to schedule and resources.
- Weak phrases Words and phrases that introduce uncertainty into requirements statements (as appropriate, as preferred, as possible, customizable).

12.4 Access derived quality control indicators

The meaning of access can be derived from various societal perspectives. Here, the relevant perspective is

that of systems engineering. In an engineered system, 'access' is derived through/from the intentionality of the system's user. At a population level, users will (for fulfillment or not) determine the meaning of 'access', from which the meanings of 'stewardship' and 'quality' are similarly inter-defined (or left excluded):

1. Determination of meaning of 'access' (i.e.,

determining relationship of individual to societal access).

- A. Access to product (in service resources).
- B. Stewardship of product (in service resources).
- C. Quality of product (in service resources).

12.5 Measuring quality

Quality is a multivariate measurable, which generally includes:

- **Correctness** degree to which a system operates according to specification.
 - For example, verified non-conformance with requirements.
 - For example, defects per KLOC.
- **Maintainability** the degree to which a system is amenable to change and lifespan.
 - For example, mean-time-to-change (MMTC) given an incoming change requirement, what is the time to analyze, design, implement, and deploy a change.
- **Integrity** the degree to which a system is impervious to outside attack, environmental instability, or failure.
 - Threat probability and security (likelihood of repelling an attack).
 - t=likelihood of threat occurring and S=likelihood of repelling the attack
 - Integrity = sigma [1 (threat x (1 security))].
 - t=0.25, S=> I=0.99
- **Usability** the degree to which a system is easy to use.

13 [Decision] Measurement

DEFINITION: A mathematical model consists of one or more equations, in-equations, and objective functions and it has a role to describe the associated state. The metrics measure the project, service, or product characteristics based on the characteristic's influencing factors.

'Metric space', also 'measure space', is the conception of distance in the real time (line).

Definition 1.1 A metric space is given by a set X and distance function $d: X \times X \rightarrow R$, such that

- 1. (Positivity) For all x, y make X
 - 0 ≤ d(x,y)
- 2. 2. (Non-degenerated) For all x, y make X
 - 0 = d(x,y) set equal to x = y
- 3. 3. (Symmetry For all x, y make X
 d(x,y) = d(x,y)
- 4. (*Triangle inequality*) For all x, y, z make X
 d(x,y) ≤ d(x,z) + d(z,y)

At level 4, a <u>triangle</u> can now be (a metric space construction:

- Found for orientation (in real time)
- Formed for construction (in real time)

The construction of a metric space allows for the following ability functions:

- Measurement (measurability, ==, set equal to)
- Comparison (comparability, !=, not equal to)
- Analysis (decomposability, <, <=, less than and/or equal to)
- Synthesis (composability, >, >=, greater than and/or equal to)
- Estimation (probability)
- Verification (verifiability, equatability, boolean, =, is equal to)

13.1 Indicators and metrics fundamentals

The following are the essential operational elements of an intentionally indicated measurement and its application:

- **Indicator** Indicators are categories (meaningful concepts associable to a context). There are many different sub-types of indicators.
- **Metric/measure** Metrics are the description of the variable that the indicator is expressing in some alignment, and the value itself in numerical form. Metrics that express a goal are sometimes called "targets".

- **Statistics** It is upon the values themselves that statistical mathematics are run (computed).
- **Parameter** Parameters are what the values should or can be between in relationship to a single variable indicator; the range of acceptable or available values (important note: the word, "parameter", has other definitions applicable elsewhere, for instance, a parameter may not be defined as a range of values, but instead, a single parametric value itself). Note that in the decision system, user customizability would be considered a contextually available parameter; where, users could customize available variables within a set range of parameters or available values (or set, set the parameter).
- **Threshold** Thresholds are the minimums and maximums, which may act as limits and/or triggers (for events). Note that in the decision system, thresholds are used to resolve many supraeconomic decision inquires.

13.2 Mathematical metric construction

A mathematical measure is a function that assigns a nonnegative real number (or, +infinity) to (certain) subsets of a set X. As defined in [IVAN04] a metric represents a mathematical model (function model) developed around an equation having the following form[ed construction]:

- 1. The identity function: f(x) = x
 - The identify function allows graphing.
- 2. 2. The indicator function: y = f(x)
 - The indicator function allows estimating probability.

13.3 'Metric' from a mathematical perspective

In mathematics, in part, a metric is a real [time line] function that measures the distance between two coordinated entities. Mathematically, a metric is a measure between two itens in a set. One mathematical definition of a metric is: Let A be a set of objects, let R be the set of real numbers, and let μ be a one-to-one function such that μ :A \otimes A \rightarrow R, where \otimes denotes the Cartesian product of A with A. Then, μ is a metric for A if and only if:

- $\forall \alpha, \beta \in A: \mu(\alpha, \beta) \ge 0; (P1)$
- $\forall \alpha, \beta \in A: \alpha = \beta \Rightarrow \mu(\alpha, \beta) = 0; (P2)$
- $\forall \alpha, \beta \in A: \mu(\alpha, \beta) = \mu(\beta, \alpha); and (P3)$
- $\forall \alpha, \beta, \gamma \in A: \mu(\alpha, \gamma) \le \mu(\alpha, \beta) + \mu(\beta, \gamma).$ (P4)

13.1 Simplified definition of 'metric'

A metric is a quantitative measure of the degree to which a system, component or process possesses a given attribute. The simple definition of metric containing the following two sub-characterizations is insufficient for computer processing:

- A metric is a standard of measurement in comparison.
- A metric is a function that describes distances between pairs of points in a space.

13.1.1 [Decision] Metrics classifications

The metric shape of that which can be classified as having shape.

The concept of a 'metric' carries two related meanings:

- 1. A scientific/discovery meaning: A 'metric' is defined to measure distance between two linear systems (real to real and real to abstract, where engineering is abstract to material). This type of metric refers to scientific metrics (scientific measurements in context).
- An engineering/evaluative meaning: A measure (metric) is the objective allocation of a value to an entity, in order to characterise a specific feature. This type of metric refers to project metrics (project-program-process-quality evaluation).

Thus, there are two types of metrics, project metrics and scientific metrics.

- A **scientific metric** is any scientific measure with context.
 - Measures degree of alignment with the real world.
- A **project metric** is a quantitative measure of the degree to which a system (engineered or not), component or process possesses an attribute.
 - Measures degree of alignment with a direction (intention).

Defining the metrics for projects consists of building models and indicators (of occurrences) that start from values measured objectively with numbers (values).

13.1.1.1 Quantitative and qualitative metrics

Quantitative metrics are considered those that are based on factors that can be measured or counted. Such metrics include, but are not limited to: work productivity, project value, resource usage, costs, etc.

For example, <u>work productivity based on inputs</u> (is computed as):

• W1 =
$$\binom{n \sum_{i=1}^{n} O_i}{(m \sum_{j=1}^{n} I_j)}$$

- Where,
- O_i = the output i (deliverables, results)
- Ij = the input j (human effort, resources per time unit)
- n = the number of outputs
- m = the number of inputs

Work productivity based on time:

- Ws = (ⁿ∑_{i=1} O_i) / T
- Where,
- T = time period

For example, <u>a given project portfolio value at a gen</u> <u>moment in time</u> (is computed as):

- $PPV^{s}(t) = {}^{ks}\sum_{i=1} VP^{s}{}_{i}(t)$
- Where,
- PPV^s (t) project portfolio s value at a given moment, t
- + VP^{s}_{i} the value of project i from the portfolio s
- ks is (ks) the number of projects in the portfolio s

For example, <u>the degree of resource loading for a</u> <u>portfolio of projects</u> (is computed as):

- LD = $(^{s}\sum_{i=1}^{s} UR_{i}) / (^{t}\sum_{i=1}^{s} RR_{i})$
- Where,
- UR_j the number of resources involved in the project s
- RR_i total number of required resources for project s

For example, the degree of resoure usage at a gien moment in time (is computed as):

- DU (t) = NR(t) / TR
- Where,
- NR the number of resources involved in a project
- TR the total number of resources available

For example, <u>the cost of resources per some other unit</u>, <u>such as energy</u> (is computed as):

- $C = {}^{w}\sum_{i=1} NR_i d_i p_i$
- Where,
- NR_i the umber of resources from the category i
- pi energy per unit for the resource category i
- d_i units of usage for the resource category i

For example, level of complexity, which assumes a

project as a basis of comparison (is computed as):

- $C = (^{k}\sum_{i=1} r_{i}) \log_{2} r_{i}$
- Where, k the number of tasks in the project
- r the number of unique resource types involved in the project.

Qualitative "metrics" are formal[ly meaningful] answers. For example, Why did something happen (with linguistic reasoning)? What is the source, cause, or influence of something? These are not expressed as indicators. The first three qualitative metrics are: quality of work, team cohesion, and degree of satisfaction. The two qualitative contexts are social abilities and personal experience. Note that social abilities depend on the communication skills and knowledge, which could/ should be quantified.

For example, <u>the degree of satisfaction</u> (can be computed):

- DS = (^p∑_{i=1} DSR_i) / TR
- Where,
- DSR = the degree of satisfaction for the requirement i.
- TR = total number of requirements.
- p = the number of requirements
- The degree of satisfaction for a user of requirement is a value from 0 (no satisfaction) to 1 (fully satisfied).

13.2 Metrics service-level overview

Every constructed system has the following initial metrics:

- 1. **Functionality delivered** provides an indirect measure of the functionality of the system
- 2. **2. System size** measures the overall size of the system defined in terms of information available as part of the analysis model.
- 3. **3. Specification quality** provides an indication of the specificity and completeness of a requirements specification.

13.2.2 Service metrics

The following are a high-level list of metrics for indicating the presence of a service [type].

- Architectural metrics provide an indication of the quality of the architectural design.
- **Component-level metrics** measure the complexity of system components and other characteristics that have a relevance to quality.
- Interface design metrics primarily focused on

usability

- Specialized object-oriented design metrics measure characteristics of classes and their communication and collaboration characteristics.
- **Complexity metrics** measure the logical complexity of a system.
- Length metrics measure the amount between.

13.3 A metric indicator random variable

A.k.a., The indicator function, characteristic function.

The set of possibilities is the *sample space*, in which each possibility is an *outcome*. A proposition (a set of possibilities) is an *event* in statistical usage. The indicator function (a.k.a., characteristic function) of a proposition is its *indicator function*. Indicator functions are a type of random variables. Any function defined point-wise on the sample space is a random variable. By convention, its range is usually the set of real numbers or subset thereof, such as {0,1}. Generally, random variables are continuous (there is no substantial difference between the discrete and the continuous type with respect to this context. Herein, conditionals denote random variables, and the probability of a conditional is the expectation of its values. Probabilities are defined in terms of the expectation of the assignment function.

Essentially, an indicator function links expectations and the probability of that event/result occurring, which would be represented by an indicated variable.

For random variables X,Y, expectations and conditional expectations are defined as follows:

- X = f(x)
- $E[X] = \sum_{x \in range(X)} x \cdot Pr(X=x)$
- $E[X|Y=y] = \sum_{x \in range(X)} x \cdot Pr(X=x|Y=y)$
- where,
- E[X] = the expectation of X

INDICATOR RANDOM VARIABLE - A random variable that has the value 1 ("true") or 0 ("false"), according to whether a specified event occurs, or not.

- For example, X is an indicator random variable for the Event A, where p denotes P(A).
- If: E(X) = p
- Then: Var(X) = p(1-p)
- The derivation: EX = 1 P(X= 1) + 0 P(X=0) = P(X=1)
 = P(A) = p

There is an expressible relationship between the taking of an expectation of an indicator random variable, and the probability of that particular event occurring (as represented by an indicator random variable). To "take an expectation" is to set an event value; whereupon,

there may be calculated a probability for the event value occurring. The indicator function of an event takes on (associates) a value of 1 when an event occurs (true), and 0 when an event does not occur (false).

The indicator function is a function that returns the value 1 when something is true:

• 1[A] = { 1, A is true, { 0, A is false.

As the name implies, an indicator random variable indicates something:

- Either a value of '1' when the event happens, or if expression is true.
 - For example, the value of I_A is 1, when the event occurs.
 - Where, I is the random variable assigned to the occurrence of an event A.
- Or, a value of '0' when the event does not happen, or if the expression is false.
 - For example, the value of I_A is 0, when the event does not occur (that is, A^c occurs).

Thus, I_A is a Boolean variable that indicates the occurrence of the event A. This Boolean variable has value 1 with probability P(A) and so its average value is P(A). Over time, I_A will have value 1 on N • P(A) of N [trials of an experiment, for example].

The indicator random variable method involves randomness in two ways:

- 1. The variable assigned is random. 'I' in I_A for example.
- 2. The intentional agent cannot be sure whether the next time I_A is check, that the variable I will have value 1 or 0.

The expectation is the same thing as computing the expected value of the variable: the value 1 times the probability that A is true, plus the value 0 times the probability it is not.

In application, indicator random variable is a method to convert between probabilities and expectations.

- For example,
- x{f} (set f is given the indicator random variable x)
- x{f} = 1 if f occurs || 0 if f does not occur

A density (distance) function may be expressed for a random variable:

- For a continuous random variable:
 - $E(X) = \int_{-\infty}^{\infty} x f(x) dx$
 - The expectation of X is the integral from negative

infinity to infinity of x f(x) dx.

- f(x) ≥ 0
- ∫[∞]_{-∞} f(x)dx = 1
- For a discrete random variable (replace integration, \int , with summation, Σ)
 - $E(X) = \sum_{x \in S} x f(x)$

Whereupon, the expectation of a discrete random variable is defined as the sum over all type of values which that random variable can take multiplied by the probability of that particular value occurring. The indicator function is:

- E(x) = ∑_x n P(x=n)
- Where,
- $\sum_{\mathbf{x}}$ sum of all values which the random variable x can take
- P(x=n) probability of that value x occurring

When the outcome is a continuous number, then a continuous random variable is expected. Examples of random variable are weight and height.

Probabilities are specified over an interval to derive probability values:

- P (a < X < b) = $\int_{a}^{b} f(x) dx$
- Where, the probability of taking on a single value is 0

13.3.1 The resolution of a metric space, boolean

Boolean expressions use relational and logical operators that result in either a 0 (true) or 1 (false). Boolean expressions allow for the existence of an instruction (programs) that decide whether to execute code (a decision). Code is a set of rules, that when an input (of energy) is applied, information is processed and a result is produced.

13.3.2 Arithmetic (counting expression) operators:

The arithmetic operators are:

- Operator & Name
- + addition
- subtraction
- * multiplication
- / division
- % modulo (remainder)
- ++ --
- 13.3.3 Assignment (expression) expressions (operators):

The assignment operators are:

- Operator & Name
- = set equal to
- += set greater than
- -= set less than
- *= set multiplicator
- /= set divider
- %= set modulo (set remainder)

13.3.4 Relational operators

Determine the relative ordering between values. Relational operators may be used to compare expressions that evaluate numeric and character data.

The relational operators are:

Operator & Name

- == equal to
- != not equal to
- < less than
- ≤ less than or equal to
- > greater than
- \geq greater than or equal to

13.3.4.1 Logical operators

Combine boolean values and evaluate to a boolean result.

Operator & Name

- ! logical NOT
- && logical AND
- || logical OR

13.3.5 Operator precedence

The operator precedence types are:

 Table 21. Decision Approach > Measurement: Counting operators and precedence.

Operator type	Operator	Associates
operator type	operator	Associates
grouping	(expression)	left to right
unary	++,, +, -	right to left
cast	(type)	right to left
multiplicative	*, /, %	left to right
additive	+, -	left to right
assignment	=, +=, -=, *=, /=, %=	

13.4 [Decision] Measurement method

Measurement is the method of producing metrics (i.e., actionable, relational data), and it includes of the following components:

• The measurement method (the sense-feedback,

observation method) - The method used to measure something; collection of information.

- The measurement (actual) value (The counted value) The resulting value obtained from measuring, also called the measure.
- The expected value (the predicted value) The predicted, intended, or otherwise expected count.
- The calculation (the mathematical value) the resulting calculation or combined set of measures. In order to determine the degree of alignment, statistical processes are used.

One simple example of the measurement method is, Goal, Question, Metric (GQM). The GQM method's fundamental principle is that the carrying out of the measurement must always be oriented (alignable) towards an objective. GQM defines an objective, refines that objective into questions and defines [mathematically precise] measures that are most probably likely to answer those questions, given what is known. Indicators are then generated to collect and process information for useful synthesis by calculating the separation between a result and that which was probably expected as a metric.

13.4.1 Simplified definition of a 'measure'

A measure provides a quantitative indication of the extent, amount, dimensions, capacity or size of some attribute of a product or process.

When a single data point has been collected (e.g., the number of errors uncovered in the review of a single module), a measure has been established. Measurement occurs as the result of the collection of one or more data points (e.g., a number of module reviews are investigated to collect measures of the number of errors found during each review).

Measurement is, by definition, empirical. Measurement, as a collection of information,

is knowledge that is derived from observation and/ or experimentation. A 'measurement' is the act of determining a 'measure' by counting that which is perceived ("having that information of quantity"). A measure provides a quantitative indication of the extent, amount, dimension, capacity, count, or size of some attribute of a product or process. To measure is to inquire into the sensed unified-separation of the environment through something already known (something standard or common). Measurement is the process by which numbers or symbols are assigned to attributes of entities in the real world to describe them according to pre-defined rules. Therein, measurement is the act of determining a measure. Measurement provides data into the way systems *change* and *operate*.

NOTE: *Measurement is a system boundary function. Measurement is the act of determining a measure.* measured (identified and recorded) by whatever mechanism is used. All measures are composed of a value (a number) and a unit of measure. The number provides magnitude for the measure (how much), while the unit gives number meaning (what is measured).

From a data context, a measure is a number or value (and unit) that can be summed and/or averaged, or have other statistical calculation applied, such as distances, durations, temperatures, and weight.

Note that the term, 'measurements', is often used alongside 'dimensions', which are the categories that can be used to segment, filter or group, such as the physical dimensions of length and volume, or the societal dimensions of social, decision, lifestyle, and material organization.

Measure[ment] is a common process to all embodied consciousness, and a necessary process for:

- Understanding a system (discovering) *associations* in space and time.
- Changing a system (decisioning) *modifications* in space and time.
 - Adapting processes to remain resilient.
 - Optimizing processes to improve functioning.

There are two real world domains of measurement related to the experience of separation by consciousness:

- Direct measurement (physical collection) the real world occurrence is observed and recorded as a 'measure' (and in context, 'metric'). Some [statistical] factors can be directly measured.
 - For example, defects uncovered during testing.
- Indirect measurement (abstraction level) the abstract occurrence is implied to have occurred in the real world by one or more direct measures. Some [statistical] factors can only be measured indirectly
 - For example, usability or maintainability.

The three process domains of measurement are:

- 1. **Measurement objectives (inputs)** intention for measurement.
 - For example, to know temperature difference between two days.
- 2. Measurement process (process itself)
 - A. **Measure** ("measurement record") -Measurement occurrence via a method recording new data.
 - For example, 30kelvin is a measure.
 - B. **Metric** ("measurement record in context") New data is contextualized to be used in decisioning, providing orientational information.
 - For example, 30kelvin 24march.
 - C. Indicator ("signal")

The term 'measure' is used to mean the 'value'

- For example, thermometer system change as indicator of temperature.
- 3. Measurement result (output)
 - A. **Directional comparisons ("indicator of objective")** - new decisioning data is statistically processed (compared to itself and/or past data) in order to determine direction.
 - For example, measure (1) at 30kelvin 24 march, and measure (2) at 29kelvin 23 march, and their statistical comparison results.

Thee full change cycle involves the following phases:

- 1. Intending (Objectives)
- 2. Questioning (Objectives)
- 3. Measuring (Measurement process)
- 4. Evaluating (Measurement process)
- 5. Planning (Measurement process)
- 6. Forming (Measurement process)
- 7. Monitoring (Measurement process)
- 8. Effecting (Results)
- 9. Evaluating (Results)
- 10. Cycle repeats

13.5 Measurement optimizes decisioning

The measurement method enables more optimal decisioning by allowing allows for the estimation of probabilities, and thus, informed decisioning (as decisioning that is capable of orienting correctly toward a direction of alignment).

Measurements a re used in decisioning to:

1. <u>Form a reference baseline</u> value (benchmark, base rate) for estimated change (*of* quality/progress).

A. A. Is reference value set by prior measurement?

- B. B. If reference value not set by prior
- measurement, then synthesize reference value.
- 2. <u>2. Determine if change is necessary</u> (for progress).
- 3. Inform a necessary change (to progress).

Measurement objectives include those abilities necessary for decisioning:

- **Conceivability** To what (where) did something happen?
- **Observability** Did something happen?
- **Comparability** To what degree did it happen?
- **Temporality** How often is it happening?
- **Stability** Is the change sustained, or not; to what degree?
- **Predictability** Did that which was expected or predicted to happen actually happen?

These objectives are generally expressed as:

- The number of...
- The percent of....
- The ratio of...
- The incidence of...
- The proportion of...
- The probability of...

13.6 Measurement from a scientific (discovery) perspective

Measurement is the [experimental] process in which, to precisely describe the entities or events in real world, numbers or other symbols are assigned to its attributes by using a given scale and clearly defined rules. The result of the measurement is called measure. A Metric is a quantification of a specific characteristic from an entity in the real world, which can be inferred from a set of attributes.

13.7 Measurement from an engineering (technical) perspective

Measurement is the process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to describe them according to clearly defined rules.

In engineering, measurement contains information about attributes of entities. An entity is an object (such as a person or a room). Entities are described by the characteristics that are important to distinguish one entity from another. An attribute is a feature or property of an entity. Entities can be:

- The products (deliverables) generates as outputs and outcomes from the service life cycle, as requirements specifications, documents with design, source code, testing, etc.
- The project/development environment.
- The user(s).
- The events corresponding to the phases if the life cycle or to activities and incidents with

The attributes that can be measured depend on the entity or event considered:

Table 22.	<u>Decision Approach > Measurement</u> : Measurable	
attributes in relationship to generation entities and events.		

Entity or Event	Measurable Attributes
Requirements Specification	Words, phrases, paragraphs, verbs, adjectives
Block Diagram	Modules, coupling between modules, dependencies

14 [Decision] Tabular database

A tabular systems is an extension of relational databases. A tabular system is a system that can visually specify both conditional data (conditional rules) and unconditional data (unconditional knowledge, data patterns). A tabular system consists of a table with columns labelled by attributes. Any row of such system specifies characteristics of some object defined in the attribute space; it can also define a rule, provided that some attributes refer to preconditions and at least one is a decision attribute.

Tabular systems can encode both facts and rules:

- Facts provide knowledge that is unconditionally true (given what is known).
- Rules specify conditional knowledge.

Any tabular system specifies characteristics (knowledge) of certain objects. For some objects this knowledge can be valid, while for other it may be not true.

Tabular rule-based systems may be used to define attributive decision tables or control algorithms.

In computation, there are at least two types of computational systems:

- Tabular computational a system that supports tables as a data structure, but not the set of algebraic operators.
- Physical computational a system that supports algebraic (geometric) operators as a data structure.

NOTE: Algebraic relation operators include, but are not limited to: greater than, less then, etc.

14.7.1 Tabular system usages

The following are usages of a tabular system:

- 1. A tabular system may be used to perform material yield (e.g., water yield) calculation.
- 2. A tabular system may be used for recording the characteristics of material yields (e.g., the characteristics of each seedling fruit produced). In other words, material object characteristics can be tabulated (e.g., for a fruit, the following could be recorded: the external characteristics of size, color, skin; the internal characteristics of color of flesh, firmness, texture, grain, juice, degree of acidity or lack of it; and the environmental characteristics of quality, season, and the desirability of the fruit.

14.7.2 Database characteristics

The following are characteristics of a tabular database:

• 'Minimally relational' is a system that supports tables, access, project, and join operators, but no

other relational operators.

- 'Relationally complete' is a system that supports tables and all of the operators of the relational algebra, and can thus be spatially visualized (as an object in relation to other objects).
- 'Fully relational' is a system that support all aspects of the model when executing a SELECT command [for a 'solution'], and JOIN command using the SUB-LINK command. More simply, a fully relational system is a system that may be fully realized as a material solution from a selection of material solutions. The SUB-LINKING of relationships occurs between different material solution configurations (in the reference frame, context of, their expected results). Then, designs that match potentials can be JOINED, from which a single is SELECTED ... for EXECUTION by CONTRIBUTION.
- In classical relational database (RDB) systems all the attribute values must be atomic ones.
 - Atomic values (a.k.a., single values) are values where single cell contains single value. For example, a violation of a single value per cell would be an RDB with one column in the table named 'Energy', and beneath it there is a cell with two values, 10 and 5, instead of just the one value 10. Additionally, in an atomic value RBD, each cell (record) needs to be unique, and there should not be any repeating groups. Repeating group means a table contains 2 or more values of columns that are closely related. For example, the existence of repeating groups would be an RDB with multiple columns that contain only energy data and have the names 'Energy 1', 'Energy 2', etc. These columns that contain only energy data are repeating groups. The three design coherency requirements for an atomic value RDB are:
 - User shall eliminate repeating group in individual tables.
 - User shall create separate tables for each set of related data.
 - User shall define the primary key for related data.
- An object is:
 - Value objects:
 - Any atomic object
 - $o \in C$
 - For example: travis, John, 28, 389
 - Any interval object.
 - I = [a,b], where a and b are atomic objects belonging to the same ordered set being a subset of C (such as integers and floats)
 - For example: ∈[2,5], [17,123], [a,b]
 - Any sequence object.

- Q = [o1,o2,...on] (*1,2,n*=subscripts), where o1,o2,...on are objects.
- For example: [1,2,3,4,5,6,7], [2,4,6,8], [1,2,3,5,7], [English, French, Russian]
- Any set object.
 - S = {o1,o2,...on}, where o1,o2,...on are objects.
 - For example: {potato, carrot, tomato}, {john, mary, sue}, {5,1,3,7}
- Structural (tuple) object:
 - Any tuple object.
 - O(a1 : o1, a2 : o2 :,...,an : on), where a1,a2,..., $an \in A$ are distinct attribute names and 01,02,...0n are objects
 - For example: O1(first:travis, second:john, age:28), O2(town:London, street:Oxford, number:25), O3(languages: [English, French, Russian]), O4(cars: {honda, audi, bmw}), and a more complex object of the form O5(first:travis, second:john, age:23, O2(town: London, street: Oxford, number:25), children:[james, mary, jane], languages: [English, French, Russian], cars: {honda, audi,bmw}).

14.7.3 What is data

An atomic data item is some piece of information represented in certain accepted language, and:

- As precise as possible (within the selected language).
- Meaningful (having some interpretation).
- Positive (no negation is used).
- Unconditional.

14.7.4 What is knowledge

Knowledge emerges from data and information. It is best defined as the theoretical and practical understanding of the computational ability of common-kind. By using different systems approaches and methodologies, data can be collected in quantitative and qualitative form for the purpose of explaining, interpreting, and reflecting on the various aspects of a [societal] system. The sharing of knowledge has the potential to optimize technical interest in the prediction and control of natural and social systems (causal explanation); a practical interest in communication and creation of shared understanding among all individuals in a social systems (practical understanding); and a desire for self-integration to protect them from constraints imposed by power structures (reflection).

An atomic knowledge item is any data item and any more general elementary item of the accepted language, which:

- May contain variables/sets/intervals/structures (according to the selected language).
- Meaningful (having some interpretation).
- Positive or negative.
- Perhaps conditional.

Data and knowledge can be differentiated by their intended interpretation: a data item (such as attribute value, record, table) is considered to be data if the main intended use of it is to provide static, detailed and precise image of some fragment of real world while a knowledge item (such as fact, simple conjunctive formula, DNF formula, and especially rules) is intended to provide more general knowledge defining universal or local properties of the world. From practical point of view, one can consider data to be the part of knowledge expressed with the finest granularity and unconditional.

If the specification contains variables (e.g. universally quantified, or defining some scope ones) or it is true only under certain conditions (e.g. takes the form of rules, allows for deduction or any other form of inference), then it should be normally considered to be knowledge. However, in the uniform, simplified model proposed in this paper explicit distinction is in fact not necessary. A RDB table would be normally considered as data, but it may be considered as most detailed knowledge as well. On the other hand, tabular system of data templates can be considered as extensional specification of data.

Scholarly references

- Algorithmic Decision Theory Third International Conference, ADT 2013, Bruxelles, Belgium, November 13-15, 2013, Proceedings. Springer, 8176, 2013, Lecture Notes in Artificial Intelligence. DOI: 10.1007/978-3-642-41575-3
- Allaire, B. (2007). A system of indicators for culture and communications in Quebec. Part One: Conception and concerted development of the Indicators. [stat.gouv. qc.ca]
- Armistead, C.G. (1990). Service operations strategy: framework for matching the service operations task and the service delivery system. International Journal of Service Industry Management, Vol. 1 No. 2, 6-17.
- Blackburn, M., Bone, M. (2016). *Transforming System Engineering through Model-Centric Engineering*. Technical Report SERC-2016-TR-109. Stevens Institute of Technology. [web.sercuarc.org]
- Certain, G., et al. (2011). The Nature Index: A general framework for synthesizing knowledge on the State of biodiversity. DOI:10.1371/journal.pone.0018930 [journals.plos.org]
- Cowlagi, R. V., & Saleh, J. H. (2015). Coordinability and consistency: Application of systems theory to accident causation and prevention. Journal of Loss Prevention in the Process Industries, 33, 200–212. doi:10.1016/j.jlp.2014.12.004
- Elfouly, M., et al. (2015). *General Indicator Modeling* for Decision Support based on 3D city and landscape models using Model Driven Engineering. Peer Reviewed Proceedings of Digital Landscape Architecture,

Buhmann/Ervin/Pietsch (Eds.), Wichmann Verlag, 2015.

- Heini, O. (2007). *Performance Measurements Designing a Generic Measure and Performance Indicator Model*. Geneva, 2007. [pdfs.semanticscholar.org]
- Johnston, R. (1995). The determinants of service quality: satisfiers and dissatisfiers. International Journal of Service Industry Management, Vol 6, No. 5, 53-71. [pdf.semanticscholar.org]
- Johnston, R., Silvestro, R. (1990). The determinants of service quality – a customer-based approach. in The Proceedings of the Decision Science Institute Conference, San Diego, CA, November.
- Johnston, R., Silvestro, R., Fitzgerald, L. and Voss, C. (1990). *Developing the determinants of service quality*. The Proceedings of the 1st International Research Seminar in Service Management, La Londes les Maures, June.
- Olsina, L., et al. (2004). Ontology for software metrics and indicators. Journal of Web Engineering. Vol. 2, No.4 (2004) 262-281. [pdfs.semanticscholar.org]
- Newcomer, J.T. (2012). A New Approach to Quantification of Margins and Uncertainties for Physical Simulation Data. Sandia Report: SAND2012-7912. Sandia National Laboratories. [prod-ng.sandia.

<u>gov</u>

- Rizzo, D., Blackburn, M.R. (2015). Use of Bayesian networks for qualification planning: a predictive analysis framework for a technically complex systems engineering problem. Procedia Computer Science, 61, pp133-140. DOI: 10.1016/j.procs.2015.09.173 [researchgate.net]
- Parasuraman, A., Zeithaml, V.A. and Berry, L.L. (1985). *A conceptual model of service quality and implications for future research*. Journal of Marketing, Vol. 49, Fall, pp41-50.
- Salles, M. (2015). Decision-Making and the Information System, Volume 3. Wiley & Sons, Inc. DOI:10.1002/9781119102663
- Systems engineering leading indicators guide. Version 2.0. January 20, 2010. INCOSE-TP-2005-001-03. [psmsc.com]
- Vincente, K.J. (2008). The Human Factor. Expanding Frontiers of Engineering Journal. 32(4). [nae.edu]

Book references

- Grönroos, C. (1990). Service Management and Marketing. Lexington Books. Lexington, MA.
- Preece, J., Benyon, D., et al. (1993). A guide to usability: Human factors in computing. Harlow, England: Addison-Wesley.
- Russel, S.J., Norvig, P. (2015). *Artificial Intelligence: A Modern Approach*. 3rd ed. Pearson Education India. [pearsonhighered.com] [slideshare.net]

Online references

- Acheson, N. (2016). What is the difference between an algorithm and a protocol, and why does it matter? Linked In. [linkedin.com]
- Reliability & Validity. Warwick. Accessed December, 2009. [homepages.warwick.ac.uk]

- Summary of the 2018 Department of Defense Artificial Intelligence Strategy: Harnessing AI to Advance our Security and Prosperity. (2018). US Department of Defense. [media.defense.gov]
- zGuide 6: Systems engineering competency framework. (2010). INCOSE UK. Issue 1. [incoseonline.org.uk]

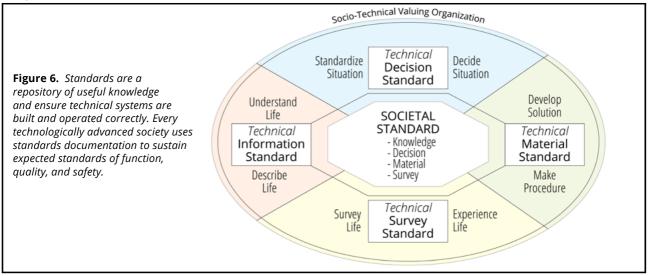
THE DECISION APPROACH

The Standardization Approach

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com Version Accepted: 8 June 2020

Acceptance Event: Project coordinator acceptance Last Working Integration Point: Project coordinator integration


Keywords: standardization, standards, working group

Abstract

An environment allows for the expression of function. Functions are themselves an expression of capabilities. Capabilities can be standardized as procedures and technologies. A standard is a commonly agreed way of doing something. Standards not only make life simpler, but are essential in increasing cooperation, interoperability, effectiveness and efficiency of any repeated interaction. The purpose of developing and adhering to standards is to ensure minimum performance, meet safety requirements, make sure that the product/system/process is consistent and repeatable, and provide for interfacing with other standard- compliant equipment (ensure compatibility). Standards are primarily to ensure interoperability and, in matters relating to safety of the product, to ensure that the producer has not overlooked important safety-related design requirements. Standards are set at a supra-organizational level to ensure that execution of planning involves the most efficient and effective thinking and action. Together, the

population of a society may use working groups to develop its standards. Societal specification standards set the operational procedures and standards for a society, and provide the reasoning therefore. Standards provide for a unified language and interpretation of situational information.

Graphical Abstract

1 What is a standard?

A.k.a., Technical standard.

Astandard is a commonly agreed way of doing something. Standards not only make life simpler, but are essential in increasing cooperation, interoperability, effectiveness and efficiency of any repeated interaction. The purpose of developing and adhering to standards is to ensure minimum performance, meet safety requirements, make sure that the product/system/process is consistent and repeatable, and provide for interfacing with other standard- compliant equipment (ensure compatibility). Standards are primarily to ensure interoperability and, in matters relating to safety of the product, to ensure that the producer has not overlooked important safetyrelated design requirements. Fundamentally, standards are functional (useful) documents.

Standards can be published in the form of documents containing:

- Technical specifications
- · Social (socio-technical) specifications
- Rules
- Guidelines
- Procedures
- Definitions and explanations.

Standards are usually developed through discovery and information integration by working sub-groups. Generally, as new information is discovered that is relevant to a standard, the standard will integrate the newly given, and evolve.

Using a standardized method of expressing information and a standardized way of delivering it cuts out the need to adapt your systems for every organization you intend to do business with. If everyone is using the same standards, communicating data becomes easier and cheaper, ultimately meaning there is more revenue to be distributed across the whole digital supply chain.

In the language of innovation, standards help to harmonize technical specifications of products and services making global materials cycling more efficient, while breaking down barriers to cooperation. Conformity is what the InterSystem Team does. The InterSystem Team conforms the environment to the set societal standard while following other set societal standards.

The benefits of standardization to the individual, society, and the ecology are many.

It is difficult to imagine a world without industry (and industrial) standards. Without standards early 21st century society would not function. Human interaction depends on standards. Human speech is ruled by rules and standards. And, in early 21st century society, human behavior is significantly governed by the standards of manners and laws. We can't live as a society without an agreed upon set of expectations to make our interactions and systems predictable, rational, safe, and stable. The ubiquity of standards indicates that nothing less than 'quality' should be settled for, particularly at the societal level.

Open societal standards are the backbone of a community-type society, ensuring the safety and quality of products and services, facilitating transparency, understanding and improving the environment. Conformity to standards reassures everyone that products, systems and organizations are safe, reliable and good for the community.

Standards and specifications are documents that describe and/or recommend a set of rules and conditions for how materials and products should be manufactured, defined, measured, or tested. Standards are used to establish minimum levels of performance and quality and optimal conditions and procedures for the purpose of ensuring compatibility of products and services from different sources. Specifications tend to have more limited applications than standards and generally establish requirements for materials, products, or services. Standards and specifications may be issued by voluntary technical or trade associations, professional societies, national standards bodies, government agencies, or by international organizations.

A technical standard is an established norm or requirement for a repeatable technical task.

Standards are an important part of our society, serving as rules to measure or evaluate capacity, quantity, content, extent, value and quality.

In the context of data, a standard is a technical communications file-document that applies collectively to codes, specifications, recommended practices, classifications, test methods, and guides. Standards represent the integration of multiple sets of data by multiple parties (humans and machines) into an optimal 'standard' data set about a socio-technical topic. Standards are composed in accordance with an established social procedure in order to ensure clear and coherent communications. A standard is like a blueprint; it provides guidance to someone when he or she actually build or operate something. A standard can refer to a level of quality or attainment, or an item or a specification against which all others may be measured. A technical standard is a set of commonly agreed decisions, rules and behaviors, in regard to technical systems; and a social standard is a set of commonly agreed to decisions, rules and behaviors, in regard to individual humans and the organizations in which they participate. A standard establishes common ground that provides means for cooperative development and shared operation.

NOTE: A practice is a repeatable approach to doing something.

Standards serves several purposes:

1. Standards describe and explicate a design in a way that makes it duplicable.

- 2. Standards facilitate communication by creating a shared understanding.
- 3. Standardization improves consistency.
- 4. Standards are a set of final/last integrations on a subject matter. Standards most often take the form of a collection of good practices as recommended by the integration of the given information.
- 5. By using standards, the end user can be sure a minimum due diligence has been exercised (quality control and assurance).
- 6. In the case of dispute one can use "following a standard" as a defense (market only).

Standards are often documented in a so-called 'standard specification' (or, 'specification standard') that describes ways to consistently organise information (and/or materiality) so that it can be understood and used by multiple independent applications and users. Standards are formal, only.

Standards may be called different names in different disciplines and under different applications:

- Standards that are used for information storage are called '**formats**' (e.g., information formats).
- Standards that are used for transmitting information are called '**protocols**' (e.g., <u>decision</u> protocols).
- Standards that are used for material transformation by humans are called 'procedures' (e.g., <u>material</u> procedures).
- Standards that are used for material transformation by machines are called 'instructions' or 'commands' (e.g., material commands).

Simply, a standard answers the question, commonly, given what is known: How do "I/you/we" know how to do (build or operate) something (read: something material)? A standard is something that should, given the integration of all that is known by "me/we", be followed when doing something. If standards aren't used then design iteration and project intercommunication becomes exceptionally challenging and is more likely to lead to conflict. In a sense, a standard is a protocol, and protocols are how individuals (i.e., we) communicate. When protocols aren't define communication is poor.

Among a material network of integrated habitat service systems, global and local Intersystem teams need to be able to reliably depend upon each other; that other individual Intersystem team members and other local habitat service systems are doing what is expected, following standards and doing the right thing.

CLARIFICATION: A standard of work is the standard (quality and/or function) at which something is made, built, or operated. Standards ensure quality of service, clear communication, and operations transparency.

Standards exist for anything that can be materialized and operated, such as software computer hardware, telecommunications, health care, automobiles, aerospace, and many areas of manufacturing. Standards are also employed when we have to ensure that things made by different people will either work together or work in the same way. There are standards that describe the "blueprints" for the plugs and jacks, but the standards themselves are not the actual plugs or jacks. We separate the ideas of "a standard which may be implemented" and "something that is an implementation of a standard."

For clarification, there are different types and sub-types of 'standards':

- In science and engineering, and operations, there are technical and procedural standards.
- In the State there policies, political standards [delimiting when the violence of the State occurs].
- In the market, there are contracts, social standards [delimiting when engagement of the State occurs].
- In a community system, there are decision standards (sets of inquires) that become computable thresholds at an understandable, algorithmic level [delimiting issue prioritization].

Standards often appear complex. To some degree, this is unavoidable. To be useful, standards are details. Standards may specify characteristics or performance levels of products, processes, services, or systems. Humans need standards to generate and operate society together. In other words, humans need standards for information construction, coordination, and materialization if they are to work together at a population scale. Standards are required to meet global human needs and human advancement.

As systems are being designed, new standards issues or need for clarifications may arise. An iterative/adaptive process should be used to incorporate any updates, changes, or clarifications into the standards document and supporting materials.

Humanity has long needed a unified societal standards to realize the intended benefits of standardization and complete effectiveness of community at the global scale. Shared goals and principles embodied in the a societal standard provides motivation and direction. Societal standards establish a basis for collective action so that members of the community can contribute and participate together efficiently. All humans have some fundamental set of mutual goals. Humanity's mutual goals oblige everyone to work pro-actively with one another to further shared technical, social, and individual interests. These goals they commit some of humanity to participating regularly in the critical activities of technical workgroups (for standardization of the habitat support system, life support system, etc.).

A technical standard is an established procedure or requirement for a repeatable

technical task. It is usually a formal document that establishes uniform engineering or technical criteria, methods, processes, and practices.

Standards are necessary prerequisites and complement of products, processes, and services. Wherein, standards can:

- Ensure safe materialization and operation everywhere.
- Promote technical efficiency.
- Foster cooperation and integration.
- Lower barriers to access.
- Diffuse new technologies.
- Protect human health and the environment.
- Transparently meet human needs/demands

Unlike in community, in the market-State, standards can be used to disadvantage others. In the context of national regulations, standards can be produced to impede export access, sometimes necessitating excessive testing and even redesigns of products.

NOTE: Accrediting standards development organizations, which often are referred to as SDOs.

1.1 Why apply standardization?

Standardization enables, beneficially,

- The accumulation and integration of knowledge [into more unified/integrated forms].
- The optimization of states and processes [via the repeatability of the standard process, which allows for the optimization].
- The collaboration of self-directed entities by the standards processes [producing a value set and behavior conducive to sharing and cooperation].

Thus, resulting in:

- Increased quality
- Increased speed
- Reduced effort
- Increased safety and control

1.2 The specification standard

A specification often refers to a set of documented requirements to be satisfied by a material, design, product, or service. A specification is often a type of technical standard. Specifications are a type of technical standard that may be developed by any of various kinds of organizations.

There are different types of technical or engineering specifications (specs), and the term is used differently in different technical contexts. They often refer to particular documents, and/or particular information within them.

The word specification is broadly defined as "to state explicitly or in detail" or "to be specific". Specifications are a specific communication about a system.

Common specifications for systems include but are not limited to:

- Requirements specification
- Functional specification
- Design/product specification
- Construction, assembly, disassembly specification
- · In-service, maintained as, operations specification
- Usage specification [usage parameters]

1.3 Standards developing organization (SDO)

Early 21st century understandings have evolved over the last 100 years to meet the needs of international industry and society in general. These standards systems primarily operates on a sector-by-sector basis. If humanity is to survive and flourish, then global standards developers must share and cooperate at the level of what is actually possible, with each other, in standards and conformity assessment activities.

An SDO is an organization that is an accredited representative of:

- International Organization for Standardization (ISO), or
- International Electrotechnical Commission (IEC) [iec. ch], or
- has been accredited by these organizations.

The American National Standards Institute (ANSI) [ansi. org] is the sole U.S. representative to the ISO/IEC, and in turn, ANSI accredits more than 270 public and private standards developers that adhere to ANSI criteria for developing voluntary consensus standards. In contrast, Standards Setting Organizations include not only formal SDOs, but trade organizations, consortia, alliances, and others. Note that organizations like IETF, OASIS, and the W3C are considered SSOs, and their patent policies are independent of governing SDOs.

1.4 Standard Setting Organization (SSO)

A standards developing organization (SDO) generally refers to an industry or sector based standards organization that publishes and develops industry specific standards. Other names for this type of organization include, but are not limited to: standards setting organizations (SSO) or consortia. Many standards are developed by the standards body itself, or developed by a corporation and accepted by a standards body (and the standards body may, or may not, be a corporation, as industry-based. A formal SSO refers to one that is recognized directly or indirectly by a government entity. Very often, there will exist a formal SSO in a country that the government recognizes as the national standards body and which has the authority to designate a specification as the national standard for the country. Thus, for example, in India, the Bureau of Indian Standards (BIS) is the national standards body; in the USA, the American National Standards Institute (ANSI) is the official body; while in the United Kingdom, it is the British Standards Institute (BSI). While any organization can come up with its own specification and call it its standard, to be an internationally acceptable standard, it has to be either set or adopted/adapted by an SSO that is recognized as an international standardsetting body. The three organizations having the highest international recognition are the International Organization for Standardization (ISO), International Electro-technical Commission (IEC) and the International Telecommunication Union (ITU). ISO [2] is an international standard-setting body made up mainly of representation from national standards bodies. IEC[3] is a standards organization that deals mainly in setting standards for electrical, electronic and related technologies. A body that is an accredited representative to ISO or IEC is called a Standard Development Organization (SDO); most national standards bodies are SDOs. ISO produces standards in many domains, including IT. Many of its standards are also developed jointly with IEC, in particular, the ISO/IEC Joint Technical Committee 1 (JTC 1) is active in setting standards for the IT domain.

There are many SSOs, national, regional as well

1.4.1 What is a 'proprietary standard'?

A.k.a., De facto standards.

itself).

A de facto standard is a specification that became popular because everyone just happened to use it, possibly because it was implemented in a product that had significant market acceptance. The details of this specification may or may not be available publicly without some sort of special legal arrangement.

The basic problem with a de facto standard is that it is controlled by a single commercial entity, who can, and often does, change it whenever internally decided. At that point, everyone else who is trying to interoperate with the information. The owning vendor gets a time-tomarket advantage, possibly increasing its market share, again.

Traditionally, it was not in the interest of the owner of a de facto standard to make the details too widely available because they didn't want to make it easier for anyone else to move into their market space. They would say, "Why would I voluntarily let other people build products compatible with my data? They might steal away my customers!". In answering these questions, it is essential to think in terms of transparency, community, democracy, costs, freedoms and permissions, and

restrictions.

In the market-State, proprietary standards require financial payments (i.e., have a fee, require trade, need money). Conversely, in community, standards relevant to the design and operation of society are not proprietary (i.e., do not require a fee or trade). Proprietary standards use the State enforcement mechanism to restrict the ways and opportunities with which people can interact with their societal information system (i.e., with their "government").

For example, proprietary software is usually made available in a form that will run on your computer, but you are not given the original material from which it was created. You cannot freely incorporate proprietary software in your own products, though you may be able to obtain some sort of fee-based license to let you do this. The basic idea here is that proprietary software contains intellectual property that was created by the software provider and that is not shared because it offers competitive advantage. Licensing proprietary software to users for a fee is a long standing business model in the software industry. Licensing is not the only way revenue can be created, and it is often supplemented with subscription, maintenance, and support charges.

Problems arises when a standard is owned by one market player that uses the position of advantage (over others) to control the further development of the standard, or tries to manipulate it through licensing policies in order to exclude or include some specific groups of actors. In this case, the standardisation is used for contrary purposes than promoting co-design, cooperation, and co-usage.

The full co-operation in the community is, therefore, provided by standards that are open; because, open standards are freely available without any restrictions, they allow standardised information and technology to be used in products and services without ownership. As a consequence, the access to information and technology is accessible globally to everyone.

1.4.2 What is an 'open standard'?

Simply, an open standard refers to a format or protocol that is:

- 1. Subject to full public assessment and use without constraints in a manner equally available to all parties.
- 2. Without any components or extensions that have dependencies on formats or protocols that do not meet the definition of an open standard themselves.
- 3. Free from legal or technical clauses that limit its utilisation by any party or in any business model.
- 4. Managed and further developed independently of any single vendor in a process open to the equal

participation of competitors and third parties.

5. Available in multiple complete implementations by competing vendors, or as a complete implementation equally available to all parties.

Open standardization ensures that technology is accessible for everyone, irrespective of business-model, size, or exclusive rights portfolio.

1.4.3 What is a 'voluntary standard'?

Voluntary standards are standards established by any organization, and that are available for use by any other person or organization, private or government. The term includes what are commonly referred to as "industry standards," as well as, "consensus standards." In the market-State, it may become mandatory for the regulatory-enforcement authority system.

Different licensing practices have been developed in order to overcome the issue of patents essential to standard implementation. For example 'royalty-free' (RF) licensing and 'fair, reasonable, and non-discriminatory' (FRAND) licensing. Take note here that FRAND terms are incompatible with Free Software.

1.4.4 Patents in standards

Sometimes, the standard specification includes technical solutions that are needed in order to implement the standard. In the market-State, these technical solutions can be protected by patents. Whoever wishing to adopt and implement the standard in a relevant jurisdiction has to, therefore, acquire the appropriate licence from the patent-holder.

1.5 Standardization in the market

In the market, there are competing standards development organizations. Some of the competing standards organizations are called "de jure" organizations, because they have particular credentials in State jurisdictional (national or international) settings. Some governments have laws that make it very difficult to use standards that do not come from de jure organizations. ANSI, ITU, and ISO are examples of de jure organizations while groups like the W3C, OASIS, and the OMG are usually just referred to as consortia. Sometimes a standard produced by a consortium will be submitted and accepted ("blessed") by a de jure organization to make it more palatable for government procurements. Of course, de jure organizations, like all standards groups, must be very careful what they publish ("bless") because they have reputations for quality and relevance that they hope to maintain.

Consortiums have a formal governance structure wherein a consortium governs the standard. Typically, a consortium comprises key members and contributors, either from commercial or non-profit organizations, or being individuals. Consortium members are elected or appointed to a binding by law. In the market, certification marks and logos "prove" they have been certified to certain safety standards. In the market, compliance with standards is often a jurisdictional issue. The brand/logo is to "prove" to the customer that the supplier has produced an item that conforms to the standardization. In the market, jurisdictional law enforces compliance to standards; thus, the necessity for the mixture of technical and legal documentation under market-State conditions.

1.6 What is the difference between a specification and a standard?

A specification is the result of (i.e., strictly bound to) the requirements. A standard is something that is consistent until new information is learned (i.e., what is probably optimal, contextual). A specification is a communicated [or communicable] design.

1.7 What are technical interoperability standards?

Technology interoperability standards are specifications that define the boundaries between two objects that have been put through a recognized [societal] decision process. In community, the decision process is supported, transparent, and open; in the market-State, the decision process may be a formal de jure process supported by national standards organizations (e.g. ISO, BSI), an industry or trade organization with broad interest (e.g. IEEE, ECMA), or a consortia with a narrower focus (e.g. W3C, OASIS). The standards process is not about finding the best technical solution, and codifying it, but rather to find the best value-encoded ("consensus driven") solution with which all the participants can live well and optimally. Whereas market implementations of interoperability standardization can be highly challenging, community application of interoperability tends toward system integration as the interoperable standard of priority. Market implementations are expected to benefit customers, by enabling choice in a marketplace. Alternatively, a global habitat-service standard specification enables the effective and efficient functional (and quality) design of a global access service system for all of humanity.

INSIGHT: A system which is optimally interoperable is open to unifying (and not, trading).

In the market, instead of one unified and cooperatively developed standard, there are [often] multiple separate competing standards (and hence, product designs), which generates the market-based need for an interoperability standard. In Community, interoperability is the norm, because the information system is openly unified by a population of cooperating human contributors. Collecting data in community is simple because interoperability is designed in-to the system's design, and it is not an afterthought (or externality) of the result of market-State organizations developing socio-technical systems on their own, or in secret. Collecting data from lots of different sources, expressed in lots of different ways, is a result of proprietary (market-based) standards, and it is a waste of human energy and resources, because interoperability is being considered "after the fact" (i.e., after the standard has been developed, or a product has been produced). In the market, companies often implement a particular function in ways that do not build on current open standards. They might do this because no standard exists to meet their needs, because they decide to implement the same function without relying on standards for business reasons, or because they are unaware a standard exists. When there is competitive advantage in a global socio-technical system, then there is the need for additional layers of unnecessary, abstract, potential hurtful relationships (Read: licenses to engage State (i.e., the coercion and violence of the State) against a competing entity in the market-State; "jurisdiction").

When every body can view the standard, then everyone can follow the standard, then intercommunication (and sub-system interconnection/-ability) have the potential of being optimized in the next iteration.

In the market, by using interoperability standards, software and hardware systems made by different market-State organization can nevertheless communicate in a high level way that does not depend on the underlying implementation details. This means we don't all have to buy our computer hardware from the same vendor and we don't all have to use the same operating system and applications. In this sense, interoperability is the open source value applied between vendors, but it is not integration. It is the result of not having integration to begin with.

In the market, standards enable interoperability, compatibility, and consistency across markets.

1.7.1 System [service] interoperability

QUESTION: *What, fully described and explained, visualized, does 'service' mean?*

Interoperability is the ability of systems to provide services to and accept services from other systems and to use the services so exchanged to enable them to operate effectively together." A more precise definition of interoperability would require at least two steps: (1) identifying the vocabulary and syntax of service interfaces, and (2) defining interoperability mathematically. In this paper, I address the first requirement. Preliminary results of an ongoing debate suggest that the theory of institutions (Goguen and Burstall 1992; Goguen 2004 (draft)), building on category theory, supplies the necessary formal foundations for the second requirement. The notion of interoperability needs to be understood broadly enough, encompassing the interoperation between human beings and systems. But it should also remain precise enough, allowing for a

common syntactic basis.

1.8 What is standardization?

Standardization refers to the process of establishing a common, shared model of the criteria, terms, principles, practices, materials, items, processes, equipment, parts, sub-assemblies, and assemblies appropriate to achieve the greatest practicable uniformity of products and practices, to ensure the minimum feasible variety of such items and practices, and to effect optimum interchangeability or interoperability of equipment, parts, and components. The standardization processes naturally create compatibility, similarity, measurement and symbol standards. Standardization can help to maximize compatibility, interoperability, safety, repeatability, or quality.

NOTE: Socio-technical organizations have the potential to become more efficient through standardization.

The four levels of standardization (in the context of interoperability between sub-systems in a unified system) are:

- **Compatibility** the sustainability of products, processes, services for use together under specific conditions to fulfill relevant requirements without causing unacceptable interactions.
- **Interchangeability** the ability of one product, process, or service to be used in place of another to fulfill the same requirements.
- **Commonality** the state achieved when the same knowledge, procedures, or equipment are used. Standardization of measurement and symbol standards.
- **Reference** the state of having the ability to trace information back to an evidence base.

A short history of standardization might be:

- 1. Philosophic and tribal standardization
- 2. National [market-State] standardization
- 3. International [market-State] standardization
- 4. Planetary [community] standardization

1.8.1 What is an asset identity code?

An asset identity code is a collection of mandatory standards, which has been codified by an information control system, and thus, has become part of the informational decisioning framework represented by that materializing system.

1.8.2 What is laboratory accreditation?

Laboratory accreditation is the formal determination and recognition that a laboratory has the capability to carry

out specification tests in accordance with prescribed procedures.

1.8.3 What is harmonization?

Harmonization is the process whereby two or more habitat service systems (or, nations or standards bodies) reliably replicate and explicate ("agree on") the content and application of a standard.

1.8.4 What is meant by design decision standardization?

Design decisions are controlled to ensure design standardization as the adherence to specifications, tasks, standards tests, or other requirements. For example, a high-level design decision standardization is that of the requirement and specification for an network of integrated city systems. The majority of the planetary population live in a network of integrated city systems. The integrated city systems are a standardized, repeated, and sub-service bounded populated geoinformatic environment.

1.8.5 What is meant by validation (conformance) assessment?

Validation (conformance) is the state of having satisfied the requirements of some specific standard(s) and/or specification(s). Validation (conformity) assessment is the procedure by which an operation, product, process, service, or system becomes recognized in the decision system as accepted solution to the user's issue(s). Validation (or conformance) is used with respect to voluntary standards and open specifications, whereas compliance is used with respect to mandatory standards and regulations.

1.8.6 What is a service ("certified") product?

A service ("certified") product is a product that has been inspected, evaluated, tested, or otherwise determined to be in conformance or compliance with applicable or specified provisions of referenced standards, codes, or other requirements and certified by an authority which is recognized or has the legal power to grant such certification. Certified products imply a guarantee or warranty of product conformance and that the product is under the test and surveillance procedures of a specified certification system.

Information service standards for service fall into three categories (Read: the domains of software interoperability):

- Data formats A data format is how information is represented and structured.
- Protocols A protocol wraps up the data format with additional data necessary for transmission, so it can be moved reliably from one computer to

another.

• Interfaces - The interface is the exact specification of how you tell a service to do something, whether it is a query or an action to be performed.

All together, these three things describe how you talk to a service and how they talk to each other.

1.8.7 How do I locate standards?

Most standards developing organizations have search tools to locate and order standards that they develop. The SES web site provides links to most of these organizations. There are also several databases and websites that provide searches across standards developers at the national, regional, and international levels, including but not limited to:

- NSSN: A National Resource for Global Standards of the American National Standards Institute at [nssn. org] contains over 250,000 references to standards from over 600 standards developers worldwide.
- Standards Store of the Standards Council of Canada at [standardsstore.ca] contains over a very large listing of standards from hundreds of standards developers worldwide.
- Stanford Libraries Standards Reference Guide. [library.stanford.edu]
- The web site [standards.gov] maintained by the National Institute of Standards and Technology provides useful links to many databases worldwide that can help locate standards.
- The U.S. Department of Defense Acquisition Streamlining and Standardization Information System (ASSIST) database at [assistdocs.com] helps locate military and federal specifications and standards that can be downloaded free of charge.

1.8.8 Who are the globally known standards setting bodies?

There are all manner of global and national standards bodies. Some of the most well-known are relevant standards settings bodies to global technological knowledge in general, include but are not limited to:

CLARIFICATION: In the early 21st century, there are an incredibly large number of standardsissuing organizations throughout the world; the following list only identifies some of the more well recognized standards organizations at a global level. Note that not only do non-profits and governments produce standards, but corporations often develop their own standards also. Some corporations contribute to/ participate in the working deliverables of major national and international standards bodies also (there may be financial and other relationships in these cases)

- American National Standards Institute (ANSI). [ansi. org]
- American Society of Civil Engineers (ASCE). [asce. org]
- British Standards Institution (BSI). [bsigroup.com]
- German Institute for Standardization (DIN). [din.de]
- International Code Council (ICC). [iccsafe.org]
- International Council on Systems Engineering (INCOSE). UK Chapter. [incoseonline.org.uk]
- International Electrochemical Commission (IEC) [iec. ch]
- International Standards Organization (ISO). [iso.org]
- Institute of Electrical and Electronics Engineers (IEEE). [ieee.org]
- National Aeronautics and Space Agency (NASA). [standards.nasa.gov]
- National Institute of Standards and Technology (NIST). [nist.gov]
- National Academies of Sciences Engineering Medicine. [nap.edu]
- MITRE Corporation [mitre.org]
- The Open Group. [opengroup.org]

1.9 What is a unified standard?

A unified standard is a standard developed through the cooperation of a whole population who have an interest in participating in the development and/or use of the standards. Existence as a standard requires that all views and objections be considered, that reliability, objectivity, and certainty are available to everyone, and that an effort be made toward the resolution of all potential issues into a more optimal organization of useful information for the whole population. Unified implies more than the concept of a simple majority, opinion agreement, or consensus, but not necessarily unanimity. At the societal level, a standard requires reason and evidence for reliability, because it represents the optimal, and hence, safely reliable, way of doing anything in society, even regenerating society itself (Read: the societal information system specification).

Because society is an information system, it can be designed in a way that works better for everyone. There is a choice between openness in which information is shared by all, or we can have a closed model in which information is exclusively owned and controlled by competing interests. And, that choice gives very different worlds. If we choose open, then we have a world of access and fairness and fulfillment, and on the other side, 5he closed side we end up with digital dictatorships, in a world where the few dictate and dominate, whether that is online or shaping and controlling designs in ways that they choose and threatening or just excluding competitors and those seen as untrustworthy to their competitive advantage. In an open world. Viewing the societal system as fundamentally informational is key.

Open standards are open to the contribution of all (voluntary), open to usage by all (habitat), and evolve over time to more greatly fulfill all individual human beings.

There are two possible (at least, diametrically) constructions of an information-based society:

- Information symmetry open source, global cooperation (Read: the community).
- Information asymmetry closed source, competition, the artificial boundaries of the market (Read: the "market" and the "State").

There are two construction transparency phases:

- 1. **The transparency of the result:** The release of an operational, real-world, moneyless, access-based, open-source [code], integrated city-society.
 - Is the result, global access (an open-source society); regardless of scale?
- 2. The transparency of the development: The open source development of the city and larger society.
 - Does transparency of development matter (e.g., closed source), if the result is likely global access (e.g., open source)?
 - A. Open development (e.g., open source projects, and global access licenses, transparency events and decisions)
 - B. **Closed development** (e.g., NDA agreements, employment contracts, secrecy events and decisions)

1.10 Who uses standards?

Standards are useful, and sometimes essential, for anyone constructing anything at any level of sociotechnical design, where information has previously been integrated into a standardized knowledge set of how to know and do something well and with intelligence. Where there is materialization (and hence, visualization), there is the potential usage of a standard to benefit the whole using population.

1.11 Why are standards used at the societal level?

At the societal level, standards are used for many reasons, one of the most important being construction of the information and global habitat service systems. A societal systems specification is a standard that varies based upon the data and the intention of the population with access to the data. In society, there are standards for information infrastructural interfacing, for pesticides, for food processing and storage, etc. Safety standards provide an additional layer of safety in order to fully control and monitor water and air quality.

INSIGHT: *By working together to develop planetary human societal standards, organizations from different industries are able to implement standards that benefit humankind, everywhere across the planet.*

1.12 What is a societal standard?

A societal standard is a standard that uniformly generates a socio-technical, societal, materialization. And, the intention for the standards creation is to generate optimally, given the integration of all that is known. The standards is the first knowledge set (wherein, data precedes knowledge, and structure precedes data, pattern precedes structure, intention precedes pattern). In the market-State, failure to comply with a mandatory standard usually engages enforcement, which carries out sanctions, competitors (civil) or State (criminal) penalties, or loss of money and ability to continue to profit. In the market-State, standards exist in this context, and they are developed by organizations embedded into this context. Here, standards may be used as a competitive advantage: if all other factors are equal, the market entity that can prove compliance to the applicable standard will have advantage over another that does not meet the requirements. Standards can be used by companies to avoid sanctions and penalties. Monitored compliance to standard adds trust to market competitor relationships. Because of the complexity of the market-State, the labeling and numbering of everything, including standards documents is highly confused. In community, the most well-known standard is the unified, global societal systems [standards] specifications. These documents specify past, present, potential future, and executed future standardized ways of constructing together in a common real-world environment. A societal standard provides a harmonized, stable and globally recognized framework for fulfillment of human individuals through the use of common resources and technologies. A standard that encompass multiple possible habitat service system configurations, customized to the intentions of their inhabitants.

QUESTION: *Is the unified [societal] information system that holds all project information openly visible to everyone, and available for any to better (given, societal InterSystem protocol access)?*

1.12.1 What are human access standards

A.K.A., Human well-being standards.

A human access standard (a.k.a., human societal standard) identifies, given what is currently known, the lowest common denominator and highest common denominator of a standard of living among the

population. The population exists within a network of locally integrated habitat service systems. A human access/societal standard identifies the presence of a universal, irreducible and essential set of material and informational conditions (really, conditional lifecycles) for achieving basic human well-being, along with indicators and guantitative thresholds, which can be operationalized for society based on local preferences. Humans have a set of material and informational, experiential requirements that are essential for human flourishing. A human access/societal standard identifies the set of material and informational conditions that everyone has the fundamental (basic, absolute, required) opportunity to access. These requirements are essential pre-conditions to meet basic needs, or provide central capabilities. A global human access standard specifies the extent to which, and how, such identified for everyone specified in documentation, and where preference processes would have to take over to reach the level of specificity required for their full operationalization. It is possible to coordinate for a universal set of material services, objects, and conditions that individuals, habitats, and the biosphere require, at a minimum, and maximum, for enabling flourishing for all.

1.12.1.1 Human access standard indicators

Indicators of an understandable level of human access, that is mutually desirable, includes, but may not be limited to:

- 1. Physical well-being
 - Nutrition (food, cold storage)
 - Shelter (sufficient, safe, comfortable, hygiene)
 - Living conditions (sufficient, safe, comfortable, hygiene)
 - Clothing (sufficient, safe, comfortable, hygiene)
 - Medical care (accessible and adequate)
 - Air and atmosphere quality (accessible and adequate)
- Social well-being
 - Education
 - Communication
 - Information and computation access
 - Mobility (access to transport, if required)
 - Autonomy (personal space, freedom to contribute and participate)

1.13 What are a societal-level projects documentation requirements?

The project's societal-level documentation suite consists of (note that some of these are overlapping views):

- Socio-technical documentation set A set of sociotechnical references for building and operating a socio-technical system.
- The overview documentation set Provides the

reader with a top-level overview of the project and its proposal, a guide to the technology, a roadmap to the technology documentation set,

- The online interface set An overview of the project's web site. This document is aimed at the entire global audience.
- Training materials documentation set A set of instructional material, as well as a set of review/test questions with answers, that can be used to ensure understanding of societal concepts and systems. This documentation set is aimed at trainers/ trainees.
- Marketing materials documentation set A set of materials that provide a high-level overview of the project and its products, as well as a brief synopsis of the society-related work of the societal contributors and partners. These are used at conferences, demonstrations, and briefings as handout material. This documentation set is aimed at senior managers, project managers/system engineers, and operators/users.

Wherein, there are sub-domains:

- The Synthetic Environment Domain Provides background information on the creation and use of synthetic environment databases required to understand the problem that society (as community-type) solves. This document addresses the "why do we need Community" question. Additionally, the terms/technology that the reader needs to know to fully understand the synthetic environment domain problem are introduced and defined. This document is aimed at senior InterSystem Team Coordinators, operators/users, and trainers/trainees.
- Technical Reference Set Provides technical guidance to members of the data provider and data consumer communities. Provides explicit "how-to" information for the development of new Auravana products, as well as the use of existing products. Due to its size, this document is divided into many stand-alone "volumes". Volume 1 provides a detailed description of the contents of each individual volume contained in Part 4. As necessary, each volume of the reference set provides technical information covering all hardware platforms supporting the product. This reference set is aimed at developers/contractors, operators/users, and trainers/trainees.
- Tools and Utilities User's Guide Set Contains multiple stand-alone volumes that provide "how-to" information for the use of each Auravana software tool and utility. As necessary, provides specific

instructions for each hardware platform supporting a tool. This document is aimed at developers and contractors, and trainers and trainees.

 Procedures and Processes Manual - Provides a series of procedures and processes used to manage the project. It addresses configuration management, the FTP site, and the development process for core software, among others. This document is aimed at project coordinators, system engineers, and developers/contractors.

1.14 How do 'standards collaborations' differ from 'open source collaborations'?

Society is an open source, standards project, and therein, there are standards that are developed and maintained as open source sub-projects. In a market place, standards collaboration and open source projects are seen, generally, as different socio-economic tools in with different goals, outcomes, and processes. As Stephen Walli explains:

- Standards take longer to develop and change. Whereas open source projects can develop quickly, standards encourage multiple implementations and tend to enter a market with some maturity and competition. Standards and specifications don't change quickly, so they are developed with the expectation that they'll need to last for longer periods of time. For example, moving from HTML1.0 to HTML5 standard took about 18 years, and we've had TCP since 1981 with few changes.
- 2. Standards are consensus-based compromises. Open source projects are driven by contribution and meritocracy.
- 3. Standards define useful predictable boundaries. Well-run open source projects are the building blocks of rich, varied ecosystems.

1.15 In terms of standards, what does this project propose?

This project proposes the world's first globally workable, unified societal systems standard. An open source project-based organization that forms a bridge between the potentials (e.g., Community and market-State sectors) by publishing the first societal-level information systems standard, and doing so, openly under a tradefree license.

The mission of the project is to create a unified, global societal information standard, and to promote the development of societal standardization and related activities in the world with a view to facilitating the global access fulfillment of all individuals to common heritage

services. The mission should lead to the development of highly cooperative spheres of intellectual, scientific, technological, and social activity, which materializes (given that which is known) into a network of highlyautomated, free-access, integrated city systems.

The project will realize (and materialize) a unified and global standard information-decision-materialization protocol of societal development and operations, which is disseminated as a published, globally accessible (transparent), unified (integrated) societal standard. To realize this goal, the project supports collaboration, development, and adoption of this standard across the globe.

Other names for the type of standard (and standards organization) this project proposes, are:

- Planetary societal standard
- Planetary societal specification
- Human societal standard
- Societal specification standard
- Human life standard
- Universal community standard
- · Planetary societal standard

This is a global standards setting project (SDO; body) composed to realize, continuously a community-type societal standard for a planetary-scale human population. The development of a unified societal standard that "works" for all individuals among humanity. A standard is a medium of integrated alignment, a communications structure and protocol between people.

A community-type societal system is fundamentally based on the existence of openly developed standards. Open standards are a foundation of a community-type society. Open standards let people and organizations set up new services and make them available across the rest of the human network without permission. A good example of this is the World Wide Web, which was developed—without permission from anyone. The next example will be a societal-level information system. These standards are key to allowing information, services, devices, and applications to work together across the global network of habitat [city] service systems.

NOTE: A globally cooperative societal system must to the greatest extent possible have a depersonalized and de-commercialized societal standard.

1.16 [Standard] Linguistics

Like most spoken languages, English is full of words that have multiple definitions and which evoke subtle nuances of meaning. The presence of multiple definitions and subtle nuance can lead to confusion and unhelpful disagreement when it comes to specifying and interpreting systems and their meaning.

A good tactic for reducing ill-definition and

misinterpretation is to standardize the language used to express meaning (concepts). Appropriately standardized language optimizes communication by reducing the likelihood of confusion. Strictly defining terms, and adhering strictly to definitions, will not only reduce conflict and confusion in interpreting communication, but through its universal practice, all of society will "save" time and reduce the likelihood of conflict in developing systems that serve human fulfillment. In other words, linguistic standardization allows for efficient and effective communication and development between individuals.

In the context of this project, it is optimal to include a section dedicated to linguistic clarification accessible toward the beginning of the plan. This section defines exactly how certain terms will be used within the project itself, and how they should be interpreted (i.e., "read" or input).

Herein, precise language makes the meaning of the directive clear to the user (of the standard). There are different linguistic standards used globally for directive statements.

ISO, for example, uses:

- **Shall** requirement. When specifying a requirement, use the word shall.
- Should recommendation.
- May permission.
- Possibility or Capability can / can not.
- Must an external constraint (e.g., jurisdictional/ legal).

Other organizations use different words:

- Must/will requirement.
- Might recommendation, best practice, guideline.
- Could or Able can / can not.

1.17 [Standard] Semiotics

Semiotics refers to the axiomatic structuring of all language by consciousness, given the ability to influence a real-world, physical environment. In communication among a social population, semiotics facilitates linguistic standardization by acting as a refer for the creation of commonly meaningful structures, through:

- 1. The study of the communication of existence.
- 2. The study of how to most accurately represent a potential, and a real, world existence.
- 3. The production of models for understanding.
- 4. The production of models for additional capacity realization.

The current semiotic model is sub-composed of the following three inter-related conceptions, which enable communication and safe realization [of society] among

a population:

- 1. **Semantics:** meanings, propositions, validity, truth, signification, denotations. Semantic means unambiguous. This is the semantic web. At the semantic level, the words, the technical and nontechnical terms, and the things referred to in the conversations must be understood by the two people. The sentences and the contents of the conversation must make sense to both of them.
 - Meaning a 'sign' (as a unit of semantic, meaning) is normally considered as a relationship between a 'sign' as a unit of language and what that unit of language refers to a 'sign' denoted denotatum (real-world shaped surface). All real-world meanings have a reference in the shapeable realworld. Under this definition of meaning, there has to be a 'reality' assumed, a datum, so that signs can be mapped onto objects in the 'reality'. Meaning is a logic function mapping words to reality in some way useful to consciousness.
 - The social system analogue There exist individuated units of consciousness with the ability to sense an environment and open resolvable decisions spaces that have material consequences to the individually social environment. In other words, there exists a social population of individuals with the ability to sense an environment and integrate information through an open resolvable decisions space with material consequence to the individual and social environment.
- Syntactics: formal structure, language, logic, data, programs, software, files, categories, functions, etc. Communication must follow the same grammaticalprocedural rules to be shared. Syntactics is the aspect of semiotics concerned with structure. At one level it concerns the structure of sentences, claims, or procedures in or through a language. At another level it concerns the models as the instantiation of entities in relationship, patterns, algorithms, etc.
 - The decision system analogue There exist a calculated computational space where decisions may be resolved and designs may be compositionally solved as solutions. There is a logical procedure [for referencing resources].
- 3. **Empirics:** pattern, variety, noise, entropy, channel capacity, redundancy, efficiency, codes, and the technical infrastructure to fulfill needs.
 - Physical world Humans have needs within a socio-technical environment. This environment is observable. The observation of a conception is to sense something which is technically

understandable as appearing in the common, socially experience[-able] environment. Here, conceptions can be unified and when sensations are common sensed and communicated, then technical service system have the potential to arise into materiality to fulfill human needs as intentionally communicated to one another within the unified societal system.

• The material system analogue - There exists a real-world material-physical environment that is shared by our individually embodied consciousnesses.

1.18 [Standard] Unifying language

The Unified Modeling Language (UML) is an axiomaticalpurpose, developmental, modeling language in the field of engineering ("creation" and "operation") that is intended to provide a standard way to visualize the design of a 'system'. UML is simply a diagrammatic, visual notation based on the system method.

NOTE: Modeling is the unifying language. Modeling is visualizing, and visualizing together requires technical modeling alignment on the part of all communicating entities.

1.18.1 [Standard] Unified modeling language (UML)

A.k.a., Systems modeling language (SysML), unified requirements modeling language, (URML), and unified operations modeling language (UOML).

Unified modeling language (UML) is the semiotic representation of conceptual information in visual form purposeful communication between as consciously processing entities (e.g., humans). UML is a communications standard, a set of rules for visualizing relationships between objects that exist, or may exist, in the real world. Information expressed through the rules of UML appears as an integrated set of diagrams forming a unified visualization, as a model, for the "network" of objects and relationships. UML could be considered the first element of a systems-based communications (i.e., visual) protocol between processing entities for arriving at a common understanding. Concept models are the most simplistic form of visually modeling objects and relationships. Concept "network" models are more complex descriptions, models, of objects and relationships.

CLARIFICATION: Note here the conceptual difference between a 'description' and an 'explanation'. The <u>description</u> is the <u>visualization</u> itself, which is perceived by the senses of the conscious processing entity. The <u>explanation</u> is the <u>reason processing</u> itself, which is

processed by the cognition of the conscious processing entity. From explanation, more than one conscious processing entity can construct and share a common visualization. In communications, there can be description and not explanation. To have explanation and not description would be to not have a unified visualization language between consciously communicating entities.

In order to create and operate any system in the real world there are correct alignment relationships that must be expressed (enacted). Conscious entities with the intention to operate together, to cooperate (co-operate), a common visualization rule processing structure is required. UML fulfills the requirement for that common visual-rule processing structure. UML was developed (discovered, naturally expressed) to allow system engineers (developers and operators) to visualize together, to co-operate, which is necessary in order to specify a possible design [for both entities], and construct that possible design [for both entities].

A specific visualization of a real world system (existent or not) is shared through a UML-based 'design-operation package', which is otherwise commonly known as a visual system specification document (an information set, or in digital storage, a 'file'). That 'design-operation package' file is shared between engineers co-operating (either as developers and/or operators). The 'design-operation(s) package' is the set of visual information (diagrams) for understanding (self), selecting (together), constructing (together), and operating (together) a real world system.

UML is a coherent and complete system visualization language applied cognitively (i.e., used to process information) that can account for the individual and the social. However, as a tool (i.e., a method, technique, process, etc.) its application by consciously processing entities may not always necessarily be so [at the societal level].

In the process of creation and operation, the UML represents a set of rules 'engineers' (the consciously processing entities expressing action) may use successfully to model large and complex, real world, systems. The UML is a requirement for developing system-ware (i.e., hardware and software, real-world interfaceable systems).

When expressed through a digital information system, the UML appears as graphical notations applying some set of semiotically coherent rules. To the graphical notation, there may, or may not be textual notation. All constructable and constructed 'design operation packages' are developed and operated through 'projects'. 'Projects are a sequence of operation's objects (action) and relationship's links (communication) that exist concurrently (together in 'time', sensory experience) between conscious processing entities.

Using the UML, project participants (team) communicate, explore potential designs, select a single design, create that design, verify that design, operate that design and test-study-learn from that design.

1.19 [Standard] Applied language

NOTE: The linguistic standardization of the two information sets necessary for intentionally re-creating a different sensible-experienceableobservable, real-world, physicalized environment. Here, coordination involves the consciously-unified sharing of information useful for a "peak-state" (Read: optimal state) of [required, given conditions] fulfillment.

The Project and Engineering information sets are unified at the societal level, there is only a single, unfed information set, which can be viewed from two perspectives, that of the coordination (control and communication of resources; projects-tasks) and that of engineering (en-/ab-lization or en-/dis-ablization given a solid, materially-density constrained, environment). The common physicalized environment that consciousness en-habiting human form experiences changes through this process; where, individual can take the change, and groups of individuals can come together to cooperate to take the change. The Intersystem Team consists of Engineers who follow openly sourced rules, procedures, in their following of each new instruction. The instructions originate from the resolution of unique decision spaces in the given (common) information system to be executed by the InterSystem Team.

In the market-State, all humans are have some probability of being in competition with each other for the fulfillment of their human requirements (where, some people therein, cooperate). In other words, people are pitted against one another with some organizations of people pitted against one another having more control over the next instantiated iteration of the given materialphysicalized environment (the State of regulation).

1.19.1 The systems language

APHORISM: It becomes very difficult to make progress when the lexicon (vocabulary) is not agreed upon.

Modeling and designing complex, societal service systems requires a language capable of explaining services and describing their components by users who are also the service's creators. The language must produce a shared understandability to deal with the individuality of users and contributors. The language must integrate the autonomy of individuals and component parts, so that the creation is adaptive. That language must be able to represent a real common world in some degree of falsifiable alignment (levels of conceptual alignment) to deal with complexity (networks), context (situational issue), and nuance (common human need and individual histories).

In the information technology discipline (IT) there is a service-oriented architecture (SOA) standard that allows for the effective and efficient design and operation of human [service] systems. A serviceoriented infrastructure is the integration of a wide divergence of components into a specific unified system to fulfill a purpose (Read: a service the application of socio-technical information for a purpose). A serviceoriented structure provides users (who may also be contributors) a common interface and set of protocols for them to communicate, through a common process (sometimes called a 'service bus'). With the recognition that there exist the potential to design a service, exists the potential to design a societal organizing structure oriented around human need as the organizing form of service fulfillment.

To approach language systematically, definitions have to be criticized before explanation are evaluated (i.e., before someone expects another to adopt their theory). If definitions cannot be critically examined, then reasoning is irrational. If explanations cannot be critically examined, then [human initiated] constructions from those explanations are unlikely to produce optimal [human] environments.

1.19.1.1 Systems language applied to complex societal organization as simplified use-case scenario

A user - is going to 'drink' a 'cup' of 'coffee' under an 'umbrella' from the 'sun' and in a 'pleasant' - environment". In order to do, to produce, a consumable coffee in a nice location, the user and producer need to bring together many bits of information and shapes of material resource (from coffee beans to machines, and human effort). Some common platform must be designed for all these "things" to interoperate and deliver the final service, optimally.

In common practice, the service-oriented structural systems method associates sub-elements (parts) as delivering a service, which may be a:

- Function (output as service process itself).
- Object (output as shaped material).
- Condition (output as state of processing shaped materials).

To the user (higher system need) there is the experience of a service, which does or does not meet the need [by the user for the services purposeful existence].

In the market there is something called "service autonomy" where market services run by business and States operate as black boxes with subjective interfaces. Note that the market concept of "service autonomy" plays no role in a unified human service system, and it's application is reflective of a dis-unified societal configuration where user and developer entities are competing against each, and, one another. When users are developers then services aren't "discovered by consumers through a market", but are instead, 'designed' and 'developed' by a 'community' of 'contributing users' who are discovering more about themselves and their world while living.

In community, services may or may not still be "broadcast" as being available; the decisioning is different

in the market-State.

In market-based systems service terminology there is the concept of "loose coupling" to the whole system, which means that employees and employers, can be changed out easily, including by consumers, all of whom maintain their independence.

In community, "loose coupling" could mean individual contribution and freedom to access all the opportunities that all availabilities provide, because anyone is contributing. From a contributors perspective, a service is an internal adherence to a communications agreement as defined by one or more service description documents, and practiced as a protocol by teams of humans and hard-/soft-ware systems.

A unified service structure (unified service architecture) allows for the unified provisioning and de-provisioning of resources to sub-systems to optimize the overall service system. Here, unified means that all resources are accounted for.

NOTE: In the market all services are designed to eventually generate money (income), otherwise the service would not survive in the market (without philanthropist money support). In the market, services are not axiomatically independent of the market. In community, services are not axiomatically independent of human need, because the service providers are the users.

Systems language is a language that visibly applies at all known levels of socio-technical scale, from the micro to the macro. A standard (generic) language that can be used to describe all the components in the system and their service. Interfaces translate between their local functionalities into the global language, which are given descriptors (Metadata tags) to describe the components functionality, availability, access protocol, conditions, and various other parameters to its coupling and service provision. It is possible to create a societal 'service bus' (a habitat service system) to integrate functional societal components into a complete [habitat] service system, and an interface for the end-user to interact with the services they need.

In a sense, service-oriented design (service-oriented architecture) is the selected structure for doing systems integration within complex engineered systems. It provides a formal language with the ability for abstracting to different levels [of abstraction] as required by the entity using it in any particular application.

At an individual level, having systems thinking allows for the autonomy of thought. A method for accurately modeling and aligning with the natural world is required if real-world individual fulfillment is the goal. If the real world can't be conceived of without serious error then all manner of environmental influence will be having all manner of negative network effects in the human system of autonomously fulfilled individuals. No one individual human is feeding of moving for another human individual unless there is some dis-ability present.

Insight: Just as someone can stop eating and moving in a healthy manner, so too can they not think in a healthy manner. Thinking can be out of alignment with the nature of their mental fulfillment, just as diet and movement can be out of alignment with the nature of their physical fulfillment, and to complexity the situation and make it 'real', each dimension of experience influences the other (because thought is being expressed through matter). The only language currently know of to express this complexity is systems language, which has carries the ability to self-correct (adapt alignment) and scale correctly (model coherence). Without the ability to model coherently, self-correction will likely be out of alignment with stated intentions, and without the ability to accept and integrate sensation a coherent model will likely not be developed.

A unifying system of language, systems language, is required:

- 1. A system has a given environment, by an interface.
- 2. A system has coherence, among its internal parts.
- 3. A system can self-correct, if it is living.
- 4. A system can be optimized, when it is unified.
- 5. A system can be designed (planned) and operated (executed) by life.
- 6. Life has requirements.
- 7. Life that uses 'systems' language can evaluate its service designs as 'systems' for purposefully completing life requirements.
- 8. The completion of life requirements may be optimal or sub-optimal.

1.19.2 Knowledge

Knowledge is the significant independent variable that will decide whether or not society moves forward into a community-type of society. The involvement of the global population ("masses") is necessary, but not sufficient. The masses have to know what and how to create a societal-level community, and in order to know that information, knowledge is required.

STATEMENT: If you gently read this document, you will receive unique insights that will assist your human minds development. But, this comes at the expense of being able to read dozens of pages at a time.

1.19.3 Optimization

A unified societal system may be optimized when all core structures are accounted for:

- An event-driven structure that represents temporal systems. (event-driven also means task, activity, etc.)
- A positional-driven structure that represents spatial

systems. (positional-driven also means material, physical, shape, etc.)

• An intentional-driven structure that represents conceptual systems. (conceptual-driven also means semantic, meaning, purpose, etc.)

Here, a given system may be optimized by analyzing from, and synthesizing with, a unified structure. A unifying societal systems structure includes a unified, real-world model, which is structurally sub-composed of an eventoriented structure, a positional oriented structure, and a conceptual-oriented structure. It is through these data structures (information structures) that a transparent set of societal sub-system specifications are built (project, social, material, etc.). These categorical data structures may be applied as information constructors (by users) to combine data (previously existing and newly collected) into patterns (packages) of usability information for other societal sub-system. These data structures structure data in the social system that outputs into the decision system, when decisions are executed there are affects (some predictable, some not) in a material world that have consequence to consciousness, which inputs data in a variety of forms as feedback and design.

1.19.4 Simplified societal design for humanity

QUESTION: What would society look like if it were arranged to complete human need?

It is possible to analyze the composition of a societal design that works for all of humanity:

- 1. The whole unified societal human system
- 2. Has a whole unified information system
- 3. Expressing a whole unified habitat service system
- 4. Contributed to by whole unified individuals
- 5. For the human need fulfillment of all individuals.

It is possible to synthesize the composition of a societal design that works for all of humanity:

- 1. Whole unified individuals have a requirement for human need fulfillment.
- 2. Human need fulfillment may be contributed to by individuals who know what is needed.
- 3. Humans have a need to control (socio-technical state) a portion of their total habitat to develop and use complex socio-technical service systems.
- 4. To control (to decide the solution to) complex systems, information is required.
- 5. To control complex systems in alignment with a given intentional direction, then a sufficient amount of information is required (to ensure the solution is 99% predictable may be the highest level of information completeness).
- 6. Decisioning can have complete (sufficiency)

or incomplete information in its database to determinedly resolve the execution of a decision in a complex control system.

- 7. Information in the determination of a decision can be unified (given access to all that is potentially shareable) and/or sufficient, or it can be incomplete.
- 8. To coordinate a complex societal system a unified information system must be as completely accessible as possible for human need fulfillment.
- 9. When all structures are modeled coherently, then individuals among society can more objectively account for why society is the way it is, and how society could be differently configured tomorrow to adjust for greater human individual need fulfillment.

NOTATION: Is an individual's 'mood' the feeling someone has when following natural genetic programs, and the feeling comes from having those needs 'feel' fulfilled or not, 'suffer'. Whereas 'mood' is instinctual, 'emotion' is the conscious or sub-conscious drive, and the 'feeling' is the conscious feeling from the complex systems mixture.

2 [Standard] Working group

A.k.a, Workgroup, working-group, work group, working party, task groups, or technical advisory group, the project integration working process, intersystem team working groups, working group conferences, solutions inquiry team.

The execution of solution design and integration is likely to involve working groups and workgroup conferences. Workgroup conferences are integration points for the team. In concern to the societal systems model and information system [article set], the result of societal engineering working group conferences are updates, sometimes, to the societal system. The concept model for the societal information system is resolved currently through these workgroup conferences, whose results are accepted or not and integrated via a larger management (or InterSystem Team). Organization of people and machines.. This/these individuals should be the most knowledgeable about that subject area since their names are listed as those who last developed the content. Life circumstances may complicate the issue of accountability. Former content developers are logged and removed. Generally, new iterations to the information sets come from workgroup conferences regularly/cyclically pre-scheduled, some of which may lead to changes, and others not. The results are accepted by the affiliates as the results of a transparent decision.

Working groups are self-directed organizations of skilled and motivated individuals who are working on the articles of standardization of one or more aspects of a community type society. Working groups are composed of those who are sufficiently motivated to contribute and sufficiently informed to understand (or some mixture thereof). Working groups are composed of informed and capable individuals (the term "experts" connotes wrongly here that only those who have put in 5-10,000hrs can make contributions, and is thus replaced with, 'informed' and 'capable').

The coordinator structures information and material flows between the developers ("experts"), and schedules conferences where appropriate.

Market-State organizations generally form working groups by time, technology, or territory. The weakness of this is that boundaries interfere with the desirable sharing of knowledge and experience, and so, learning suffers and work becomes less optimal (efficient and effective). Self-directed and self-regulated groups do not require supervisors to manage the boundaries of the group (e.g., ensure the group has adequate resources and coordinate activities with other groups) and foresee coming changes.

The responsibility for work on standards begins in a working group. Standard[ized] operating procedures facilitate the effort of working group participants and the deliverable by establishing the necessary framework for a workable organization. These [standard] operating procedures outline the orderly process of work by the working group.

A common working group procedure is, for example:

- 1. Working group personal and sub-group work.
- 2. Working group meeting/conference for discovery presentation and integration [draft integration].
- 3. Public comment period: October 9, 2019 through December 9, 2019
- 4. Working group meeting/conference for integration primarily [final integration].
- 5. InterSystem Teams implement and/or apply new societal standard; teams conform information and material environment to the standard.
- All working groups are live streamed. All working documentation is public except for personal notes. All comments are transparent, and generally, accountable.

Working group standards information flow involves:

- 1. Pre-conceptualization
- 2. Conceptualization
- 3. Discussion
- 4. Writing, modeling, simulating
- 5. Implementation

2.1 Working group conferences

A.k.a., Technical working group sharing and integration events to produce standards.

Technical working groups (TWGs) come together at a working group conference to learn and decide. At a working group conference, articles that compose the societal standard are developed. When appropriate, groups split off into smaller sub-groups to work on different sub-sections (sub-problems or solutions) of a total article. In general, working groups develop standards under standardized ("approved") scope.

Working group core members focus on models, clauses, drawings, simulations, coding and coordination. If deliverables are developed and approved, then the names of those who attended and approve the deliverable output are assigned to the new article of their contribution.

In a working group conference. A decision in the form of "consensus" is the resolution of serious objections sufficiently for the coordinator to effectively move forward with the effort of the working group. At decisions points there must be sufficient information to resolve the decision such that there are no serious objections sufficient for the coordinator to prevent the forward movement of a working group or prevent conflict.

In a working group, from the submitted modifications, the members decide to accept or not the. If the group thinks the modification will benefit, he will choose the best code from all of the submittals and incorporate it into the updates.

Coordinators may sign off that there are no significant remaining objections. "Consensus" is general agreement (90% and above), characterized by the absence of sustained opposition to substantial issues by an important part of the concerned interests and by a process that involves seeking to take into account views of all humans concerned and to reconcile/integrate any conflicting arguments. If voting is required, then a 90% threshold is required to move the project forward. Sustained opposition means sustained opposition on the part of another working group member of the same working group (and not another working group of member of the public).

Working group conferences can be exhaustive exercises, and so the work must be checked post conference by at least the contextual coordinator. When the next publication is ready, new content and names will be published. If the next publication won't be ready for some time, then workgroup results can be published temporarily as addendums, waiting for the next iteration of the complete publication.

Content scheduled for presentation at the workgroup conference, should in general, be sufficiently complete and open that it can be worked and reworked into the next iteration of the system by sub-teams of the whole population of workgroup attendees the workgroup works with the prior and new (should be easy to work with) information to produce a better ultimate design and/or understanding. Workgroups should be of an appropriate size to complete work effectively. The term working group or work group conference can be confusing at first. What happens is people do work before the conference, this is their personal work which they may or may not have made public to everyone. They then get their work sufficiently reading so that it can be worked into other work by a team of workers. They then attend the conference with their sufficiently completed work. Teams first learn about the new work. Then teams integrate, as possible, the new work into the old, all the while working on achieving greater understanding. This whole process may last a few days, or weeks.

This whole process generally occurs with most of the attendees together in the same physical space so that communication and work is real-time. Remember, this is a process of integration, most of the discovery was done earlier by those who presented their work at the working group conference.

Some conferences have nothing produced in terms of changes to the actualized or described system, and instead only personal learning and greater understanding occurs for conference attendees.

Workgroup conferences are populated by their specific Intersystem team members, and by significant contributors who are presenting their discoveries or their significantly complete (to be workable) work. Coordinators generally, though not always, try to unbiased themselves from the events of the workgroup, acting as a peer reviewer of the output and not participating work working group re-working teams precisely.

There is no formal rule against this though. It is just a potential flag of bias for when the open source commons public has the opportunity to view the new workgroup content and its peer accountability reviews. There could be bias here, which everyone should be aware of. Yes, workgroups are where work occurs, but most of the work should be done ahead of time. The result of a conference may just be an article of work for researchers or workers outside the conference. A working group conference can produce many outputs, some types of which will lead to changes to the core kernel.

2.1 Technical working groups

Technical working groups discover, integrate, and develop socio-technical systems. By forming a technical working group (TWG), high-level practitioners working in on the same article of the systems composition can coordinate activities and align resources to better work toward common objectives in their sector or area of focus. Collaborative development leads to more efficient use of resources.

Working group deliverables, the community specification standard is the main deliverable that the Project publishes. However, there are other sub-societal deliverables that technical working groups may publish, including but not limited to:

- Technical reports (TR) cannot contain requirements.
- Research reports (RR)
- Publicly available specifications and standards (PAS)
 can contain requirements. Free and open source specifications by other organizations.
- Technical specifications and standards (TSS) draft and sub-societal specifications.

2.2 What is an open-source societal standards setting working group (workgroup)?

There is a specification/model of society that incorporates a series of articles that together represent the societal standard(s) system. The specification as a composition of articles is the decided upon standard for information-spatial processing in society. These adaptive standard-articles change how the societal system itself is understood and also lead to changes in the informational-materialization of society. In this later sense, the standard articles represent the specification for the society as explained and to be actualized upon. Any given socio-technical society is made up of standards. A society, uniquely, can compose these standards into the form of a unified specification for the next optimal iteration of the society itself. Workgroups can be composed to discover and decide the societal standards, which are described and explained in text and visualized spatially. The societal specification articles could be viewed as articles of specification for a community-type society. Each article represents a standard[ized] as understandable and intended element within that society.

The articles that compose this document and the whole societal system specification (social, decision, lifestyle, and material) include all operative (at a Habitat InterSystem Team level) standards in society. The currently decided articles are the current standard for society. Each article represents the composition and reasoning for a sub-construction of the whole societal system.

Standards, sub-composed of articles, adopted by working groups, forms the specification for the design of a societal-level operating system.

The standards societal system specification subcomposed of articles must be adopted:

- Adoption of [articles of] societal standard for citynetwork and nations.
 - Working group 1 (e.g., ISO37101, System Management) - This standard sets requirements, guidance and supporting techniques for sustainable societal development among all subcommunities. It is designed to help all kinds of sub-communities coordinate their sustainability, smartness and resilience to improve the contribution of communities to sustainable human development and self-performance progression.
- Adoption of [articles of] technical standards for cities, operations and usage, and interoperability.
 - Working group 2 (e.g., ISO 37120; ISO TC 268 WG 2, City Indicators) - This standard sets requirements, guidance and supporting techniques for sustainable technological development among all sub-communities.

2.3 Community-type society workgroup sub-composition

In a community-type society, there are:

- The intersystem spatial teams (people doing sociotechnical, material things to sustain the population as life, technical, and exploratory).
- The intersystem information teams (people taking decisions and integration determinations as individuals, team contributions, algorithms, and [accepting and developing a] information system).

A working group (a.k.a., working group, work group, working party, task groups, workgroups, or technical advisory groups) standards setting body (higher level), community of practice (lower level). is a group of knowledgeable individuals working together to achieve specified goals. Working groups are domain-specific and focus on discussion or activity around a specific subject area. A working group can be disciplinary or interdisciplinary.

The lifespan of a working group can last for years or only a few months. Work groups that extend over years have the tendency to develop a quasipermanent existence when the assigned task is accomplished;[citation needed] hence the need to disband (or phase out) the working group when it has achieved its goal(s). It is imperative for the participants to appreciate and understand that the working group is intended to be a forum for cooperation and participation; the working group exists for those who want to contribute work, only related to the groups work.

Characteristics of a work group:

- A work group may be ad hoc or exist continuously.
- A work group may be team-oriented, team-centric, or non-team affiliated (note: team here refers to InterSystem Team).
- A work group may be a formal standard setting body, conference, event, or some other point of integration
- A work group may produce a formal specification iteration.
- Generally, a work group conference is the point of common integration and production for a working group.

Examples of common goals for working groups include:

- Creation of an informational document
- Creation of a standard
- Resolution of problems related to a system or network
- Continuous improvement
- Research

Real-world working groups may be:

- Social workgroup teams.
 - Social service teams carrying out informational processes.
 - Social information work groups.
- Decision combination, and computation.
 - Decision support service teams carrying out decisional processes.
- Material habitat service teams.
 - Habitat service teams carrying out operational processes.
 - Habitat information work groups.
 - The habitat life-planning operational process

team work group.

- The habitat technical-operating operational process team work group.
- The habitat exploratory-discretionary operational process team work group.
- A habitat service system has a set of operational process teams (planning, operations, discretionary). Each habitat service system has a work group. All operational systems have actively accountable teams.
- In the case of the decision system algorithm, the kernel, the decision system work group conference iterates, and habitat operation process team oversees the systems operation.

There are effectively three levels of designation for the societal system from a work group view:

- Exploration work group
 - The societal information system workgroup, and many sub-workgroups. Development of the total information system itself.
- Kernel integration work group
 - The societal decision system algorithm workgroup. The procedural algorithm itself.
- Habitat service team operations work group
 - The habitat operation process teams. Teams that follow procedures have a continued interest in those procedures.

What are the open standards requirement for society?

 Which sets forth a number of criteria to ensure that specifications can be implemented under open source licenses. The OSR will be used by the working group as a set of guiding principles and best practices.

The Open Source and Standards Working Group will:

- Explore current SSO understanding of OSI approved licenses, and more generally, open source software, development, and projects;
- Educate SSO in current principles and practices widely excepted by open source communities of practice;
- Support authentic engagement across open source communities (i.e. implementers, contributors, projects, foundations) to ensure alignment with best practices in open source licensing, development and distribution, and;
- 4. Produce reference resources (educational materials, professional development activities, expert opinions, consulting services, etc.) to address gaps in understanding, support current

practices, and increase the recognition of OSI approved licensing and the OSI License Review Process.

5. Encourage SSOs to request and maintain formal peer relationships with OSI. The Working Group will act as the formal Correspondent.

NOTE: Working group proceedings may be hosted on Github, a collaboration platform especially well-suited for open source projects.

2.4 Workgroup decision criteria

A.k.a., Decision criteria, workgroup criteria.

Criteria is the plural form of the word criterion, which means a standard, rule, or test (ideally with reasoning) on which a decision (determination, selection, evaluation, etc.) can be based. In application, criteria are used for the *evaluation* of probables and *selection* of a singular [solution]. A criteria for the selection of a solution will lead to the ranking of potential solutions. The application of the criteria to some information set lead to the ranking of solutions; wherein, solutions are inquired into, and are ranked, according to the criteria.

NOTE: Workgroups and algorithmic decision processes resolve decisions (in part) through criteria.

A threshold may exist beyond which a solution is acceptable and/or is not acceptable [to the complete, 99%, resolution of the inquiry cycle]. A criteria may be used to determine this threshold [at which a particular solution, from all the many probable solutions, is selected to be executed upon].

NOTE: Thresholds require a resulting value against which to compare. The resulting value is sometimes known as a "score", and in such an analogy, the threshold would be the "goal".

More technically, a criteria for a newly incoming set of information lead to the ranking of its processed outputs. From an information systems perspective, a criteria is an information search and resolution program. The criteria is pre-selected. New information comes into content with the criteria. If the new information is absorbed, then the system that established the criteria can run calculations on the results to discover-learn more about the information environment.

When a criteria for a design [project] is decided/ determined, it is then used to evaluate the success or failure of the design (as an inquiry, a solution to meet an inquiry, and/or, a project). Criteria is something that may express (or, result in) an evaluation. For example, a set of criteria for buying a new television may be location shape, visual quality, sound quality, battery life, cabling, or brand name (market only).

Analyze solutions problems to evaluate them against

a set of criteria that match a completely (decision system acceptable) set of pre-determined criteria for selection of one solution [to materialize and feed-back into ourselves].

Among the population of an organism, the most essential criteria for survival and thriving is that of moving toward the satisfaction of life needs.

Among a global population, it is essential to transparently reason (i.e., justify) 'why' every action has been taken (i.e., to explain with some evidence).

The inquiry resolution protocol (i.e., markers, examiners, etc.) will constantly look at (inquire into) the product/system or environment that that is being produced as a solution for the evidence of its intended physical- or informational-oriented objective. In the case of a team, inquiries will look into the application of skills, application of your research and application of the results of experimentation, testing, and integration. The validity of the work is evidenced by the application in the system of the designing [specification]. The work is valid because the experience of the 'what' works as expected. The 'how' requires materials and technical knowledge.

2.4.1 One of the more simplest workgroup decision criteria

Each team or workgroup member may provide a final score based on an equal weighing in each of the following four criteria as well as a set of short comments (risks and biases must be noted for each criteria):

- Clarity of vision quality of visualization or writing in understandableness (comprehensibility).
 - Is there a visualization?
 - Can it be understood?
 - Can it be integrated?
- Past performance given what has occurred, what is most likely to occur?
 - Is there a predictably less beneficial likelihood of current trends continue?
 - What changes can be made to make alternative potentials most likely?

Scholarly references

- ANNEX 1: GNSO Working Group Guidelines. (2007). ICAN | GNSO. April, 11. [gnso.icann.org]
- Schmidt, C.M. (2017). Best practices for technical standard creation: Guidelines for the design, socialization, formalization, and adoption of new technical standards. MITRE. Project No. 25AOH830-JM. [mitre.org]
- *IEEE P1722 Working Group Operating Procedures*. (2009). IEEE-SA. March. [grouper.ieee.org]

Book references

• *How to write standards*. (2016). ISO Standards. ISBN 978-92-67-10686-1 [iso.org]

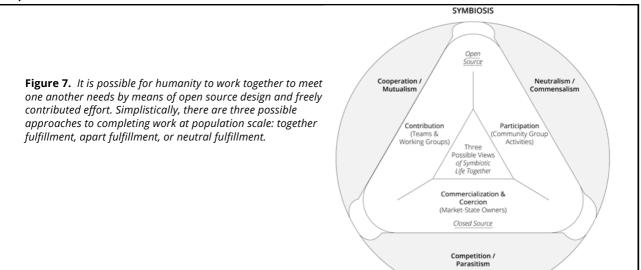
Online references

- Hornung, A. Krivosheev, G. et al. (2006). Standards Wars. University of Washington. CSEP 590A: History of Computing; Autumn 2006. [washington.edu]
- Lucas, G., Hatcher, L. Introduction to standards and specifications for design in mechanics or Strength of materials. Penn State College of Engineering. Accessed: December, 2019. [sites.esm.psu.edu]
- *Quality Resources*. (2019). American Society for Quality. [asq.org]
- Rakesh, Vanya. (2016). Adoption of Standards in Smart Cities - Way Forward for India. The Center For Internet & Society. March, 19. [cis-india.org]
- *Standards development*. (2019). International Electrotechnical Commission. [iec.ch]
- Standards: What are they and why are they important. (2005). NPES Standards Bluebook. [npes.org]
- The Standards Development Process. (2019). The Open Group. [opengroup.org]

The Contribution Approach

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com Version Accepted: 8 June 2020


Acceptance Event: *Project coordinator acceptance* Last Working Integration Point: *Project coordinator integration*

Keywords: contribution, open source, open standards, open licensing

Abstract

Contribution is work done through intrinsic motivation, without trade or extrinsic tangible reward, and done in an open information environment. Open information environments are generally referred to as 'free' or 'open source'. Open source is self-explanatory in its title -- it means that everyone gets to share [openly] in the source [code] - everyone has the opportunity to participate in a[n open source] system's innovation. In the market, open source means a royalty-free license to use. And, free means without trade or currency (without the market). Contributors work on and through open source systems and standards. Open source licenses ensure the potential for collaboration.

Graphical Abstract

1 Introduction

A.k.a., The open approach, the open source approach, the participative approach, the voluntary approach, the collaborative approach, the socially cooperative approach, the sharing approach, the free approach, the cooperation approach.

Contribution is work done through intrinsic motivation, without trade or extrinsic tangible reward, and done in an open information environment. Open information environments are generally referred to as 'free' or 'open source'. Open source is self-explanatory in its title -- it means that everyone gets to share [openly] in the source [code] - everyone has the opportunity to participate in a[n open source] system's innovation. In the market, open source means a royalty-free license to use. And, free means without trade or currency (without the market). Open source encompasses two related concepts regarding the way systems are developed and "licensed". They are codified in the "free xyz" (e.g., free software, public domain) and the "Open Source" definitions. "Free and Open Source" refers to systems that have been made available under a free market-State "license" with the rights to run the system for any purpose, to study how the system works, to adapt it, and to redistribute copies, including modifications. Open source is where anyone can see, re-use, and redistribute all or part of the source code of some thing's construction or operation. Fundamentally, an open source orientation allows for safe operation of a population wide control system.

Simplistically, in order for individuals in society to have trust and certainty in their society, there must be transparency and contribution in the overall approach to the societies formalization, construction, and operation:

- **Transparency** (*trust, certainty*) Everyone has access to the information and materials necessary for doing the best work. When these information and materials are accessible, humanity can build upon each other's ideas and discoveries. Humanity can make more effective decisions and understand how decisions affect one another.
- Contribution (*trust, certainty*) When humanity is free [to participate], anyone can enhance another's work in beneficial ways. When we can modify what others have shared, humanity "unlocks" new possibilities [for individual fulfillment and freedom]. By initiating new projects together, humanity can solve problems that no one can solve alone. When humanity implements open standards, every individual is enabled to contribute to the present and the future.

In concern to open source and standards, standards are considered to be open when they are developed

and made available through processes that adhere to a globally transparent access-based contribution structure.

Whereas open source means cooperation, closed source means competition, secrecy, and trade. When the condition of secrecy, of competition, is present, then individuals and organizations will withhold useful (or potentially useful) data for their own benefit. If you are the only person who has the data in a state of competition, you are highly likely to keep it secret.

In the market-State, open source is a particular way of implementing and distributing something, enabled by jurisdictional legal language that gives a range of permissions for what people may do with it.

'Free' always means:

• Without trade.

'Open source' always means:

- Open source means contributions are publicly observable.
- Open source means "you" are detaching "yourself" from market-based socio-economic relationships.
- Open source means are giving away you information and technology for free.
- Open source is the application of the idea that it is possible to contribute to the whole (self and social) as a value, simultaneously.
- Open source fits with allowing the free (as in freedom) evolution and development of ideas.
- Open source fits with efficiency in providing shared access to optimal fulfillment, by not creating artificial limitations on access, use, and development.
- Open source means "you" are giving up "your" ownership (as a competitive differentiator).

'Open source' sometimes means:

- "Your" work is being copied completely and redistributed.
- "You" are posting a vulnerability that a malicious person might exploit before a patch is available.

'Closed source' always means:

- The source is private and owned by someone.
- Unnecessary duplication Closed source efforts necessary entail duplication, because not everybody can be aware and involved in the closed source effort.
- Distrust Closed source efforts necessarily entail distrust, because not everybody can be aware and involved in the closed source effort.

NOTE: The Internet has enabled open source,

and many of the tools and infrastructure behind the Internet are open source.

2 Open source systems

INSIGHT: A population can use collaboration (Read: open source) to speed up the arrival of a solution.

Open source systems are systems whose [source] code is published and made available to the public, enabling anyone to copy, modify, and redistribute the source code without paying royalties or fees. This definition includes two elements:

- Actual disclosure of the [source] code from the system;
- The intellectual property rights license, which includes copyright license and, where applicable, patent licenses that can be used, modified and distributed without the payment of software license.

In concern to ware (software/hardware), open source refers to systems [source] code is freely available to users for reference, debugging, modification, and/or extension.

In concern to standards, open standards are, typically, specifications (formal descriptions). For open source, open means that the source code must be distributed with every copy of an executable [application] and every recipient must be allowed to modify and distribute the source code freely to subsequent users. In open standards, open signifies that the standards process is open to participation and that the completed standards are available to everyone.

NOTE: *Open source creates a community of [designing] users.*

Note that working documents and drafts may or may not be kept private to the individual contributors or issuing organization sub-groups, until released in some more finalized form. Open standards organizations may have membership fees, but any person or company may participate as a member at a meaningful level. Open standards organizations give copies of their standards away for free and the right to implement a standard is typically also free. At a fundamental level, open source means to use without regard to permission and other artificial restrictions on social and technical progression (effectively, self and societal progression). Open source is the turning over of [the concept of] property to the [the concept of] commons.

Open source, functional hierarchies are based on contributed competence involving the presence of knowledge, and the ability to formulate problems and solve them. Some hierarchies are predicated on power and authority, and mostly the pathological ones.

Open source has two principal trust benefits:

- 1. Transparency = Trust.
- Social trust through transparency.
- 2. Many potential viewers = Trust.
 - Social trust through networked contribution there are more observers and contributors to the system (e.g., more people looking at the code such that bugs are discovered more quickly and can be fixed more quickly; hence, the objective/ code is achieved/improved.
- 3. Sharing = Trust.
 - Open source (sharing) means avoiding having to rebuild fundamental components from scratch.

Because the source code is publicly available, individuals can concentrate on developing the elements unique to their current task, instead of spending their effort on rethinking and re-writing code that has already been developed by others. Code re-use reduces development time and provides predictable results.

Open source systems are considered less likely to fork when there is an accepted and transparent organizational structure, contribution is open, and there is long-term contribution potential; transparency eliminates the economic motivations for fragmentation.

Take Linux for example: Ninety-nine percent of Linux distributed code is the same. The small amount of fragmentation between different Linux distributions is good because it allows them to cater to different segments. The small amount of fragmentation between different regional and local habitat service systems is good because it allows them to cater to different preferences. Users benefit by choosing a Linux distribution (or community-type society distribution) that best meets their needs.

In the corporate model, individuals or small groups of individuals develop systems in isolation, without releasing a version before it is deemed ready. In contrast, the open source (and working group) model relies on a network of volunteer contributors, with differing styles and agendas, who research, develop and debug the system in parallel and serial. Open source allows anyone who is curious or suspicious or critical to take a look for themselves; there is transparency and they can do their own due-diligence.

APHORISM: *Copying is the most sincere form of flattery.*

2.1 Source type and safety

NOTE: The more accurate information we know, the more capable and likely we are to explain higher mutual life fulfilling intentions.

When a closed source operation (a business) write code, "we" simply do not know what is in it. A community of users and developers must be able see the source code, for their own safety. Open source means that the functioning is entirely transparent to any user, who may also be a contributor to the systems continued development. Open source is foundationed on the logic that the highest freedom (or, best security) comes from allowing anyone to inspect its code and suggest (or enact, depending on context) improvements.

STATEMENT: "We" have to keep our work open and transparent if "we" are going to thrive. Humanity is likely to discover, resolve, and integrate more rapidly and safely when its societal system is globally cooperative (i.e., open for all to access given what is socially known and based on a societal-level state/condition of optimum fulfillment).

2.2 Open licenses in the market

Openly licensing allows others to replicate, reuse, adapt, improve, adopt, bring to scale, write about, talk about, remix, translate, digitize, redistribute and build upon what we have done.

If an open license is implement in a commercialized product, it doesn't mean that the product has to be given away for free (the product with the open standard can still be commercialized), unless that is one of the conditional restrictions of the license.

2.3 Open source engineering

Open source is a way of interacting with the market. The best example of such an organization is the Open Builds Teams. Of course there is the open builds site, which sells the open sourced objects into the market. Everyone builds upon the elements, which range from component parts as raw inputs to the assemblage of complex building machines. And if you can build some object (through a service), together, then a greater potential for optimization and ephemeralization become possible, solutions become likely to fulfill. Whereupon, to comprehensively understanding the societal system (e.g., the life space) is the first prerequisite for understanding an individual's actions therein.

IMPORTANT: *In community, everything added is added community information system and habitat service system [platform] without patents or copyrights.*

2.4 Open society

A.k.a., Open societal engineering.

An open society requires thinking in networks. By being willing to be transparent others can discover what "you" are doing, and through that discovery, they can connect their own work to activities that "you" are involved in, thus evolving the whole optimally. In community, participation is global, and hence, open source is the ideal approach, for it allows for efficient global cooperation. Fundamentally, any societal system based upon a stored program (e.g., a software system that coordinates supply and demand, instead of the price mechanism) must be able to have that program changed when bugs and vulnerabilities are found. Therefore, humanity requires that program to be fixable and updatable. But, that same need for the "ware" to be soft (changeable) inherently opens the "ware" to abuse. Hence, the system must be open so that everyone can see what is occurring. And above the "ware" itself, there is the necessity for a social structure that satisfactorily guides changes to the program, ensuring the social population navigates similarly and anyone is unlikely to abuse the program.

2.4.1 Social cooperation

NOTE: The concept of 'contribution', as an approach is described in its decision context in the Decision System Specification under the subtitle, 'Participation'. Also, the concept of 'open source', as a value objective, is described in its social context in the Social System Specification.

A social system is a grouping of units of individuation (units of consciousness with "free will") forming a cooperative network. In this sense, individuals are units of awareness that communicate and interact with each other. A social system is an interactive system. There are two fundamental ways in which an individual can interact with another: cooperatively (i.e., togetherness) or fearfully (i.e., competitiveness). Here, cooperation reflects/is caring, because the other is important and significant to "me", because "we" are all in this [environment] together, "we" are all interacting, its all a big interaction, and the cooperative way is more efficient and effective for all individuals. The opposite way is fear.

If "me" has fear -- if each one is fearful, then each individuation thinks only about themselves and acts only in consideration of themselves. Fear is all about "me"; it is not about "we", or "we" and "me".

APHORISM: In a world where there is only "me", then there is likely to be fear of "we", and in a world where there is only "we", then there is likely to be fear of "me". When "me" and "we" integrate, fear is likely to disintegrate.

As stated in the project's purpose, a primary goal of a social system is stability, which occurs through the facilitation of cooperation by means of intelligently shared organization and the sufficient completion of human need fulfillment.

APHORISM: *If you love something, set it free.*

3 Closed source protocols

Of all forms of intellectual property, patents pose the greatest threat to standards and their implementation in open sourcing society. Any person who owns a patent containing claims that are essential to the implementation of a standard can prevent anyone from making, using, or selling products that implement that standard in the market-State jurisdiction(s) in which the patent is acknowledge by the State. It is commonly understood that patents prevent sale in a jurisdiction, but not making for oneself. In the language of market competition, a patent does not protect your technology from being infringed upon by a competitor. It merely affords you with legal recourse in the event that someone does. As a patent lawyer once put it, "A patent gives you a seat at the [enforcement] table, both offensively and defensively. That's it. In other words, a patent gets you some relevance and some leverage. How much relevance and leverage depends on how you play your hand and how deep your pockets are."

Aphorism: In competition, if "you" have an idea that may help a lot of people, but it gives "you" an advantage in the market on "your" competition, then "you" keep it to "yourself" - intellectual property and concealment are advantageous in an environment of competition, over open source and sharing.

In community, no forms of intellectual property, including patents, are acknowledge as existing. Hence, community can still make and use content held on any patent. Community cannot sell that content, in given jurisdictions, without consent of the patent holder.

Consider the implications for the owner of intellectual property (e.g., the owner of a patent or copyright) who wants to have that property integrated into an industry standard. Or, consider the interests of a developer of an industry standard service who learns that another person's intellectual property blocks the implementation of the standard. Is private intellectual property compatible with planetary standards, with global cooperation an open source world? "Industry standards" are not always what they seem to be; some companies or standardizing organizations attempt to control standards through copyrights on specifications, or by requiring payment for the use of certification marks to demonstrate adherence to the standard. Such restrictive techniques are fundamentally incompatible with open source and justice. Society's information system must be free so that anyone can create derived works – including derived works that are used for other purposes.

The following are examples of software for which you pay for a license:

- 1. The license fee can be larger or smaller.
- 2. The license fee can affect market share.

- 3. Market share might be increased by a lower license fee.
- 4. Support is one way of generating revenue from software, and it is not limited to the original developers.
- 5. Service delivery is another way of making money in the software business and neither is it limited to the original developers.
- 6. Open standards are important for allowing software made by different people to work together.
- 7. The price of software is irrelevant when thinking about whether open standards should be used: they should. End of story.

3.1 Patents

A patent is a government granted monopoly to use some system. Patents holders are the only party allowed to bring the product to market, and may license its use to others to collect royalty fees. As a government granted monopoly, it grants the right to use the force of government to exclude others within the government's jurisdiction from:

- Making (just making, or making for sale?)
- Using (just using, or offering for use?)
- Offering for sale
- Selling
- Importing

Every patent application must contain one or more "claims", or detailed definitions of precisely what is being patented. Design patents are granted for "original" designs or articles of manufacture, while "utility patents" are granted for "original" functions. Simply, in general, patents can cover technologies, aesthetics, and methods.

INSIGHT: Notice how, in the market, human lives, opportunities, and access are always discussed in terms of cost/benefit, rather than individual freedom and fulfillment?

4 Open standards

The term "open" is usually means royalty-free (RF) technologies, "free" means no trade (no money), while the term "standard" usually means a technology or socio-technical system formalized by information integration. The definitions of the term "open standard" used by academics, the European Union and some of its member governments or parliaments preclude open standards requiring fees for use. In the market-State, obviously, many definitions of the term "standard" and open standards may permit patent holders to impose "reasonable and non-discriminatory" royalty fees and other licensing terms on implementers and/or users of the standard.

IMPORTANT: Open standards are the foundation for cooperation in socio-technical society. Open standards are a necessary pre-requisite to ensure individual freedom.

Open standards are publicly available and developed via processes that are transparent and open to broad participation. In concern to participation, an activity is open when it is open to all persons [who are affected by the activity]. There shall be no artificial limitations (e.g., money, birth place) as a barrier to participation. In contrast, proprietary standards are privately owned by one or more entities that control their distribution and access. Open standards let people and organizations set up new services and make them available across the rest of the Internet without permission by a private owner.

INSIGHT: Open Standards are the foundation of cooperation in modern society.

Open standards are a socio-technical foundation of community, allowing anyone to learn and contribute to a services design and operation without requiring permission from anyone else. Open standards enable community existence, facilitate its adaptation, and provide a platform that supports social and economic opportunity for billions of users.

Calling a standard "open" makes a clear distinction against so-called "closed", "de facto" or "proprietary" standards. Open standards must be subject to full public assessment and use without constraints in a manner equally available to all parties.

An open standard for interoperability will be either free of patents or they will have been irrevocably declared free of royalty. "The Internet is fundamentally based on the existence of open, non-proprietary standards" Vint Cerf, who is known as, "the father of the Internet"

Open standards should be available to everyone on royalty-free terms, or the standards should not be called open. That is one way a clear definition can help distinguish among standards. The term "open standard" is sometimes coupled with "open source" with the idea that a standard is not truly open if it

THE CONTRIBUTION APPROACH

does not have a complete free/open source reference implementation available. Open standards which specify formats are sometimes referred to as open formats. Many specifications that are sometimes referred to as standards are proprietary and only available under restrictive contract terms (if they can be obtained at all) from the organization that owns the copyright on the specification. As such these specifications are not fully Open. Where truly open standards do not have fees associated with their implementation, certification of compliance by the standards organization (generally an organization in the market, may involve a fee). The purpose of an open standard in the market-State is not the same as the purpose of an open standard in community. In the market, the open standard increases the market for a technology by enabling potential consumers or suppliers of that technology to invest in it without having to pay monopoly rent or fear litigation on trade secret, copyright, patent, or trademark causes of action. In the market, no standard can be described as "open" expect to the extent that it achieves these goals. In the market-State, an open standard has certain market-State "rights" associated with it. In the market-State, the definition of an open standards have many different levels of openness.

NOTE: Many specifications that are sometimes referred to as standards are proprietary and only available under restrictive contract terms (if they can be obtained at all) from the organization that owns the copyright on the specification. As such these specifications are not considered to be fully open. Sometimes the term "Freeware" or "Open" is applied to software which is available free of cost or even as source code but all the same with proprietary distribution terms. This is not Open Source and not Free Software. No matter what, the system must be shipped with an Open Source or Free license to qualify as such (in the market).

The freedom to use, explore, modify and give away information freely leads to a completely different motivation for creating the software in the first place. The motivation shifts away from primarily making money to solving a problem. The resulting software is typically more focused to solve a single problem at it's best and more open to integrate with other solutions. For users the investment into Free and Open Source design is more lasting because there is no single entity that can take away the right to continue to use the software which is what proprietary vendors can do.

Due to the naturally distributed nature of open source, the flaws of systems are more rapidly and effectively spotted and worked out then with closed source standards.

An open source system (hardware and software) is made publicly available so that anyone can study, modify, distribute, make, and sell the design or hardware based on that design. Ideally, open source hardware uses readily-available components and materials, standard processes, open infrastructure, unrestricted content, and open-source design tools to maximize the ability of individuals to make and use hardware. Open source systems is a term for tangible artifacts — machines, devices, or other physical things — whose design has been released to the public in such a way that anyone can make, modify, distribute, and use those things. Hardware is different from software in that physical resources must always be committed for the creation of physical goods.

Table 23.	Contribution Approach > Open Standards:
Condition	al antonomiana of a wave waveen with the independentian

Conditional categorises of open access with their descriptions.

Condition	Description	
Availability	Open standards are available for all to read and implement.	
Maximize end-user choice	Open standards create a fair, competitive market for implementations of the standard. They do not lock the customer into a particular vendor or group.	
No royalty	Open standards are free for all to implement, with no royalty or fee. Certification of compliance by the standards organization may involve a fee.	
No discrimination	Open standards and the organizations that administer them do not favor one implementer over another for any reason other than the technical standards compliance of a vendor's implementation. Certification organizations must provide a path for low or zero cost implementations to be validated, but may also provide enhanced certification services.	
Extension or subset	Implementations of open standards may be extended, or offered in subset form. However, certification organizations may decline to certify subset implementations, and may place requirements upon extensions.	
Predatory practices	Open standards may employ license terms that protect against subversion of the standard by embrace and extend tactics. The licenses attached to the standard may require the publication of reference information for extensions, and a license for all others to create, distribute and sell software that is compatible with the extensions. An open standard may not otherwise prohibit extensions.	

4.1 Standards openness index

In order to more greatly discern the openness nature of a standard, the following questions may be proposed:

- 1. How is the standard created?
- 2. How is the standard maintained after Version 1.0?
- 3. What is the cost of getting a copy of the standard?
- 4. Are there restrictions or permissions on how the standard can be implemented?

5. What is required to demonstrate compliance (i.e., the actual application) of the standard.

In concern to the openness of a standard:

- 1. The more transparent the standards process is, the more open the standard is.
- 2. The more the community can be involved and then actually is involved, the more open the standard is.
- 3. The more democratic the standards process is, where the community can make significant changes even before Version 1.0, the more open the standard is.
- 4. The lower the standards-related cost to software developers who want to use the standard, the more open it is.
- 5. The lower the standards-related cost to the eventual consumer of software that happen to use the standard, the more open it is.
- 6. When the licensing of the standard is more generous in the freedoms and permissions it provides, the more open the standard is.
- 7. When the licensing of the standard is more onerous in the restrictions it imposes, the less open the standard is.

From these and perhaps other criteria, the development of a standards openness index is possible.

There are varying degrees of possible openness in concern to data:

- License-free (trade free) Data are not subject to any form of ownership, copyright, patent, intellectual property or industrial secret. Reasonable restrictions of privacy, safety and access may be allowed.
- 2. **Non-proprietary** Data are available in a format on which no entity has exclusive control.
- 3. **Non-discriminatory** Data are available for all, without the need of registration to access them.
- 4. Machine readable Data are reasonably structured to enable automated processing.
- 5. Accessible Data are available to the largest possible scope of users and for the largest possible scope of purposes.
- 6. **Up-to-date** Data are made available as fast as possible preserving accuracy and value.
- 7. **Primary** Data are collected in its source, with the highest possible level of granularity, not in aggregate or modified forms.
- 8. **Complete** All data are made available. All data are data that are not submitted to valid privacy, safety, or engineering limitations.

4.2 Basic requirements of an open standard

The societal system design specifications are standards, which contain technical and organizational information in documents about the society, as past, present (current InterSystem Team Operations, and future (iteration).

An open standard must be:

- **Enabling** of future access (i.e., access to habitat services by future humans; procreation).
- **Contributable** to, by any interested and informed individual (discovery and design openness).
- Available to the planetary population ("public") and developed (or approved) and maintained via a cooperative and contributive process.
- Free of trade, royalty, or fee (i.e., free for all to access, copy, redistribute, modify, use, re-use implement, and accountably comply with).
- Free of [State] agreements, including any requirement for a license, legal agreement, nondisclosure agreement (NDA), grant agreement, click-through, or any other form of exchange, trade, or paperwork (i.e., free for all to access, copy, redistribute, modify, use, re-use, implement, and accountably comply with).
- Updatable/adaptable as required to provide additional clarifications or to include additional information in those areas in which specifications are still evolving.

An open [source] specification (or, standard) has four categories:

- Availability
 - The specification must be redistributable free of charge.
 - The specification must be redistributable free of agreements, money, and trade.
- <u>Usage rights</u> (a "license" in the market-State)
 - Essential patents must be made irrevocably available royalty free.
 - Essential patents must be licensable free of agreements, money, and trade.
- Process
 - Further development must be open for anyone to participate in.
 - Further development must be open for anyone to view.

4.3 Open access

The general meaning of open access (OA) is to share research and standards publications freely (without trade or restriction) so anyone can benefit from reading, research, and use toward societal development. For there to be open access, a societal organization must allow others to re-use that research and to apply that research toward societal development. When research and application is held behind restrictive walls of access, then mutual societal development is likely, significantly impaired. Making real-world information sets (e.g., research, standards, and protocols) open access (a.k.a., open source, free, etc.), is a requirement for the operation of a community.

The benefits of open access to researchers and societal organization includes:

- Improved reach of research; improved application of research.
- Improved data collection, facilitating data collection on evidence for impact.
- Improved reputation for researchers through increased citations.
- Improved quality of research through open, transparent and reproducible research practices.
- Improved production, distribution, and material cycling of access to highest quality services.

4.4 Basic criteria of an open standard

To comply with the Open Standards Requirement, an "open standard" must satisfy the following criteria. If an "open standard" does not meet these criteria, it will be discriminating against open source developers.

A simplified set of open source criteria are:

- No intentional secrets: The standard MUST NOT withhold any detail necessary for interoperable implementation. As flaws are inevitable, the standard MUST define a process for fixing flaws identified during implementation and interoperability testing and to incorporate said changes into a revised version or superseding version of the standard to be released under terms that do not violate the OSR.
- 2. Availability: The standard MUST be freely and publicly available (e.g., from a stable web site) under royalty-free terms at reasonable and nondiscriminatory cost.
- 3. Patents (*a market-State based concept*): All patents essential to implementation of the standard MUST:
 - A. Be licensed under royalty-free terms for unrestricted use.
 - B. Be covered by a promise of non-assertion when practiced by open source software.
- 4. No agreements (*i.e., no market-State based agreements*): There MUST NOT be any requirement for execution of a license agreement, NDA, grant,

click-through, or any other form of paperwork to deploy conforming implementations of the standard.

5. No Open Standards Requirement (OSR)incompatible dependencies: Implementation of the standard MUST NOT require any other technology that fails to meet the criteria of this requirement.

4.5 Organizational definitions of open source and open standards

There are many organizations with slightly different definitions for open source, including but not limited to:

- Open Source Hardware Association
- Open Source Initiative annotated version 1.9
- Open Source Definition
- ITU-T
- Governmental definitions
- Open Geospatial Consortium
- Open Standards. Open Source (OASIS)
- Free Software Foundation
- Free Software Foundation Europe
- Open Source Initiative

4.5.1 OpenChain Open Source Specification Standard (The Linux Foundation)

OpenChain Conformance allows organizations operating in the market of all sizes and in all sectors to meet the OpenChain Specification. This builds trust between organizations in the supply chain.

• *OpenChain Project*. The Linux Foundation. Accessed: March 8, 2020. [openchainproject.org]

4.5.2 Open Source Hardware Association

The distribution terms of Open Source Hardware must comply with the following criteria:

1. Documentation - The hardware must be released with documentation including design files, and must allow modification and distribution of the design files. Where documentation is not furnished with the physical product, there must be a wellpublicized means of obtaining this documentation for no more than a reasonable reproduction cost, preferably downloading via the Internet without charge. The documentation must include design files in the preferred format for making changes, for example the native file format of a CAD program. Deliberately obfuscated design files are not allowed. Intermediate forms analogous to compiled computer code — such as printer-ready copper artwork from a CAD program — are not allowed as substitutes. The license may require that the design files are provided in fully-documented, open format(s).

- 2. Scope The documentation for the hardware must clearly specify what portion of the design, if not all, is being released under the license.
- Necessary software If the licensed design requires software, embedded or otherwise, to operate properly and fulfill its essential functions, then the license may require that one of the following conditions are met:
 - A. The interfaces are sufficiently documented such that it could reasonably be considered straightforward to write open source software that allows the device to operate properly and fulfill its essential functions. For example, this may include the use of detailed signal timing diagrams or pseudocode to clearly illustrate the interface in operation.
 - B. The necessary software is released under an OSI-approved open source license.
- 4. Derived works The license shall allow modifications and derived works, and shall allow them to be distributed under the same terms as the license of the original work. The license shall allow for the manufacture, sale, distribution, and use of products created from the design files, the design files themselves, and derivatives thereof.
- 5. Free redistribution The license shall not restrict any party from selling or giving away the project documentation. The license shall not require a royalty or other fee for such sale. The license shall not require any royalty or fee related to the sale of derived works.
- 6. Attribution The license may require derived documents, and copyright notices associated with devices, to provide attribution to the licensors when distributing design files, manufactured products, and/or derivatives thereof. The license may require that this information be accessible to the end-user using the device normally, but shall not specify a specific format of display. The license may require derived works to carry a different name or version number from the original design.
- 7. No discrimination against persons or groups The license must not discriminate against any person or group of persons.
- 8. No discrimination against fields of endeavour The license must not restrict anyone from making use of the work (including manufactured hardware) in a specific field of endeavour. For example, it must not restrict the hardware from being used in a business, or from being used in nuclear research.
- 9. Distribution of license The rights granted by the license must apply to all to whom the work is

redistributed without the need for execution of an additional license by those parties.

- 10. License must not be specific to a product The rights granted by the license must not depend on the licensed work being part of a particular product. If a portion is extracted from a work and used or distributed within the terms of the license, all parties to whom that work is redistributed should have the same rights as those that are granted for the original work.
- 11. License must not restrict other hardware or software - The license must not place restrictions on other items that are aggregated with the licensed work but not derivative of it. For example, the license must not insist that all other hardware sold with the licensed item be open source, nor that only open source software be used external to the device.
- 12. License must be technology-neutral No provision of the license may be predicated on any individual technology, specific part or component, material, or style of interface or use thereof.

Unlike software, which is generally protected by copyright, hardware may have market-State protection by a number of different rights - or no rights at all. That makes licensing hardware a bit more complicated than licensing software.

4.5.3 Open Source Initiative annotated version 1.9

The open source initiative definition of open source annotated version 1.9 from the Open Source Initiative [opensource.org] defines open source as:

- 1. Free redistribution.
 - Rationale: By constraining the license to require free redistribution, we eliminate the temptation for licensors to throw away many long-term gains to make short-term gains. If we didn't do this, there would be lots of pressure for cooperators to defect.
- 2. Full access to source code.
 - Rationale: We require access to un-obfuscated source code because you can't evolve programs without modifying them. Since our purpose is to make evolution easy, we require that modification be made easy.
- 3. Full access to derived works.
 - Rationale: The mere ability to read source isn't enough to support independent peer review and rapid evolutionary selection. For rapid evolution to happen, people need to be able to experiment with and redistribute modifications.
- 4. Integrity of the author's source code.

- Rationale: Encouraging lots of improvement is a good thing, but users have a right to know who is responsible for the software they are using. Authors and maintainers have reciprocal right to know what they're being asked to support and protect their reputations.
- 5. No discrimination against persons or groups.
 - Rationale: In order to get the maximum benefit from the process, the maximum diversity of persons and groups should be equally eligible to contribute to open sources. Therefore we forbid any open-source license from locking anybody out of the process.
- 6. No discrimination against fields of endeavour.
 - Rationale: The major intention of this clause is to prohibit license traps that prevent open source from being used commercially. We want commercial users to join our community, not feel excluded from it.
- 7. Distribution of license to everyone with access.
 - Rationale: This clause is intended to forbid closing up software by indirect means such as requiring a non-disclosure agreement.
- 8. License must not be specific to a product.
 - Rationale: This clause forecloses yet another class of license traps.
- 9. License must not restrict other software.
 - Rationale: Distributors of open-source software have the right to make their own choices about their own software.
- 10. License must be technology-neutral.
 - Rationale: This provision is aimed specifically at licenses which require an explicit gesture of assent in order to establish a contract between licensor and licensee.

4.5.4 Open Source Definition

The principles that apply to the Open Source Definition of an open standard are:

- 1. Licensees are free to use open source software for any purpose whatsoever.
- 2. Licensees are free to make copies of open source software and to distribute them without payment of royalties to a licensor.
- 3. Licensees are free to create derivative works of open source software and to distribute them without payment of royalties to a licensor.
- 4. Licensees are free to access and use the source code of open source software.
- 5. Licensees are free to combine open source and other software.
- 6. Anything else should not be called an open standard.

4.5.4.1 The Open Source Definition

Bruce Perens, creator of The Open Source Definition, outlined six criteria an open standard must satisfy:

- 1. Availability: Open standards are available for all to read and implement.
- 2. Maximize End-User Choice: Open Standards create a fair, competitive market for implementations of the standard. They do not lock the customer into a particular vendor or group.
- 3. No Royalty: Open standards are free for all to implement, with no royalty or fee. Certification of compliance by the standards organization may involve a fee.
- 4. No Discrimination: Open standards and the organizations that administer them do not favor one implementer over another for any reason other than the technical standards compliance of a vendor's implementation. Certification organizations must provide a path for low and zero-cost implementations to be validated, but may also provide enhanced certification services.
- 5. Extension or Subset: Implementations of open standards may be extended, or offered in subset form. However, certification organizations may decline to certify subset implementations, and may place requirements upon extensions (see Predatory Practices).
- 6. Predatory Practices: Open standards may employ license terms that protect against subversion of the standard by embrace-and-extend tactics. The licenses attached to the standard may require the publication of reference information for extensions, and a license for all others to create, distribute, and sell software that is compatible with the extensions. An Open standard may not otherwise prohibit extensions.

4.5.5 ITU-T

The ITU-T has a long history of open standards development. However, recently some different external sources have attempted to define the term "Open Standard" in a variety of different ways. In order to avoid confusion, the ITU-T uses for its purpose the term "Open Standards" per the following definition:

- "Open Standards" are standards made available to the general public and are developed (or approved) and maintained via a collaborative and consensus driven process. "Open Standards" facilitate interoperability and data exchange among different products or services and are intended for widespread adoption.
- Other elements of "Open Standards" include, but

are not limited to:

- Collaborative process voluntary and market driven development (or approval) following a transparent consensus driven process that is reasonably open to all interested parties.
- Reasonably balanced ensures that the process is not dominated by any one interest group.
- Due process includes consideration of and response to comments by interested parties.
- Intellectual property rights (IPRs) IPRs essential to implement the standard to be licensed to all applicants on a worldwide, non-discriminatory basis, either (1) for free and under other reasonable terms and conditions or (2) on reasonable terms and conditions (which may include monetary compensation). Negotiations are left to the parties concerned and are performed outside the SDO.
- Quality and level of detail sufficient to permit the development of a variety of competing implementations of interoperable products or services. Standardized interfaces are not hidden, or controlled other than by the SDO promulgating the standard.
- Publicly available easily available for implementation and use, at a reasonable price. Publication of the text of a standard by others is permitted only with the prior approval of the SDO.
- On-going support maintained and supported over a long period of time.

4.5.6 Governmental definitions of "what is" and 'open standard'

Different organizations define the concept of an "open standard" differently. The following are different organizations' definitions of "open standard".

4.5.6.1 Pan-European eGovernment Programme for Interoperability (EIF 1.0)

The Pan-European eGovernment Programme (IDABC) in DG DIGIT issued their European Interoperability Framework (EIF 1.0) with a strict minimum definition of open standards and mandated their use in pan-European eGovernment services. There, the open standards should be:

- 1. Adopted and maintained via an open process in which all interested parties can participate;
- 2. Published and available freely or at a nominal charge;
- 3. Made irrevocably available on a royalty free basis, even if intellectual property issues apply to patents covering all or parts of the standard;
- 4. Free of constraints on the re-use of the standard.

4.5.6.2 Danish

- An open standard is accessible to everyone free of charge (i.e. there is no discrimination between users, and no payment or other considerations are required as a condition of use of the standard).
- An open standard of necessity remains accessible and free of charge (i.e. owners renounce their options, if indeed such exist, to limit access to the standard at a later date, for example, by committing themselves to openness during the remainder of a possible patent's life).
- An open standard is accessible free of charge and documented in all its details (i.e. all aspects of the standard are transparent and documented, and both access to and use of the documentation is free).

4.5.6.3 French

By open standard is understood any communication, interconnection or interchange protocol, and any interoperable data format whose specifications are public and without any restriction in their access or implementation.

4.5.6.4 Indian

- 4.1 Mandatory Characteristics An Identified Standard will qualify as an "Open Standard", if it meets the following criteria:
 - 4.1.1 Specification document of the Identified Standard shall be available with or without a nominal fee.
 - 4.1.2 The Patent claims necessary to implement the Identified Standard shall be made available on a Royalty-Free basis for the lifetime of the Standard.
 - 4.1.3 Identified Standard shall be adopted and maintained by a not-for-profit organization, wherein all stakeholders can opt to participate in a transparent, collaborative and consensual manner.
 - 4.1.4 Identified Standard shall be recursively open as far as possible.
 - 4.1.5 Identified Standard shall have technologyneutral specification.
 - 4.1.6 Identified Standard shall be capable of localization support, where applicable, for all Indian official Languages for all applicable domains.

4.5.6.5 United Kingdom

1. Collaboration - the standard is maintained through a collaborative decision-making process

that is consensus based and independent of any individual supplier. Involvement in the development and maintenance of the standard is accessible to all interested parties.

- 2. Transparency the decision-making process is transparent, and a publicly accessible review by subject matter experts is part of the process.
- 3. Due process the standard is adopted by a specification or standardisation organisation, or a forum or consortium with a feedback and ratification process to ensure quality.
- 4. Fair access the standard is published, thoroughly documented and publicly available at zero or low cost. Zero cost is preferred but this should be considered on a case by case basis as part of the selection process. Cost should not be prohibitive or likely to cause a barrier to a level playing field.
- 5. Market support other than in the context of creating innovative solutions, the standard is mature, supported by the market and demonstrates platform, application and vendor independence.
- 6. Rights rights essential to implementation of the standard, and for interfacing with other implementations which have adopted that same standard, are licensed on a royalty free basis that is compatible with both open source and proprietary licensed solutions. These rights should be irrevocable unless there is a breach of licence conditions.

4.5.7 Open Geospatial Consortium (OGC)

The Open Geospatial Consortium defines Open Standards as standards that are:

- 1. Freely and publicly available They are available free of charge and unencumbered by patents and other intellectual property.
- 2. Non discriminatory They are available to anyone, any organization, any time, anywhere with no restrictions.
- 3. No license fees There are no charges at any time for their use.
- 4. Vendor neutral They are vendor neutral in terms of their content and implementation concept and do not favor any vendor over another.
- 5. Data neutral The standards are independent of any data storage model or format.
- 6. Defined, documented, and approved by a formal, member driven consensus process. The consensus group remains in charge of changes and no single entity controls the standard.

4.5.8 Open Standards. Open Source (OASIS)

OASIS, technical committees (TCs) develop the standards, and then for the standard be adopted by the consortium as an open standard, it must:

- Be created by domain experts (not SDO staff).
- Be developed under and internationally respected, open process (i.e., be open for public review and debate).
- Be easy to access and adopt.
- Have allowed anyone affected by the standard to contribute to the development of it.
- Not have hidden patents to scare implementers.
- Have the ability to implement the standard baked in (i.e., OASIS standards must be verified by multiple Statements of Use).
- Be safe for governments to endorse.

4.5.9 Free Software Foundation (FSF)

It is sometimes helpful to understand that Open Source is a matter of liberty, not price. To this end the Free Software Foundation says that one should think of "free" as in "free speech", not as in "free beer" (i.e., not in the sense of having another person give something away at their own expense). In concern to software, free software means that the users of a program have the four essential freedoms (as conditions present in the environment):

- 1. The freedom to run the program, for any purpose.
- 2. The freedom to study how the program works, and change it to make it do what you wish. Access to the source code (Open Source) is a precondition for this.
- 3. The freedom to redistribute copies so you can help your neighbour.
- 4. The freedom to distribute copies of your modified versions to others.

These freedoms are the prerequisites to open source software development, and they are studied and promoted by the Free Software Foundation.

4.5.10 Free Software Foundation Europe

The Free Software Foundation Europe (FSFE) collaborated with other individuals and organizations in the tech industry, politics, and community to outline a different five-point definition. According to the FSFE, an open standard refers to a format or protocol that is:

- Subject to full public assessment and use without constraints in a manner equally available to all parties;
- Without any components or extensions that have dependencies on formats or protocols that do not meet the definition of an Open Standard themselves;

- Free from legal or technical clauses that limit its utilisation by any party or in any business model;
- Managed and further developed independently of any single vendor in a process open to the equal participation of competitors and third parties;
- Available in multiple complete implementations by competing vendors, or as a complete implementation equally available to all parties.

4.5.11 Open Source Initiative (OSI)

The Open Source Initiative (OSI), the organization responsible for reviewing and approving licenses as Open Source Definition (OSD) conformant, says "an 'open standard' must not prohibit conforming implementations in open source software." OSI provides a list of five criteria an open standard must satisfy. "If an 'open standard' does not meet these criteria, it will be discriminating against open source developers," the site says:

- No intentional Secrets: The standard must not withhold any detail necessary for interoperable implementation. As flaws are inevitable, the standard must define a process for fixing flaws identified during implementation and interoperability testing and to incorporate said changes into a revised version or superseding version of the standard to be released under terms that do not violate the OSR.
- Availability: The standard must be freely and publicly available (e.g., from a stable web site) under royalty-free terms at reasonable and nondiscriminatory cost.
- Patents: All patents essential to implementation of the standard must:
 - Be licensed under royalty-free terms for unrestricted use, or
 - Be covered by a promise of non-assertion when practiced by open source software.
- No agreements: There must not be any requirement for execution of a license agreement, NDA, grant, click-through, or any other form of paperwork to deploy conforming implementations of the standard.
- No OSR-Incompatible Dependencies: Implementation of the standard must not require any other technology that fails to meet the criteria of this Requirement.

5 Market-State licensing

Licensing is a market-State verb means to give or grant permission on behalf of a market and/or State entity. The noun license (American English) or licence (British and many other places) refers to that permission as well as to the document recording that permission. A license may be granted by a party ("licensor") to another party ("licensee") as an element of an agreement (market-State) between those parties. A shorthand definition of a license is an authorization (by the licensor) to use the licensed material (by the licensee). A license may stipulate what territory the rights pertain to , and the length of time the license is valid.

A shorthand definition of license is:

• A promise by the licensor not to engage the enforcement of the State against the licensee (e.g., sue).

In concern to the State, a license may be issued by authorities, to allow an activity that would otherwise be forbidden. It may require paying a fee and/or proving a capability. The requirement may also serve to keep the authorities informed on a type of activity, and to give them the opportunity to set conditions and limitations.

In concern to the market, a licensor may grant a license under intellectual property laws to authorize a use (such as copying software or using a (patented) invention) to a licensee, sparing the licensee from a claim of infringement brought by the licensor. A license under intellectual property commonly has several components beyond the grant itself, including a term, territory, renewal provisions, and other limitations deemed vital to the licensor.

5.1 Open source licensing categories

Open source licenses can be divided into two main categories: copyleft and permissive. This division is based on the requirements and restrictions the license places on users.

5.1.1 Copyleft

Copyright is a law that restricts the right to use, modify, and share creative works without the permission of the copyright holder. Think about music, movies, etc that are the intellectual property of their creator. When an author releases a program under a copyleft license, they make a claim on the copyright of the work and issue a statement that other people have the right to use, modify, and share the work as long as the reciprocity of the obligation is maintained. In short, if they are using a component with this kind of open source license, then they too must make their code open for use by others as well.

5.1.2 Permissive

A permissive open source license is a non-copyleft open source license that guarantees the freedom to use, modify, and redistribute, while also permitting proprietary derivative works. Permissive open source licenses, lovingly referred to as "Anything Goes", place minimal restrictions on how others can use open source components. That means that this type of license allows varying degrees of freedom to use, modify, and redistribute open source code, permitting its use in proprietary derivative works, and requiring nearly nothing in return in regards to obligations moving forward.

5.2 Publication-relevant open licenses

Each open source license states what users are:

- 1. Permitted do with the system components.
- 2. Their user obligations.
- 3. What users cannot do as per the terms and conditions.

This might sound pretty straight forward, but there are over 200 open source licenses available.

The Creative Commons license is used for designing and open information creation:

- Creative Commons [market-State identified] license - Free, easy-to-use copyright licenses provide a simple, standardized way to give the public permission to share and use your creative work — on conditions of your choice. CC licenses let you easily change your copyright terms from the default of "all rights reserved" to "some rights reserved." Creative Commons licenses cannot be revoked once issued. In concern to creative commons, it is in the re-sharing that restrictions are set.
 - The Auravana Project has selected the Attribution CC BY license (Creative Commons attribution "by"). The Attribution CC BY license lets others distribute, remix, tweak, and build upon "your" work, even commercially, as long as "they" credit "you" for the "original" creation. This is the most accommodating of open (source, creative commons) licenses offered. It is the license recommended for maximum dissemination and use of licensed materials.
 - Why would I use it? If you want to make your information widely known, used and quoted, for instance for a free give-away guide to generate the realization of a societal system, and you really don't have any problem with how people might use your material and credit

it back to you.

• When would I not use it? Don't use this if you don't want someone re-editing information or selling information you lasted worked on, unless you allow it by permission or trade. You may also not want to use it because you do not want violent, or other, messages credited back to you.

Licenses similar to Creative Commons, which are also used for design and information creation, are:

- GNU General Public License modify, distribute, and charge people (with a few rules). GPL is a copyleft license. This means that any software that is written based on any GPL component must be released as open source.
- BSD License modify, distribute, and charge people with no restrictions on charging people.
- MIT License lets you do whatever you want, you just have to include license with software being given away.
- Apache License Able to use on copyrights and patents and doesn't expire. The Apache License allows you to freely use, modify, and distribute any Apache licensed product. However, while doing so, you're required to follow the terms of the Apache License.
- The Microsoft Public License a free and open source software license released by Microsoft, which wrote it for its projects that were released as open source.

The following are publication-relevant questions to facilitate determination of the optimal license for a project:

- Will the project be used as a dependency by other projects?
 - It may be best to use the most popular license in your relevant community. For example, MIT is the most popular license for npm libraries.
- Will the project appeal to large market organizations?
 - A large business, for example, will likely want an express patent license from all contributors. In this case, Apache 2.0 has you (and them) covered.
- Will the project appeal to contributors who do not care if their contributions are to be used in closed source systems.
 - For example, it may require a permissive license so that the company can use your project in the company's closed source product. In this case, Apache 2.0 has you (and them) covered.

- Will the project appeal to contributors who do not want their contributions to be used in closed source systems?
 - GPLv3 or (if they also do not wish to contribute to closed source services) AGPLv3 will go over well.

This project may have specific licensing requirements for its projects.

Table 24. <u>Contribution Approach > Market-State Licensing:</u> Licensing requirement comparison table. Superscript references: (1)Application needs to be licensed under GPL if redistributed with the GPL asset. (2)Library code modifications need to be licensed under the same license as the originating asset. (3)Usually requires a commercial license from the copyright holder. (4)Although much more permissive than an OSI license, some BSD based licenses, such as Apache V2, still have some copyleft materials..

Capabilities (without	GPL	Dual- GPL	LGPL/MPL	Apache/ BSD
1) Download	Yes	Yes	Yes	Yes
2) Evaluate	Yes	Yes	Yes	Yes
3) Deploy	Yes	Yes	Yes	Yes
4) Redistribute	No ¹	Yes ³	Yes	Yes
5) Modify	No ²	No ²	No ²	Yes ⁴

The following are intellectual property relevant questions to facilitate license selection:

- Third party material Does a project have dependencies created by others or otherwise include or use others' code? If these are open source, then the project must comply with the materials' open source licenses. That starts with choosing a license that works with the third party open source licenses. If a project modifies or distributes third party open source material, then a legal team will also want to know that you're meeting other conditions of the third party open source licenses such as retaining copyright notices. If a project uses others' code that doesn't have an open source license, the third party maintainers may have to be asked to add an open source license, and if you can't get one, stop using the code in a market-State project.
- **Trade secrets** Consider whether there is anything in the project that the company does not want to make available to the general public. If so, it is possible to open source the rest of the project, after extracting the material to be kept private.
- Patents Is your organization applying for a patent of which open sourcing a project would constitute public disclosure? If a project is expecting contributions to your project from employees of companies with large patent portfolios, the legal team may want the use of a license with an express

patent grant from contributors (such as Apache 2.0 or GPLv3), or an additional contributor agreement.

- Trademarks Double check that a market-State project's name does not conflict with any existing trademarks. If an organization uses its own trademarks in a project, check that it does not cause any conflicts. FOSSmarks is a practical guide to understanding trademarks in the context of free and open source projects.
- **Privacy** Does the project collect data on users? Jurisdictions may have compliance regulations for that information. For example, the European Union State GDPR compliance regulations.

5.2.1 Contributor license agreement (CLA)

CLARIFICATION: For the vast majority of open source projects, an open source license implicitly serves as both the inbound (from contributors) and outbound (to other contributors and users) license; "inbound=outbound".

When a contribution is made to an open source project, there is an implicit assumption (and sometimes explicit consent) that the contribution (code, translation, artwork, etc) may be incorporated into the project and distributed under the license the project is using. Often, open source projects will state their Terms and Conditions, an may even link a free or open source license. These terms, which are accessible via the project's platform, are generally all that is required to protect an open source platform in the modern 21st century market-State. Most importantly, their simple presence ensures that contributions cannot be withdrawn by the contributor.

However, projects sometimes add an additional agreement that the user must "sign", generally called an open source Contributor Agreement (or Contributor License Agreement, CLA). For example, the Apache Software Foundation (ASF) uses a CLA, and states that the purpose of the CLA is: "The purpose of this agreement is to clearly define the terms under which intellectual property has been contributed to the ASF and thereby allow us to defend the project should there be a legal dispute regarding the software at some future time." Note that an additional contributor agreement can create additional, unnecessary, administrative work for project maintainers. How much work an agreement adds depends on the project and implementation. A simple agreement might require that contributors confirm, with a click, that they have the rights necessary to contribute under the project open source license. A more complicated agreement might require legal review and sign-off from contributors' employers. Extra contributor license agreements can be unnecessary and even unfair (when the agreement recipient gets more rights than other contributors or the public); an additional contributor agreement may be perceived as unfriendly to the project's community.

Contributor Agreements may provide additional confidence that there likely won't be any legal issues in the future regarding the individual contributions that make up the project, such as disputes over origin and ownership. But again, a downside of Contributor Agreements is that they pose a small overhead and barrier to contribution.

Additional contributor agreements may cover:

- **Copyright:** contributors grant a broad set of permissions and they are sometimes asked to assign their copyright to the project. The Contributor Agreement also ensures that contributors are entitled to contribute their changes to the project.
- **Trademarks:** contributors ensure that marks (if there are any) are owned by the project rather than by individual contributors. This avoids possible disputes in the future if contributors leave a project.
- **Patents:** contributors grant a patent license to the project in order to ensure that a contributor cannot attack the project in the future by asserting its patents against it.
- Market-State rights: contributors are asked not to assert any market-State rights (where they exist) in order to stop derivative works.
- **Contributions by minors:** some Contributor Agreements define how contributions by minors are handled.

The following are situations where an additional contributor agreement for the project may be considered:

- A lawyers want all contributors to expressly accept (sign, online or offline) contribution terms. Perhaps because it is believed the open source license itself is not enough (even though it is). If this is the only concern, a contributor agreement that affirms the project's open source license should be enough.
 - The jQuery Individual Contributor License Agreement is a good example of a lightweight additional contributor agreement. For some projects, a Developer Certificate of Origin can be an alternative.
- A project uses an open source license that does not include an express patent grant (such as MIT). A patent grant is required from all contributors, some of whom may work for companies with large patent portfolios that could be used to target you or the project's other contributors and users.
 - The Apache Individual Contributor License Agreement is a commonly used additional contributor agreement that has a patent grant mirroring the one found in the Apache License

2.0.

- A project is under a copyleft license, but a proprietary version of the project must also be distributed. You'll need every contributor to assign copyright to you or grant you (but not the public) a permissive license.
 - The MongoDB Contributor Agreement is an example this type of agreement.
- A project might need to change licenses over its lifetime and want contributors to agree in advance to such changes.

5.3 Market-State organization open source considerations

Additional legal open source contribution considerations include, but are not limited to:

- Employee contribution policies Consider developing a market-State interface policy that specifies how employees contribute to open source projects. A clear policy will reduce confusion among employees and help them contribute to open source projects in the organization's best interest, whether as part of their jobs or in their free time.
- What to release (Almost) everything? If a legal team understands and is invested in an organization's open source strategy, they'll be best able to help rather than hinder efforts.
- Compliance Even if an organization doesn't release any open source projects, it uses others' open source software. Awareness and process can prevent issues, product delays, and lawsuits.
- Patents A company may wish to join the Open Invention Network, a shared defensive patent pool to protect members' use of major open source projects, or explore other alternative patent licensing.
- Governance Especially if and when it makes sense to move a project to a legal entity outside of the organization.

Among community, no one is selling into the market, so there is no "need" for an "independent" organization to verify products, police property, and punish contract violators. Instead, the perspective is that we are creating for ourselves, and for our own health and wellbeing, we want to be sure that what we are using and consuming and placing in our environment is safe for ourselves and others around us. We understand that we live in interrelationship with a social and ecological environment and that if we damage those relationships, then in turn, we are damaging ourselves. Notice the perspective. The market requires independent quality assurance. The community requires understanding. Or having a regulatory agency (i.e., the government control production). The means and methods and production itself are all entirely visible and open [source] for all in the community to see and anyone can improve or critique any part of the process.

5.4 Information/intellectual property regulation

There are three main intellectual property (IP) codes that allow for regulation of systems and service:

- **Copyright law** regulates the market on behalf of producers of "original works of authorship" which are "fixed in a tangible medium."
 - While certain hardware elements might be creative, the creativity is often constrained by functionality, which prevents most physical aspects of most hardware from being protected by copyright. For example, the way in which parts of a 3D printer's extruder work together is governed by functional concerns. That means that it cannot be protected by copyright law.
- **Trademark law** regulates the market on behalf of producers with "source identifiers", which may include any brand names, product names, logos, or even the design and packaging of your product.
 - While trademark law may protect the names, logos, and other elements that signal who the producer of the product is, in most cases trademark law do not protect the physical object itself.
- **Patent law** regulates the market on behalf of producers of functional systems that are "novel" and "non-obvious", after the producer applies for protection from the a Patent & Trademark Office.
 - The requirement that functional inventions be "novel" and "non-obvious" are high legal bars that few inventions meet. Additionally, patents are very expensive to obtain and the process is quite complicated, usually requiring help from specialized lawyers. You must take affirmative steps to obtain patent protection for your hardware.

To the extent that hardware may be regulated by one or more of these intellectual property (IT) codes, properly applying an open source license to the project ensures that downstream users can use the product within the bounds of the license. These regimes will not protect every element of your hardware:

Purely functional elements of hardware are not generally protectable by copyright. Other types of protection such as trademark and patent usually require creators to take active steps in order to obtain. As a result, the hardware for many functional open source hardware products will not be protected by any kind of right at all. Protection will begin to attach to hardware as decorative and aesthetic elements are added. While this protection will not extend to the functionality of the hardware, in some cases this protection will effectively control reproduction of the entire physical product.

5.4.1 Intellectual property agreements

In the market, it is common for businesses and State organizations to have employees sign an IP agreement that gives the owners of the business or State enterprise some control of the employees projects, especially if they are at all related to the company's business or company resources are used to develop the project.

Scholarly references

- Almeida, F., Oliveira, J., Cruz, J. Open standards and open source: Enabling interoperability. International Journal of Software Engineering & Applications (IJSEA). Vol. 2, No.1. January 2011. [opengroup.org]
- Caplan, P. Patents and Open Standards. White paper. Originally published in Information Standards Quarterly, vol. 14, no. 4, October 2003. National Information Standards Organization. [niso.org]
- Cowlagi, R.V., Saleh, J.H. (2015). *Coordinability and consistency: Application of systems theory to accident causation and prevention*. Journal of Loss Prevention in the Process Industries, 33, 200-212.
- *Designing the public domain*. Harvard Law Review. Vol. 122:1489. [harvardlawreview.org]
- Kenwood, C.A. (2001). A Business Case Study for Open Source Software. MITRE Corporation. MP01B0000048. [doc.ic.ac.uk]
- Shaikh, M. and Cornford, T. (2011). Total cost of ownership of open source software: a report for the UK Cabinet Office supported by OpenForum Europe. London School of Economics Report. UK Cabinet Office, London, UK. [eprints.lse.ac.uk]

Book references

- Hoe, N.S. (2006). Free/Open Source Software: Open Standards. FOSS Open Standards/Standard-Setting and Open Standards. Elsevier. International Open Source Network. [Wikibooks.org]
- Kinsella, N.S. (2008). Against Intellectual Property. Ludwig Von Mises Institute. Auburn, Alabama. [mises.org]

Online references

- Copyright and Creative Commons: Publishing with open licenses. 17 January 2018. Library Publishing Coalition. [librarypublishing.org]
- Creative Commons Licensing For Authors. Self-Publishing Review. [selfpublishingreview.com]
- Popular open licenses by Open Source Initiative. [opensource.org]
- Comprehensively ordered license list. GNU Operating System. [gnu.org]
- Debian Free Software Guildelines (DFSG). Debian.

[debian.org]

- Rosen, L. Defining Open Standards. Rosen Law. [rosenlaw.com]
- Rosen, L. The Role of Standards in Open Source. Rosen Law. [rosenlaw.com]
- *Licensing Policies, Principls, and Resources.* Project Open Data. [project-open-data.cio.gov]
- MDPI Open Access Information and Policy. (2019). MDPI. [mdpi.com]
- Mixed source licensing. (2016). Project Open. [projectopen.com]
- Open Source. (2019). One Community Global. [onecommunityglobal.org]
- Open Source and Open Standards. (2012). OSGeo. [wiki. osgeo.org]
- Open Source and Standards Working Group. (2018). Open Source Initiative. [wiki.opensource.org]
- Open Source License Obligation Checklist. by Carsten Emde and Till Jaeger. Version 5. September, 3, 2017. [osadl.org]
- Open Source License Checklist. April, 10, 2019. [osadl. org]
- Choose an open source license. GitHub, Inc. [choosealicense.com]
- Open Source Guides. May 26, 2019. [opensource.guide]
- Open Source Initiative. Licenses & Standards. [opensource.org]
- One Community Open Source. May 26, 2019. [onecommunityglobal.org]
- Stallman. R. *Why Open Source misses the point of Free Software*. GNU Operating System. [gnu.org]
- Steele, R.D., (2016). Open Source Everything Engineering (OSEE). Earth Intelligence Network. [robertdavidsteele.com]
- Swartz, Aaron. (2008). *Guerilla Open Access Manifesto*. [archive.org]
- The Center For Internet & Society. Openness. [cis-india. org]
- The Open Source Way. Red Hat, Inc. 2017. [theopensourceway.org]
- Top Guidelines for Open Science. Center for Open Science. [cos.io]

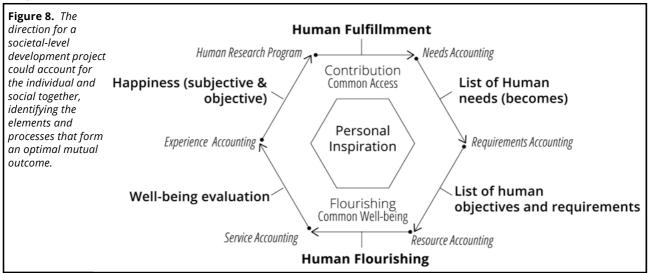
THE CONTRIBUTION APPROACH

The Direction of a Community-Type Society

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com Version Accepted: 8 June 2020

Acceptance Event: Project coordinator acceptance Last Working Integration Point: Project coordinator integration


Keywords: direction, project direction, societal direction, community direction, system direction, project list development

Abstract

It is possible to engineer a society that orients toward an intentional direction. The possibility of having a direction conveys opportunity [for continued life and potential growth] within an uncertain environment. Specifying a direction allows for the evaluation of action. A direction is a description of something that can be pointed out (to another human), point towards (prior to motion), or achieved (by means of action). Therein, a direction could be viewed as an achievable place or state that requires motion on the part of an entity (or entities). For consciousness, a direction is a desire to move toward an object or state of being, doing, and/or having. Direction is determined[/-able] by knowledge and decisioning; wherein, direction is a choice. The direction of a community-type society is a direction commensurate to humanity's current potential. Humanity has the knowledge and ability to meet the requirements of mutual, global human fulfillment. The human living system can be categorized according to those elements

that may be prioritized according to their requirement. The highest level of requirements is that which humans need. Individual humans have well-being, or some degree thereof. The criteria for well-being and life's access potential must be explicated in order for global human fulfillment to be executed. Global human flourishing is possible when well-being is accounted for at the global level of society.

Graphical Abstract

1 Introduction

APHORISM: To move without direction(s) is folly. When the self moves intentionally in a direction, then there is self-direction.

The possibility of having a direction conveys opportunity [for continued life and potential growth] within an uncertain environment. Specifying a direction allows for the evaluation of action. A direction is a description of something that can be pointed out (to another human), point towards (prior to motion), or achieved (by means of action). Therein, a direction could be viewed as an achievable place or state that requires motion on the part of an entity (or entities). For consciousness, a direction is a desire to move toward an object or state of being, doing, and/or having. Direction is determined[/able] by knowledge and decisioning; wherein, direction is a choice. A direction points an entity (e.g., human, population, vehicle) toward one spatial or informational orientation versus all others (i.e., versus all other possible directions). Often, a direction is described in the form a result or a gap. In order to get to the result or overcome the gap, decisions (determinations) and actions (motions) are required. A direction is a description of a preferred future state for an organization (or population).

When there is motion, there is always direction. When there is facing (non-uniform positioning), there is always direction. A direction is always relative to another directions. Hence, fulfillment can either be moved toward as the direction, or it can be moved away from as the direction. In geometry, this is known as direction's relative angle.

A direction can be sensed (i.e., pointed out) and signified (i.e., reasoned why). If that which is being moved toward cannot be sensed or signified, then it is not a direction. In mathematics, motion toward a direction is often called a vector. A direction is a vector of the Euclidean plane. In geometry, a direction is a vector where length is irrelevant (i.e., a direction is a vector of unit length, or of length '1' unit). Vector and length are different mathematical concepts.

To an observer, direction becomes visible through motion and is explicated through description. Motions can be coordinated through tasks. Tasks can be coordinated through decisions. Decisions can be coordinated through unifying/integrated information organization.

We all share a desire for individual human fulfillment. And, we (the population) require information about ourselves and our environment in order to design and to actualize our highest potential fulfillment. The life conception of humans is that of a commonly identifiable set of life needs that become complete by means of contextual requirements. The most sensorily comprehensive of which is well-being.

"We" contribute our work *in service* to facilitate in the recognition of our common selves and the fulfillment of our commonly greatest potentials, given our embodied

human consciousness. We all share a desire for individual human fulfillment. The highest level of human [habitat] fulfillment-oriented sharing becomes known as the InterSystem [Habitat Service System] Team, which operates the Habitat Service System. The habitat service system coordinates the fulfillment of "our" embodied individual-human, conscious selves.

The population ("we") needs information about itself ("we") in order to design and to actualize our highest potential of fulfillment. Without design, the probability of our actualization being of the highest potential will be less certain. The life conception of humans having a commonly identifiable set of life needs that become complete by means of contextual requirements. The most sensationally comprehensive of which [to consciousness] is well-being. The direction is largely summarized in the overview section. The direction in executed by a decision the direction is one of decisioning of taking decisions. The direction is, in part, the approach to life as a decision (or series of decisions) that produce, more or less, of what is meaningful in life. What is meaningful is the direction, and to get to the result decisions are required. Thus, the direction is of accounting not only for what humans are surveyed to require, but also the configurations that swerve the requirements.

Humans can decide for well-being at the objective societal level, as a direction in their lives. All humans all share a desire for individual human fulfillment. And, all humans (the population) require information about themselves and their environment in order to design and to actualize their highest potential fulfillment and self-actualization. The life conception of humans is that of a commonly identifiable set of life needs that become complete by means of contextual requirements and effort to resolve, informationally and physically, those requirements. The most sensorily comprehensive of which is well-being, at the social scale there is flourishing, and at the individual scale their is happiness and flow.

A humans desire to flourish. A necessary condition for large scale flourishing is the development of a real-world model for structuring and coordinating well-being enhancing designs that scales up globally. Societal engineering is uniquely positioned for assisting populations with their flourishing in a way that is effective, efficient, and scalable. Societal engineering involves the study and development of information and spatial (technology) systems that is consciously (intentionally) designed to support (servicing) people's psychological and physiological flourishing in a way that enables individual preference without disabling the fulfillment of all human need. There is a common baseline of technical efficiency and human need fulfillment underlying a society with wherein individual have freedom of preference on top of (i.e., after in priority) fulfillment of need. Note here that to some extent there is a category error visible when comparing needs and preferences. Needs are categories relevant to the life of all humans, whereas preference are relevant to the contextual life of any given individual human. Preferences are not life requirements, although the structure that allows for their expression may.

For this project, the direction is largely summarized in the overview section of this document. The following sections provide a detailed view of the direction. The project's direction takes form through an approach (methods). The direction in executed by teams. The direction is informed by knowledge. The direction is resolved into action by means of decisions, that is discovered and integrated by working groups. The direction is resolved into action by means of an algorithmic decisioning structure.

The direction of this project is, in part, an approach to life that involves a series of decisions that produce more of what is meaningful in life. What is meaningful in life is described as a direction. Thus, the direction is of accounting not only for what all humans are surveyed to commonly require, but also the informational and spatial configurations that serve the requirements. Humans can decide for well-being at the objective societal level, as a direction in their lives.

One of the first objects for understanding the concept of spatial direction is a 'compass'. A compass is an instrument used for navigation and orientation that shows direction relative to the geographic/spatial cardinal directions (or points). A compass rose is a design on a chart (i.e., a direction) that shows direction. In other words, a diagram called a compass rose shows the directions north, south, east, and west on a compass face or chart. A compass 'bearing' tells an observer the direction of travel on Earth. A navigator on Earth should be able to visualize the 360° circle of directions and the [four primary] cardinal points. Ordinal directions refer to the directions found equally between each cardinal direction. These are northeast (NE), southeast (SE), southwest (SW), and northwest (NW).

A document that addresses the human needs for Earth's biospheric occupation humanity, identifying:

- 1. The requirements needed to support human health. Examples include: medical care, nutrition, sleep, and exercise.
- 2. The requirements for system design that will maintain human safety and promote performance (i.e., "human factors, habitability and environmental health). Examples for this volume include: a design of the food facilities, bathroom design, a layout of workstations, seating and crew restraint design, lighting requirements, and environmental requirements.

Life doesn't just have to remedial in the case of minimizing suffering; humanity can design for more than not to suffer. Humanity can design for individual well-being and social flourishing. Well-being can be built at the individual and social level. The standard for measuring well-being is flourishing. One of the goals of society is to increase flourishing, to increase well-being among a population. Life-satisfaction operationalizes (is defined by) happiness. Happiness operationalizes lifesatisfaction (positive appraisal). Human needs underlie survival and well-being, and well-being underlies happiness (life-satisfaction). Life satisfaction is someone's global stated feeling of one's own life [experience].

The flourishing individual is able to create the flourishing life by building on various components of well-being. The flourishing society is able to create a flourishing population by building on the various components of human need fulfillment (organized by service system for individual fulfillment).

The current goal of well-being, as an intentional direction, is to measure and to build human flourishing through optimal fulfillment of needs, leading to ever greater states of sufficiency, flow, and appreciation. Achieving this goal starts by asking what do humans need and what really makes a human satisfied, happy, well, and flourish? An individual is flourishing and optimal when they're meeting all their needs (at some particular threshold).

Huppert et al., (2013) operationalized (i.e., defined measurably) flourishing to have a set of core "features" (sub-components):

- Positive emotions
- Engagement
- Interest
- Meaning
- Purpose

And, a set of additional "features"*,

- Self-esteem
- Optimism
- Resilience
- Vitality
- Self-determination
- Positive relationships

*Note that this categorization is similar to the Diagnostic Statistical Manual of Mental Disorders, DSM).

The following are the ten sub-operationalizable components of 'flourishing'; [how is] Flourishing is to be increased in one's own life and on the planet (Huppert et al., 2013):

Table 25.	Direction > Introduction: Indicators of the
operationa	lizable components of the conception of flourishing.

Useful (Positive features)	Item used as indicator	
Competence	Most days I feel a sense of accomplishment from what I do.	
Emotional stability	(In the past week) I felt calm and peaceful.	
Engagement	l love learning [new things].	

Useful (Positive features)	Item used as indicator
Meaning	l generally feel that what I do in my life is valuable and worthwhile.
Optimism	l am always optimistic about my future.
Positive emotion	Taking all things together, how happy would you say you are?
Positive relationships	There are people in my life who really care about me
Resilience	When things go wrong in my life it generally takes me a long time to get back to normal. (reverse score)
Self-esteem	In general, I feel very positive about myself.
Vitality	(In the past week) I had a lot of energy.

The following criteria allow for the population of a flourishing scale for the individual (Schotanus-Dijkstra, 2016):

- 1. I lead a purposeful and meaningful life.
- 2. My social relationships are supporting and rewarding.
- 3. I am engaged and interested in my daily activities.
- 4. I actively contribute to the happiness and well-being of others.
- 5. I am competent and capable in the activities that are important to me.
- 6. I am a good person and lead a good life.
- 7. I am optimistic about my future.
- 8. People respect me, or think I am a good person.

QUESTION: What is a direction that can be shared by all of humanity for the mutual benefit of all of humanity? The completion of all human requirements for all of humanity is that direction. In other words, a societal system designed to meet all human requirements is a sustainable and mutually beneficial direction. Is society, its present structure and configuration, helping humans flourish? By how much (or, how little) will this structure, object, device, or program increase or decrease flourishing?

1.1 The direction sub-composition

QUESTIONS: What contributes to well-being? What vision do we want for ourselves and our planetary human community? Do our thought s and action to a healthy and caring sociotechnical environment?

The direction of a happy and flowy life experience is most well characterized (given what is currently known) in the literature as (the decomposition of the direction of):

- Well-being (social cycles)
 - Life satisfaction
 - Feeling happiness
 - Observing completion of wellness
- 2. Fulfillment
 - Needs (material cycles)
 - Quality of life
 - Feeling whole/complete
 - Observing completion of needs

3. Flow

- Flow triggers (flow cycles)
 - Feeling flow
 - Observing high performance

Direction indicates potential. Wherever there is an opportunity, a decision at the fundamental level, there is potential for growth. The elements of a growth potential, happy and flowy, life experience are (at least) resolved through the following inquiries?

- What are the opportunities? Number and type and availability of desired life enriching and life contributing opportunities.
- What are the conditions? Qualities
- What is the functioning of the service (city)?
- What, how, are, there human needs, demands, and requirements being fulfilled (i.e., completed, met, satisfied)?
- What, how, is, there human well-being among all individuals in the population (i.e., flourishing)?

In order to have true social growth, there must exist a functional global habitat within a set of constructive human relationships.

The basic elements of functional human habitat design include:

- 1. Need Humans have (to thrive and survive).
- 2. **Demand** Users of habitat service system have (to thrive and survive).
- 3. **Means** Habitat service system and its contributors, information systems have methods (to facilitate thriving and surviving).
- 4. Geo- and atmos-spherical elements spatial material resources for living (may facilitate thriving and surviving).
- 5. **Info-spherical elements** informational and computational resources for living (may facilitate thriving and surviving).

The environment changes an individual's life circumstances, and an individual's intention changes the environment:

1. We go into flow when our highest strengths (skills)

1. Flourishing

are deployed to meet the highest challenges we experience in our environment.

- 2. The way we choose our life course often has to do with maximizing how we feel.
- 3. The way we choose our highest course in life is to maximize all five elements of well-being.
- 4. The way choices are made is to estimate how much happiness (or life satisfaction) will occur, and then we take the course that maximizes future happiness. Maximizing the feeling of happiness is a common path of individual choice.

The types of 'constructive' relationship:

- 1. Fulfillment (social & technical)
 - A. Needs, life needs, human needs.
 - 1. Gaps and goals (in outcome) are measurable
- 2. Flourishing (individual & exploratory)
 - A. Well-being, happiness, life-satisfaction.
 - 1. Elemental states of feeling are measurable.
- 3. Surviving (organismal & life)
 - A. Material constituents, informational and spatial.
 - 1. Spatial and informational resources are measurable.
 - i. Spatial an 'object' is anything with shape.
 - ii. Informational a 'concept' is anything with meaning.

Human flourishing is composed of:

- 1. Internal state of specific conditions involving
 - Internal Human Feelings (positive, well)
 - Internal Human Abilities (competent, capable)
- 2. External
 - External Human Conditions (availability, sufficient)
 - External Human Resources (availability, access)

The measurability of wellness:

- 1. Elements involving subject and objective components are measurable.
- 2. Fulfillment of elements is well-being for an individual.
- 3. Well-being among social population is flourishing (thriving).

A flourishing life is a life where environmental resources and personal abilities are cultivated to produce growth, adaptation, appreciation, and inclusion. Humans flourish when they have [need] fulfillment.

NOTE: *Many aspects of human behavior do not change lastingly unless the environment is also changed.*

1.1.1 Engineering a societal direction

NOTE: Strategic planning is the creation and/or selection of a long-term direction.

Given the multifaceted nature of the human direction, various measures cannot be assumed to be substitutes for one another. Different measures may provide divergent conclusions about the well-being of individuals among the population. Thus, the choice of measures should be an informed decision.

From an engineering perspective, there are multiple conceptual inquiries that need to be resolved to appropriately engineer a healthy self-directed and needoriented society:

- 1. **Structure** what are the major components of how society is to be well organized and oriented, and how do they relate to one another.
- 2. **Frequency** and **intensity** what is the frequency, duration, and intensity of informational and/or spatial composition that compose a well society.
- 3. **Stability** and **consistency** is there enough temporal stability and spatial consistency to enable health, safety, contribution, flow and exploration.
- 4. **Affect** and **cognition** is there enough recognition, meaning, intrinsic motivation, clarity of thought, and precision of language to enable social cooperation (participation and contribution).
- 5. **Patience** and **resilience** is there enough ability to de-prioritize ("sacrifice") entertainment and comfort for other values when appropriate.

1.1.2 Flow cycle integration

APHORISM: If you want to make a better world, you should alleviate the circumstances that produce bad actions, rather than punishing bad behavior and rewarding good behavior. Science must isolate the conceptions and situations that produce the conditions for suffering, crime, ignorance, and other failures, so that these situations can be corrected. The material isolation tirade of (identify, isolate, and remove) has some relevance here. Whereas conditions that promote suffering are identified, isolated, and removed from the next iteration of society; the conditions that promote well-being are identified, integrated, and actualized in the next iteration of society.

Flow is fundamental for well-being and overall life satisfaction. People who score off the charts for life satisfaction are those that have the most flow in their lives. The experience of flow can be built and enabled; it can also be reduced and disabled. Flow is optimal performance, and a healthy flow cycle regenerates and builds greater performance. Experiencing flow regularly is essential in achieving happiness for those who know what flow is and/or have experience flow previously. Society ought to be directed to produce more flow in the lives of individuals, particularly since flow is optimal for the individual and the individual is the source of all structure in society.

Flow triggers facilitate flow. Autonomy facilitates flow; autonomy is a flow trigger. All individuals are an individual self and therefore are self-directed and will pay more attention and perform better at activities that are freely chosen by the self ("autonomy"). Individuals get to choose what they do with their time and energy, and thus, society facilities the individual experiences of flow.

Time for uninterrupted concentration is necessary for flow. People need personal space and access to experience flow. Additional, flow emphasizes real world engagement with an activity, and not artificial mediation (e.g., study-cramming for a test).

1.1.3 The InterSystem Team and the alignment of operationalizing values with human flourishing, fulfillment, and well-being

NOTE: An 'operationalizing value' is a value that is encoded within decisioning, often in the form of an objective or requirement for the result of an operational decision (i.e., a decision that affects the operation of society).

The InterSystem Team operationalizes society as an engineered system (i.e., the intersystem team does the work that sustains habitat life). In particular, the societal engineering of community involves aligning design with mutually beneficial values (i.e., mutual success principles) such that InterSystem Teams are operationalizing the best society possible given what is known and available:

- 1. **Mutual access** [to all of the best designs that humanity has to offer] - InterSystem team/society shall design system that enable all humans to have access to mutually coordinated, global, habitat services.
 - Note that in the market-State there is also the idea of "human rights". In that type of society, the additional principle of a "right" is necessary because of the integration of the market and the State as extant, reified entities. Market-State services shall be created and operated to respect, promote, and protect inter-nationally recognized human rights. In community, this idea is subsumed by the global access principle.
- 2. **Flourishing** InterSystem Team shall adopt increased life flourishing (and related concepts) as a primary success criterion for physical materialization and society.
- 3. Well-being InterSystem Team shall adopt

increased human well-being as a primary success criterion for physical materialization and information interface.

- 4. **Self-direction** (autonomy) InterSystem Team shall empower individuals to take self-direction over their lives and potentials.
- 5. **Effectiveness** (safety) protocol InterSystem Team (i.e., society) shall provide evidence of the safe and effective operation (or potential operation) of society.
- 6. **Transparency** The social objective basis for a particular societal decision shall always be traceable or discoverable.
- Accountability InterSystem Team shall be created and operated to provide unambiguous rational for all decisions taken.
- Awareness of situation InterSystem Team shall maintain awareness in memory of current, and relevant past, informational situation, while processing that information in the presence of risks.
- 9. **Competence** InterSystem Team shall specify and operator shall adhere to the knowledge and skill required for safe and effective operation.

INSIGHT: Human flourishing answers the question of what it means to live life well. In other words, the question asks, What does it mean to live life well?

2 Human fulfillment

A.k.a., Human flourishing, human thriving, human well-being, human welfare, human happiness, human prosperity, etc.

Humankind ("we") need the material things of this real world to survive, and we need the material things of this objective world to thrive. Through fulfillment comes well-being and psycho-physiological thriving. Human flourishing through sufficient fulfillment could be considered a societal supra-task.

The shared feeling of individual fulfillment comes from progress toward the achievement of meaningful goals and the experience of conditional states in the real world. Together, individuals can have a common set of meaningful goals for living together in a 'society'. In society, goals are prioritized, with 'needs' (or, human requirements) being of first or top-level priority.

Synonyms for the direction of human fulfillment include:

In the format:

Direction concept (the contextual application)

- 1. Fulfill (the need)
- 2. Meet (the objective requirement)
- 3. Satisfy (the criteria)
- 4. Achieve (the goal)
- 5. Complete (the task)

An organization is aligned ("good") or out of alignment ("bad") relative to the degree to which it enables the comprehensive satisfaction of life-requirements. Human flourishing is the highest alignment, and universal human suffering is the lowest alignment, satisfaction-fulfillment of life requirements. Here, societal [fulfillment] stability is synonymous with the experience of individual satisfaction in life.

Just because something is 'true', that doesn't make it 'good'. Truth is about "what is", and good is about "what ought to be done to have global well-being". The way to ascertain and maintain well-being is via the truth of how human beings are fulfilled and experience wellness.

QUESTIONS: What is required for living a full human life, a life of fullest human potential? How do we increase our well-being, and more greatly flourish?

2.1 Fulfillment is individually shared

NOTE: Fulfillment, a helpful direction, must be defined to lay the foundations of a well society.

What is shared is a desire for individual fulfillment; because, each consciousness is individually embodied, which entails a set of requirements (cause and effect relationships) given the body and its environment. Individuals are active participants in their own fulfillment, regardless of whether they actively arranged outside conditions to fulfill a need by themselves or another person or system did it for them.

In a social system, "fairness" plays a crucial role in the quality/condition of fulfilling multiple basic human needs. In this sense, organizational/distributive justice (or, just efficiency) may become the optimally reasoned logic for fairness.

Humans are synthetically organic-social. To be human is to be a member of a species with [abilities composed of] an organic and a social dimension. Both the human body and social self-consciousness have ongoing natural conditions of existence and development. The natural problem of a persistent human life (i.e., how to survive), becomes the social problem of how to live well, together, with others (given, what is available).

INSIGHT: *When human fulfillment system's fail, conflict can be one negative outcome.*

2.2 The common interest of humankind

NOTE: In part, any disturbance at the societal level is a disturbance to individual fulfillment.

Humans share a common set of interests, those of their evolved nature and the ecological cosmos they are materialized within.

Species with cooperating populations naturally have an interest in:

- The biophysical world itself and its universal requirements of reproduction [of the species].
- The quality of experience of the individuated units of consciousness of the species.
- Production (technical system) of the means whereby societies live, and its organizing principles (e.g., social value system).

History clearly reveals that direct competition with others (i.e., other humans) for the very "stuff" of life (i.e., need satisfiers) is unwise at best, and suicidal at worst. Humans are deeply interconnected, not only nonmaterially, but also, genetically, but within the same bio-/ cosmo-sphere. The rope model mentioned elsewhere provides a visualizable representation of this interconnection and inter-relationship in object-form.

Within community, the common interest is shared by those sources of information willing to share and work together. The common interest of humankind is shared by all users of the knowledge and services that humankind can produce and sustain. Thus, the source of information for what is the common interest of humankind is unified by accounting for the human users, who are also the contributors that inform and sustain the system:

- 1. **The user** everyone who uses informational and material (habitat) services.
 - A. The contributor (who is also a user) everyone who contributes to the design, development, and operation of informational and material (habitat) services.

2.3 Fulfillment sub-conceptualization

The axiomatic composition of fulfillment involves three inter-related conceptions that connect a [social]organism to its [physicalized/embodied] environment (i.e., what is common and needs to be coordinated between in order to achieve fulfillment?):

- **Need:** that [system] which is being input to express [internal] capability.
 - A need is any required input to a mechanism.
- **Service:** that [system] which is being output to express [external] capability.
 - A service is any system which functions to complete an intention outside (beyond) its own system's level. A supra-system, by definition, has sub-systems that service (i.e., has service systems).
- **Resource:** that [system of material organization] which is produced natively or non-natively (by a service - ecological or socio-technical), and is used/ consumed by humans to fulfill requirements, and thus, express capability.
 - A resource is any material (produced naturally or cultivated) that may be used by humans to fulfill a need.

Here, a human ecology is that which accounts for resources and provides for services that humans and other living beings use, or otherwise, require.

When humans co-habitat in the form of cities, they produce services (and therefrom, goods) that humans, and other living beings use. Each city represents a common collection of services, known as a Habitat Service System, which is a socio-technical, ecological environment.

The conception of fulfillment includes the following subconceptions:

- Need (human being) The concept of 'need' carries the meaning that some input(s) are required, despite what someone may subjectively choose, and however hard someone may struggle against the need.
 - What can be *done* [for the individual]?
- Capability (human functioning, doing) a potential for [often intentional] choice and action. A capability represents a person's freedom to express

or achieve valuable functionings. Developed (or achieved) functionings at any given time are the particular functionings that can be performed, demonstrated, successfully pursued and realized. • What can the individual *do*?

Necessary linguistic clarifications:

- The 'capability' concepts represents the various combinations of functionings (beings and doings) that the person can develop (achieve). Functionings are the various activities and actions a person may value doing or being. For example, the following functionings are constitutive of a person's "being":
 - Being nourished > eating, being loved > affection, being significant > contribution, being certain > communication.
 - Thus, capability is a set of vectors of functionings, reflecting the person's freedom to live one type of life[style] or another (to "be" different), and to choose from all possible living scenarios (societal configurations and their experienced results).
- 'Basic' capabilities are those capabilities an individual requires to meet basic needs (e.g., a functioning digestive system to process nutrient resources). To be 'disabled' is to lack a basic human capability.

2.3.1 Relationship completeness

In concern to fulfillment, relationship completeness refers to the state when/where services and resources complete the need[ed] (required) relationship. The following terms are used to refer to the state where that which is desiring input is sufficiently complete (via some indication method) that the need ("desire") wanes for a rest phase of the cycle. When our environment (e.g., food) meets needs on multiple levels it provides a feeling of "completeness" (i.e., satiation), and the behavior to complete the need stops (e.g., the eating behaviour stops) offering a satisfaction that is altogether different than feeling the drive (e.g., hunger), or being stuffed or insatiable.

The expression and enjoyment of "our" human capacities for social self-consciousness and intentional agency together with others requires definite forms of loving and caring interpersonal relationships, information transfer, and life-service spaces in which creative self and social expression can be developed and enjoyed.

2.3.2 Optimizing human fulfillment

To optimize human fulfillment, the following data are required:

1. A knowledgeable design for the coordinated mutual fulfillment of all human need.

- 2. A definition and identification of [f]actual human requirements?
- 3. A structure to fulfill those human requirements ("things") that are innate necessary to a social biological population of human organisms, which would otherwise degrade a single individual's fulfillment (as an social organism as part of the population)?

2.4 Societal fulfillment subconceptualization

The societal-level sub-conceptual complex (*as sort tags*) of fulfillment includes:

- 1. **Society (life capacity)** A societal system ought to enable human life capacity, enabling greater freedom in consciously altering ones environment (as technology advances).
- 2. **Common heritage (planetary resource-services)** - that which is of common environmental interest and consists of materiality (or material resources).
 - A. Earth-based resources are the common heritage of all the planets species.
 - B. Human knowledge and social capability is the common heritage of all of humankind and the reservoir from which all conscious growth and effective adaptation occurs.
 - C. Coordinated and controlled common access to common heritage resources, in part, through a materializing habitat service system.
 - D. **Common heritage design** (a.k.a., open source), where the user decides through collaboration upon a materializing system where information flows from conception (ideation), to decided execution (algorithm), into materialization (production-operations), and back again as the concept, "prototype", as the materialization is measured and its alignment in quantity and quality are assessed.
 - E. In a common heritage environment, there is probability, and it is possible to develop and operate (produce) a service system with a high probability of fulfilling all population requirements, optimally. In order to accomplish this, the system must be unified (or, as unified as possible), while accounting for all available resources under open source (common heritage) conditions.
 - F. Common heritage survey of global resources (as in, area and object; position and reference/ standard).
 - G. **Common heritage information space** for the open assembly and operation of the operational

service system, including its information system.

- H. Common heritage index of human need, fulfillment and optimal environmental, solutions.
- I. Common InterSystem synchronous up-time operation project of local habitat service system within a global city network.
- 3. Freedom (socio-technical extensionality) Each healthy human has the ability to reconfigure the environment (given a societal system) in the context of its own requirements for fulfillment. Extensionality (the socio-technical application of the felt conception of 'love') the freedom "we" get by seeing all things as extensions of one unified information space (one unified self). Freedom is, in part, relative to human beings and their capability to determine their socio-technical environments in accordance with self-chosen end(s).
 - A. **Resource accounting (habitat surveying)** -Everything having to do with needed resources (e.g., food), such as its collection, capture, cultivation, preparation and consumption, represents a societal act[ion or behavior], and must be accounted for within a unified societal model.
 - Everything having to do with needed resources (e.g., food), such as its acquisition, processing, and using represents a societal act[ion or behavior], and must be accounted for within a unified societal model.
- 4. Satisfiers (needed resource-service satisfiers) -Those environmental elements (including all inputs, resources and methods/ways) that complete a needed relationship are satisfiers. In other words, satisfiers are inputs and methods (ways) of meeting needs. Other names for satisfiers include: nutriments, resources, services (and products), and conditions.
 - A. **Material satisfiers** matter onto and through the individual human body (object).
 - B. **Non-material satisfier** other consciousness (human and non-human)interrelation with informational meaning (concept).

These "tags" to consciousness are the real bases of self-respect and substantive individual freedom. Every person has something unique to offer, and social organization is only good so far as the life capacities of individual and society, access and contribution, are bonded in mutual progression and not dehumanizing to both.

2.5 Possible high-level survey questions indicating the level of subjective

fulfillment

The following are questions that facilitate a greater realization of whether socio-economic needs are met, or not sufficiently met.

- What is your overall satisfaction (qualia) with your life?
- What is your overall satisfaction (qualia) with life when compared against others, locally and globally (at a planetary-level)?
- What is your level of socio-economic access when compared against others, locally and globally (at a planetary-level); what are your opportunities relative to others?
- Does all feel well with your life and life pursuits (life interests); do you feel like you are pursuing worthwhile activities, beneficial to yourself and others?
- How many adverse, negative, and traumatic events are you experiencing, and are you suffering in any way; is there conflict somewhere in your life?
- Are there activities that you have to do because of the structure of the societal system, that you would prefer not to do; would you not do certain life activities if you had the opportunity not to do them?
- If you had the resources, would you do work other than the work you do now?
- Do you feel like you are able, and have, the opportunity to pursue worthwhile activities, beneficial to yourself and others?
- How much did you smile in the last 24 hours? How much joy did you experience? How much unwanted stress?
- How often do you enter the state of flow?
- Are your needs and life-requirements fulfilled satisfactorily?
- Do you feel separated from, and in a dis-coherent relationship with, any other individuals in your life?
- Do you have a clear purpose in life?
- Do you feel like you express your values coherently with others; do others in your life express conflicting values?
- Do you feel like you have individual, conscious control over your life?

NOTE: The above questions exist as part of the screening and orientation entrance statement on the part of individuals desiring access (entrance) into the community-type (RBE) societal system.

2.6 Design for flourishing [conditions and behaviors]

To flourish is to grow and develop, to experience life in a healthy and vigorous way. In order to design [a habitat system] for human flourishing, the following procedure is most commonly followed:

- Identify behaviors that you want to express, and by design, you want people to do, which are also aligned with the fulfillment of human needs/ requirements.
- 2. Understand the environment as all the stimuli that affects "you", and others, moment to moment.
- 3. Create an environment to promote specific behaviors, which are aligned with the complete satisfaction-fulfillment of all human needs-requirements.
- 4. Use monitoring (and experimentation, testing, study) to confirm change of [the state-condition of] behavior is as expected. Arrange configuration of environment to maintain and improve (change) the state of flourishing of all humans, and sentient beings.

All behavior has consequential affect (influence) on a social network in which individuals express behaviors that orient toward or away from life fulfillment (Read: information and action life[-fulfillment] coherency):

It is understand that the human [habitat] environment influences human behavior, and that the society can intentionally design an environment that generates fulfilling conditions and behaviors. And, by understanding and prioritizing human needs, a society can create an optimal state of flourishing. Therein, individuals, together are intrinsically motivated, and have the opportunity, to pursue their highest potentials (interests, purposes, orientations), and in doing so, facilitate "our" development toward the highest potential of all. By understanding and acting according to the optimization of "our" fulfillment, "we" create (i.e., are together creating) a more desirable environment for everyone.

Behavior may be an expression of the problem; it is not the problem. The behavioral expression of violence is a problem with the psycho-physiology of an individual (i.e., the violent behavior is an expression of an underlying, extant structure based within an individual's psycho-physiological state.

To design for flourishing it is essential to know the elements to life entrainment, and hence, flourishing in harmony with a biosphere,

- 1. Change the signalling, change the expression.
- 2. Change the thinking, change the behavior.
- 3. Change the behavior, change the environment.
- 4. And, the reverse of the above three.
- 5. And, all together.
- 6. When working together, inquire together: What

A.k.a., Flourishing through design.

should people do, and not, what can people do?

7. When working together, inquire together: What should people do, together, if they have needs; what if people can "have" needs and also not be aware of their affectual presence?

The question of how society is organized, or how to organize society, is one that has come to many human minds. Answers may fall into several categories:

- Human theory individuals' motivations and behaviors are conceived to meet the human needs of individual humans, either by intrinsic signaling and organization or as an extrinsic coercion. Here, intrinsic motivation is the optimal choice.
- Functional theory individuals' motivations and behaviors are shaped to meet the functional requirements of society, either by deliberate design or as a latent effect. Here, mutual habitat service is the optimal choice.
- Conflict theory individuals' motivations and behaviors are maintained through structures of domination in which relatively high levels of authority and/or affluence, coupled with widespread acceptance of justifying ideologies, help prevent excessive dissent sustain order. Here, transparent decisioning and restorative justice are the optimal choice.

The survival of particular structures in a society is not equivalent to the survival or well-being of the individual members of the societies population. The overriding priority in community is the fulfillment of people and their development to their full potential as human beings; not the maintenance of particular structures as an end in itself.

This point that socially assured sufficiency of life goods does not mean authoritarian government or levelling of individuation and diversity. The goods are universal necessities of a human life, not dictated by central authority or anyone else. People's lives are not levelled, but on the contrary, more diverse, free and individuated by their assured provision.

APHORISM: Unless you know where you are, you do not know who you are.

3 The human living system

A.k.a., Human life system, human life-system, human life-system organization.

The human living system could be viewed as the integration of the living systems through which humans express[ly sense] existence:

- The cosmic system (the universe-al kind)
- The solar system (the sol-ary kind)
- The earth system (the planet-ary kind)
- The human system (humankind, the species-ary kind)
- The societal system (human population organization kind, societ-ary)

Individual humans [in community] give rise to material requirements at the dwelling, habitat, and societal level. Humans have life-support requirements at every scale of human living. It is possible to assess all of the important and/or priority domains in common human life.

QUESTION: If humans are part of the earth's life support system. Then, what is humanity's role in working with earth's life support system? How do "we" build "our" life [material-style] systems so that they support earth's life support systems?

3.1 Human life [system] requirements

What do astronautic engineers require data on (i.e., what do astronauts know)?

- They know what their life support systems are.
- They know what their life support systems do.
- They know how their life support systems work.
- They know how to monitor their systems.
- They know how to maintain (and repair) their systems.

What do societal [information] engineers require data on (i.e., what to societal engineers know)?

- The idea of 'life support systems' that 'enable' (and not disable) 'life capacity' over 'time'.
- The design of life support systems that enable (and not disable) life capacity over time.
- The procedural operation of life support systems that enable (and not disable) life capacity over time.

3.2 Living system organizational design

The current human living systems can be designed with various concepts in-mind:

• Direction and orientation

- Need and want, preference
- Human <u>needs and wants as cooperative values</u> expressed as open-source, customization protocols which facilitate orientation toward the direction of intention/interest.
- Profit <u>needs and wants as scarcity values</u> expressed as closed-source, property protocols.

3.2.1 Objective criterion of a life-need support system

An objective criterion can be established for a life-need support system that enables life capacity over time. There exist objective criterion to tell the difference between life [support] systems that enable life capacity over time (in comparison to those which do not), include but are not limited to:

- 1. <u>A life-value analysis:</u> Life-value analysis is based on the establishment of a universal criterion, that of life necessity or need.
- A Need (N) is something that results in a reduction in the capacity of life. This reduction could be the experience of greater suffering and/or a loss of fulfillment. If there is a deprivation of "it", life capacity is reduced. If, for example, someone is deprived of clean water, fresh air, loving relationships, etc.
- 3. The N-value that is reached by a scientifically verifiable life-value allows for endless degrees and choices. Thus the need for food can be satisfied in the form of fish and beans, or by fruits and vegetables, or meat and potatoes as long as the organic need for a complement of nutritional sources is satisfied. Nobody thus "decides for others" using this analysis. At the same time, junk food can clearly be seen to have no N-value and does, in fact, reduce life capacities through disease.
- 4. Some needs are more easily identifiable than others. Air, water and food are clearly necessary within a short-term time framework, whereas deprivation of communicative culture and life vocation reduces life capacities in the long term.
- 5. With the recognition of short-term material and long-term quality, the human desire to perform work which benefits others becomes a life-value. Thus, when people pose the question about the incentive people will have to work in an RBE without money (i.e. symbol of value, McMurtry's system responds with the freedom to pursue one's true vocation, which results in life value).

From the life axiom, McMurtry identifies seven "rights" (that which should apply to governments and

corporations as rule/law) that apply universally across individuals and cultures and that are needed to preserve and/or improve life capacity. These are:

- The atmospheric goods of unpolluted air, sunlight, climate cycles, and seeing- hearing space;
- The bodily goods of clean water, nourishing food, fit clothing, and waste disposal;
- The home good of shelter from the elements and noxious animals/materials with the means to sleep and freely function;
- The environmental good of natural and constructed elements contributing to a life- supporting whole;
- The social goods of reliable care through time by supportive love, work-day limits/safety, accessible healthcare, and security of person;
- The cultural goods of language, the arts, participant civil rights, and play; and
- The vocational good of enabling and obliging each to contribute to the provision of these universal life goods consistent with the enjoyment of."

By applying the life-value axiom to questions of distribution and contribution, McMurtry also eliminates three faults to the general principle, "from each according to his ability, to each according to his needs":

- 'Needs' have remained without definition and bound. Thus damaging habits conceived of as 'needs' may qualify as benefits, leading to disabling ("negative") consequences (network effects), and
- The 'ability' expected (required) from each is not grounded in human life capacities. Thus, dehumanizing use of abilities can be obliged "from each," allowing for distortion of the underlying life capacities they express.
- There is no principled linkage between 'needs' and 'abilities' to ensure the coherence of their realization. Thus the ancient division between the unequal abilities and needs of people still remains.

4 The life system

A.k.a., The life concept, the 'life' conception, life-concepts, life conceptions, life-conceptions, life imperative concepts.

What is life? Different societies have different conceptions of life. A society's conception of 'life' may, or may not, be grounded in (i.e., linked to) idea that the living (i.e., living systems) have needs that are required to be met [completely] if they are to remain life [and thrive completely].

Possibly, there are (at least) two scientific properties to all living entities:

- Alive/living a *natural object that moves against the least path of resistance by itself (Read: individual).
- 2. Life the set of living entities (Read: group).

* The word 'natural' does not include "artificial" objects that humankind has made. These objects are not living (to some relative degree); they may, for instance, move against gravity as in the case of vehicle, but they cannot interface with the physics of gravity consciously, as a 'human' organism can.

4.1 Scientific life study: Biology

Whereas physics is the study of material reality, biology is the study of material life. Through material reality an [organic] living entity can be defined relative to an environment. An organic entity is defined (relative to) an environment by way of defining its set of [environmental] needs (or, inputs, requirements).

4.2 Societally relevant life-related conceptions

All of the following life-contextual terms are related are and simply different windows into the same unified life fulfillment information system, formed from two principles:

- Life-coherency principle a principle that gives meaning to life because it allows for life to improve itself by coherently meeting life requirements over generational time.
- Life-value principle a principle that gives orientation to live because it allows for the fulfillment of the input requirement of a system whose functioning enables (and does not disable) life capacity (life's potential through actualization).

CLARIFICATION: Concepts associated with 'life',

in this context, are generally with a hyphen ("-") connecting the term 'life' and its context, for example: life-coherency, life-value. However, the hyphen is not always used -- either usage of the hyphen or no-usage of the hyphen could be considered correct.

4.3 The life-coherence principle

A.k.a., Life coherency, life meaning life access requirements,

All [life] economic demand is a demand of life [ecological] systems for life [ecological] services and [sociological] resources (i.e., life goods).

Principles of a life coherent society through generational time:

- 1. Access to means of life (i.e., the materialized habitat service system; life goods).
 - A. Converse: scarcity in access to means of life.
- 2. Service (or enable) life capacities/abilities, not possible without it.
 - A. Converse: disable or do not service (enable) life capacities/abilities (enabling/serving that which is not a means of life).
- 3. List the complete, universal set of "means of life" (i.e., the inventoried matrix of human [life] need through habitat [life] service), which all humans require to flourish. (Note: see needs list)
 - A. Converse: materiality that does not directly or indirectly provide means of life (and could therefore be considered, "uneconomic" or "antieconomic" in that it does not provide means of life, otherwise, human life services).
- 4. Measure the provision ("abundance") and deprivation of each life need (each means of life).
 - A. Converse: willingness or ability to pay prices for services (and commodity objects), thus not measure their life requirement, but increase the opposite (i.e., conspicuous consumption).
- Evaluate fullness of access by all users ("members") of the services in comparison to a previous[ly composed] state of the society (or economy), or to another socio-economic composition entirely (e.g., greater/lesser nutritional-intake, clean water accessibility/inaccessibility, bio-diverse environment, education, life participation/ exclusion, life well-being).
 - A. Converse: the growth of abstract entities is made to correspond to the access of its members to life "goods" as defined by that society. For example, in the market, a "good" is anything that is produced, regardless of it facilitates or thwarts life.

- 6. Resolve a new [design] state using 'capital' as the primary conceptual variable of any given societies economy:
 - Life capital (LC -> LC1 --> LCn) is access to services that complete life needs (i.e., means of life) producing more cumulative yield, without loss, through time (e.g., species/ecological, social, knowledge...note that these are indicators).
 - A. Converse: services are claimed as "capital" that do not directly or indirectly produce means of life through time (e.g., money capital growth by non-defensive weapons manufacture, currency speculation, production of lifedisabling consumer commodities). Note: Notice the circularity here, and the lack of iterative evolution. The difference here is life-capital (i.e., the reproduction and growth of life) exists in contrast to money-capital (i.e., the reproduction and growth of money sequences).
- Determine efficiency, where the efficiency of any service (system, process, tool, etc. in the economy) increases to the extent that:
 - A. Ecological Efficiency inputs and throughputs function to enable the provision of life goods with diminishing waste and externalities (e.g., organic farming methods, industries directed towards 100% recycling).
 - B. B. Physical Input-Output Efficiency reduced inputs of materials/energy/space/mandatory work time produce same or greater means of life outputs (eg., wheel and pulley structures, cooperative organisation of work/leisure requirements, lower labour/fuel-per unit machines).
 - C. Human Development Efficiency capability development of productive agents enables more life goods, lifetime, and/or life-range choices than before (eg., by education, healthcare, and vocational work). Enabling productive, participative efficiency, like literacy, or mathematics enables greater production ability and creative expression.
 - D. These are the types of efficiency they system needs to improve.
 - E. Converse: life capital resources are wasted and destroyed by life-incoherent systems. Hence, the life value of anything is always damaged by its commodification, and it does not follow that this damage can be undone.

4.3.1 Life-coherency and efficiency

A system that is more [life-]coherent is more efficient. In society, the efficiency of any system (service, tool, or process) increases, to the extent that:

- 1. It improves life capacities, and
- 2. It improves capacities to produce the means of life (e.g., ecosystem services), and
- 3. If it doesn't do either (i.e., improve life), then it isn't efficient.

Note that there are two principal levels to efficiency here:

- 1st efficiency: inputs and throughputs function to enable life goods with diminishing waste and externalities. This could be considered ecological efficiency, where 100 percent recycling and 100 percent reuse is optimal
- 2. 2nd efficiency: physical input and output efficiency, the efficiency of the system itself (reduce inputs required and create more space efficient outputs).

4.3.2 Societal life-coherency

The question of the degree of societal life-coherency is (i.e., the life-coherence inquiry is):

- 1. What enables human and ecological life together?
- 2. How aligned with life's requirements is the society?

A life-coherent societal system is a system that accounts for life, its requirements and various potentials of being. In other words, a life coherent societal system "coheres" with life's requirements and the optimal embodied expression(s) of consciousness.

A life-coherent system is one that:

- 1. Does account for the life ground, and
- 2. Does not encode hurtful abstractions (e.g., money sequences and agreements without any reference to the life ground).

Societies are life-coherent to the extent that the value system that regulates and legitimises their major societal organizations:

- 1. Does not unsustainably use (Read: exploit) the resources of the natural life-support system.
 - Does the societal system use natural resource for life-support sustainably?
- Does not damage, through instrumental use (Read: exploitative instrumentalization), the life-requirements and life-capacities of others (particularly, for the sake of system-specific or authority-specific interests).
 - Does the societal system damage (harm) the fulfillment of life-requirements and life-capacities?

Note that different societal value [system] compositions (i.e., different orientations and objectives) are likely to have differently expressed potentials for

societal life-coherence.

4.3.2.1 The life-coherency of cooperative-type and competitive-type societal systems

I.e., The market-State as a type of societal structure with a determinable life-coherency in relation to a community-type society with a designed and determinable life-coherency.

The active value system in a market society is lifeincoherent for both life-support sustainability and life-requirement capacity. Market-based values lead to behavior that conflates the production of universal life-value with the production of moneyvalue (for the private appropriation of investors and owners), by not applying the test of life-coherence (i.e., the market's value orientation does not support decisioning, using information on whether an action fulfills life requirements?). A money-value (moneyvalued) approach cannot recognise as services or goods anything that cannot be priced (or otherwise, owned). This fact means that it is obfuscates ("blind") to intrinsic life-values (intrinsic being synonymous in this context with unpriced), and it drives people toward [scales of] economic activity that are ecologically unsustainable and likely to generate conflict (or just suffering in general).

A market-based structure has no feedback mechanism to determine whether work is undesired, unnecessary, alienating and exploitative, or worsening to the lives of workers. Therein, the market-value system encodes the "good" of work ("labor") as its wages. The market system identifies the "good" (as a direction of orientation) for individuals as maximal private accumulation of moneyvalue, of ownership, without regard to externalities such as ecological life-service, habitat life-support, and self life-development.

The concept of 'exchange' is a market-based term. For every exchange (or transaction) there is a cost (price, externality, debt, credit, etc.).

The life-coherent structuring of cooperative (community) versus competitive (market) societies differs, as follows:

- 1. A market (ownership access, private access) structured society seeks to maintain moneyvalue. Herein, a lack of life-value is no barrier to commodification and profitable sale, while the presence of life-value is irrelevant beyond consumer-subjective demand.
- 2. A community (cooperative access, shared access) structured society seeks to maintain life-value. In other words, a community seeks to maintain life by encoding into decisioning (and the information system, in general) values that orient toward a better, more optimal life [experience]. Herein, a lack of life-value (i.e., lacking values that orient toward a better life experience) is a barrier to action using common resources -- if an action

doesn't make "us" better off, then that action is not taken, and an action that is likely to make "us" better of, is taken.

In the market, institutions (market-based organizations) are measured by a money-value metric, wherein they are judged "good" when they meet the needs of the money-value system (and thus, the private interests of major economic powers) by:

- 1. <u>Providing services</u> to private economic agents and institutions at lower cost than those private interest could provide those services for themselves,
- 2. <u>Producing commodities</u> for sale with the profits transferring to private market agents,
- 3. <u>Training people</u> for compliant functioning in labour markets, and
- 4. <u>Providing justifications</u> for the ruling value system whose internalization impedes recognition of the life-incoherence of the system.

In community, access to services (of which objectgoods are a sub-component) is measured by a life-value metric. When measured by a life-value metric, services are assessed on their effectiveness of:

- 1. Meeting the needs of life-forms, because the lifeforms are [conceived of as] life.
- 2. Meeting the ability-condition of sustainability over the open-ended future of human life, because life exists in a finite environment where there is also not life.
- 3. Not requiring or triggering social values and behaviors that cause suffering (by means of exploitation, oppression, or alienation), because in life it is given that there is a choice/decision space (life-requirements can be met through either cooperation, or exploitation and oppression):
 - Exploitation is the state of access without contribution (getting one's own needs met without contributing to the meeting of others' needs).
 - Oppression is the state of access control with subjective power over others (getting one's needs met while actively thwarting others' needs, suffering)
 - Alienation is shaming another member of a social species by attributing behavior entirely to the subjective (as opposed to recognizing it in a societal, structural environment or context).

4.4 Life-value

INSIGHT: The more a society satisfies the necessary requirements of human life, the more individuals therein are empowered to develop

(potential) and enjoy (actualize) the capacities that make human life valuable and meaningful.

Life-value is a supra-category of elements, relating all aspects of objective reality that enable living things to survive and to develop their [distinctive] life-capacities (to develop a potential), and whose realization and enjoyment (to actualize a potential) makes life meaningful and well. More simply, life-value refers to everything that makes up the objective and common experience of wellbeing through the complete[ly regular] fulfillment of life requirements. There are universal human requirements, because there are a set of needs claims that relate to life-value, which is common to everyone and objectively self-evident. Life value is the most innate form of value possible. A life-value is, what is of value that sustains and enables life [capacity/ability] - the fulfillment of the absolute need(s) without which life [in its capacity to express potential] is reduced, leading to cumulative gain over time without loss.

If something has an orientation (in our lives), then does that orientation sustain and/or enable life capacities? If that with an orientation (i.e., a resource, service, behavior, mental model, mental value, etc.) leads to the sustainment or enabling of the capacities of life, then it is an optimal ("good") direction for life action (via explicated decisioning).

The three axiomatic fields of life-value (or, fields of value):

- 1. **Thought**: internal image and concept (understanding).
- 2. **Felt** side of being: senses, desires, emotions, moods (affection and emotion).
- 3. Action: animate movement and organizations.

The objective standard of measure of life value is decomposed of three logical steps:

- 1. All value (to a living embodied consciousness) is life-value.
- Fulfillment (good) versus lack (bad) = the extent to which life is more coherently enabled, by the sufficient regular meeting of requirements (versus disabled); thus, enabling life value (coherency) is "good" and disabling life value (dis-coherency) is "bad", be degree.
- 3. By the remembered and designed enabling of greater (good) or lesser (bad) ranges or capacities (functions) of thought, felt being, and action (*as the 3 fields of the 3 steps of life*), through time.

This standard of 'life' experience has objective measures that no one individual can coherently disagree with, given what is known and self-evidently experienced. And yet, when life-value is accounted for at the societal level, then no one individual decides. When values become clear, decisioning becomes [more] obvious. When societal values are aligned with humanity's highest potential expression,t then decisioning takes a shared "algorithmic" form. Societal decisions are a complex of internally created tools, procedures, and algorithms, expressing objective environmental life capacities. Gains and losses (over time) of life capacity can be measure (given what is known) objectively, scientifically so. Any change is state is better or worse by the greater or lesser range of life capacities it enables, or disables. A value system (value code, as a set of coordinates) can build mental and physical systems that are operational ("running") in society.

There are [at least] four testable generalizations of [human] life value:

- Life value is objective, because it is true, independent of any one's perception of it. Existence is testable by embodied sensation; existence is self-evident ("hello"). Life can, and also cannot, be present.
- 2. Life value has unlimited validity because there is no exception to it, which is testable by searching for one. Life value has unlimited validity, and is thus a source of real world information, as shown by its:
 - A. Self-evidence insofar as its denial is nonsensical;
 - B. Universality across all domains and issues of value determination insofar as there is no human life to which it does not apply;
 - C. Presupposition in value judgments and conflicts across domains;
 - D. Objectivity insofar as its value is independent of anyone's recognition;
 - E. Impartiality insofar as it does not include ownership;
 - F. Completeness insofar as it includes every life form, domain, or change to ill or better in distinct or holistic comprehension;
 - G. Sovereignty in that it overrides any other value in cases of conflict;
 - H. Measurable in degrees of value insofar as greater/lesser ranges of thought, felt being and action can each/all be decided from any given reference body of value;
 - I. Contingent pattern of long-term evolutionary and historical development.
- 3. Life value is universalizable, because all values derive their worth from life [value].
- 4. Life value is a priority over any other type(s) of value.

In part, life-value is derived from the following principled structure:

1. Life forms a continuum (of lifeforms) in which each life form depends in specific ways on the natural

field of life [service] support.

- 2. Life forms have wider or narrower ranges of life capacities, but all depend ultimately upon their ability to satisfy their life requirements,
- 3. Which, at the most basic information level, involves transforming information processes and life activities.
- 4. Hence, one can say that nature is the most basic form of what McMurtry calls the "life-ground of value". The life ground of value is the connection between living things and the material conditions that sustain them, allow them to grow, and act in their characteristic ways.
- 5. Human beings depend not only on their metabolism with nature, but also upon specific compositions of social interaction in order to consciously express and enjoy our basic organic capacities to sense, feel, move, think, imagine, and create together, for human life, the life ground of value has multidimensionally composed form.
- 6. Humans, both in order to persist and in order to live meaningful and valuable lives, must live within natural fields of life support and social fields of life development that satisfy our natural and social life requirements.
 - A. Humans, both in order to persist, and in order to live meaningful and valuable lives, must live within natural "law" fields of life support and social fields of life development that satisfy our natural and social life requirements.
- 7. Where these natural and social life requirements are not met, human beings are harmed, either in their metabolic functioning or in their ability to express and enjoy their human capacities in meaningful and valuable ways.
- 8. Life requirements, therefore, are natural inputs or social institutions and practices that human beings must satisfy if they are not to be objectively harmed in their natural organism and social being.
- Life is better or worse for human beings according to the degree to which our lives are able to freely express and enjoy life capabilities in more "inclusively coherent ranges". The qualifier, "inclusively coherent ranges" is necessary so as to avoid the problems of a measure of overall social health like Pareto optimality (which is life blind).
- 10. The goal of maximally coherent ranges of lifecapacity expression and enjoyment is contingent upon the degree to which the natural field of life support and the social field of life development satisfy or do not satisfy fundamental life requirements.
- 11. For human beings, that which has life value is any resource, institution, or practice that satisfies

a life requirement or is an expressed and enjoyed capacity enabled by the satisfaction of a life requirement whose expression and enjoyment contributes positively to the life value of others.

- 12. Material organization is thus limited to the range of life requirements and the possibilities of lifecapacity expression and enjoyment that make an extrapolative contribution to the field of life support and the social field of development.
- At the same time, though subject to objective limits, life value is not an external standard imposed from on high upon subjective consciousness; instead, it is decided upon together.

NOTE: When there exists the routinized consumption of status commodities with no link back to the development of human capacities for feeling, thought, imagination, or creation contributes nothing of real life value to human life, since by this compelled behavior, then nothing of life value for self or others is produced.

In order to understand life-value more fully, it is necessary to examine in more detail how it is anchored in the three dimensions of human life: the biological, sociological, and temporal). The dimensions of the human life space-time continuum can be defined:

- 1. The biological ("natural") dimension (biological requirements) The biological dimension of human life is grounded in our biology and gives rise to a set of obvious natural life requirements.
- The social dimension (sociological requirements)

 The social dimension of human life is grounded in the biological nature (humans can only survive through social interaction), expressed through the emergent properties of conscious and intentional action in systematic and symbolic contexts.
 - A social consciousness maintains (under normal conditions) irreducible social life requirements (a social system) such as extensionality (love and care), especially while young
 - B. Education through which the imaginative and cognitive capacities of conscious (a decision system) may be developed,
 - C. A contributive system (core habitat system) in which we can participate in the design and operation of the societal and habitat systems,
 - D. A participative system (facility habitat system) that preserves and creates natural and artistic beauty, and
 - E. A unified, engineered societal system directed toward the goal of sustaining a social space for individuals to develop their own highest state of well-being, and make positive contributions in the development of others.

- 3. The temporal dimension (lifestyle requirements) -The link of the natural and social through a finite life-time. The lifetime of a human being is finite, and the flourishing in one's life depends upon what the individual is able to accomplish, experience, become, express over the limited course of the human life[time]. Thus, in addition to natural and social life requirements, there is also a temporal life requirement to experience time as matrix of possibilities through which strategically planned iteration provides an abundance of regenerative access. Many beliefs, though not all, represent an attachment to a past iteration, and the belief is the inertia of the past iteration. Time is, in part, iteration (pattern), and actualized patterns ('motion') has inertia.
- 4. Conversely: The biological, sociological, and temporal patterns become crises in human life, expressed as the loss of life value of natural liferequirement satisfiers, social organization and interaction, and the human experience of time consequent patterns (and in the market, their subordination to the money-value system that rules human activity in a capitalist society).

4.4.1 Human life standards

What is of greatest life-value to all it having a set of integrated understanding of humanity and its relationships to the larger cosmos. Here, a human-life standards is an acceptable InterSystem Team Operations document for assembly, operations and disassembly. The resulting integration of studies into the phenomena, facilitates knowledge, principles and laws that protect and enable human and ecological life systems (if humans socially, together, intend so).

QUESTION: What are the societies individual and common 'experience' objectives.

4.4.2 Life-value and consciousness

INSIGHT: Without an answer to how humanity best fulfills everyone's potential, what really matters to people's lives and life conditions will remain missing.

Where consciousness is not alienated from the life ground (Read: life requirements) of [life] value, it is capable on its own, of discovering for itself those forms of capacity expression that have (and those that do not have) [life] value, and deciding, without imposition from a social hierarchy, modes of coordination that are both subjectively satisfying and objectively beneficial to everyone. Consciousness is [at least, in part] a self-integrating, goal-oriented response to an extant environment.

4.4.2.1 A life-valuing information system

A [unified] life-valuing information system:

- Excludes nothing of what human life requires for existence.
- Excludes that which destroys life value or contributes nothing to it.

Thus, producing conflict is ultimately life-destructive since its primary use is to threaten, wound, or kill other human beings.

4.4.2.2 Primary axiom of all value

A.k.a., The primary axiom of value.

The axiom of all life value (a.k.a., axiom of all value) has two principles:

- Life is a good (life existence is desirable), and that conception encompasses everyone living, and is at the same time, encompassed by everyone living. Because there is commonality, life navigation is possible; life has the potential for expressing itself together, cooperatively in existence.
 - x is a value, if and only if, it is shared by a life population.
- 2. Life is better (more good, more desirable) the more coherently inclusive its life-fields and ranges in thought, felt being, and action. Because there is a more coherent information space, life has more potential for its expression.
 - Front: x is value, if and only if, x consists in or enables a more coherently inclusive range of expression (thought, feeling, action) than without it.
 - Converse: x is dis-value, if and only if, x limits (reduces, disables, destroys) any range of expression (thought, feeling, action).

The primary axioms of value include three principal domains of possible value expression (i.e., axiomatic fields of value that include all that is of value in life):

- 1. Thought (T) internal image and concept [of sense of self in relationship to world].
- 2. Felt side of being (F) through senses, desires, emotions, moods, also known as, feelings.
- 3. Action (A) animate movement across a controlled habitat environment, across species and organizations.

Each field of value is decided by:

• The [highest potential] intention (i.e., "the good will") - T/F/A as one (unified) to realise the axioms of life value.

• The true - progressive consistency with the Primary Axiom (a.k.a., P-axiom, or the life coherence principle).

Symbolically expressed (algorithm) which algorithmically expresses an objective value gain or loss for some completed relationship:

- +V (positive value) => LR +
- -V (negative value) =< LR
- where, L = Range of T-F-A and/= and/or.

The primary axiom (of all value) is realised in the real world by a set of universal human life necessities, which can be defined, criteriarized (Read: standardized, ruled, and tested), and measured. The primary axiom is realized in the world by recognizing and societally encoding the complete set of universal human life necessities and their axiomatic criteria/measure of life satisfiers (services, objects, humans, and the larger ecology), and to do so with efficiency and effectiveness.

The unlimited validity of the primary axiom (p-axiom, life coherence principle) across time, place and domains is shown by its:

- 1. Self-evidence insofar as its denial is nonsensical;
- <u>Universality</u> across all domains and issues of value judgment insofar as there is no domain of value to which it does not apply;
- 3. <u>Presupposition</u> in value judgments and conflicts across domains;
- 4. Objectivity insofar as its value is independent of anyone's recognition;
- 5. <u>Impartiality</u> insofar as it cuts against or privileges no common life interest;
- <u>Completeness</u> insofar as it includes every life form, domain, or change to ill or better in distinct or holistic comprehension;
- 7. <u>Sovereignty</u> in that it overrides any other value in cases of conflict;
- Measurable in degrees of value insofar as greater/ lesser ranges of thought, felt being and action can each/all be decided from any given reference body of value;
- 9. <u>Contingent</u> pattern of long-term evolutionary and historical development.

4.5 Life-capacity

Note: In communications, the term 'bandwidth' is frequently used to simplistically represent capacity.

In system's dynamics, 'capacity' is formally defined as the maximum number of users per cell (times the user spectral efficiency), for a given maximum outage probability. Due to the axiomatic composition of systems, a system's capacity is finite; and, for a living system over-/under-capacity means loss (of life function) by degree, to full loss (destruction) of the system (i.e., death). To engineers of a habitat service system, capacity means some measure of the ability to produce, serve, or use, and to do so within the [carrying] capacity of the larger living system, the ecosystem.

Systems and products can thwart, harm, and reduce, and destroy life-capacity.

Life-capacity refers to the capacity to live, and to live well through [optimally designed] structure and function. At one level of the scale, life-capacity is the capacity of "our" Earth (and humankind) to provide means of life, without loss and cumulative gain, over time. For [life-supporting] ecosystem services, the optimum is cumulative gain over time, without loss.

The concept of life-capacity may be sub-characterized into:

- Life-capital is the wealth (capital, habitat service systems) of means of life (life goods) that produce more, without loss in cumulative yield, through time.
 - A. Life-wealth,
 - B. that produces more life-wealth,
 - C. without loss, and
 - D. with cumulative gain over time.

Definitional note: 'Life capital' is the means (resource, tools, etc.) of life, to sustain and better life; versus the growth of money sequences in a market-type society, for example.

- Full life-capacity is optimizing access to means of life (services and resources) that produce more, without loss in cumulative yield, through time.
 - E. Optimization of life-capacity,
 - F. that produces more life-capacity,
 - G. without loss, and
 - H. with cumulative gain over time.

How can a society accumulate life-wealth over time, without loss? And, How can a society accumulate lifecapacity over time, without loss? Through an openly integrated network of habitat service systems (a network of cities) wherein individuals perceive information and material resource as the common heritage of all, and thus, cooperate in order to coordinated the sustained, stable and cumulative higher-order (HSS) service system for a planetary population.

In life-support (Read: Life-support service system), the term 'resilience' is the capacity for an active system to rebound to normal function after a disturbance, or if need be, to adapt to a modified function should the disturbance prove to be long-lived.

4.5.1 Background extinction rate [indicator]

To sustain life, one of the most essential indicators is background extinction 'variable' and resulting predictive background extinction 'rate'. The rate is a mathematical construction (where statistical modeling is applied) to observe and predict the patterns present in the death/ extinction of species in the biospheric environment that the human species inhabits (Read: has habitat [service city systems]). In the real world, background extinction refers to the death of one species, given an dynamic environment. From an observational point-of-view, background ground extinction refers to a measurement of the "normal", now, extinction rate of any or all species. Background extinctions are simply a measure of how often species go extinct, often, because they cannot survive, naturally. In total, this is a measurement of species that go extinct and did not survive, genetically. Background extinction refers to the ongoing extinction of individual species due to environmental or ecological factors at any level (biosphere/habitat/social, such as climate change, disease, loss of habitat, or competitive dis-advantage in relation to other humans and other species).

The term 'species' refer to inter-breeding of genetics to produce a replication. If the animals in question can have fertile offspring naturally (in the wild), they are of the same species. The amount of time that the two specimens under consideration have been apart is insufficient for their genes to have diverged beyond the ability to procreate healthy litters that can propagate the race.

Intrinsic mechanisms and agents (including humans) are constrained by, at least, the following:

- Time: The time a given species has been on Earth. This history pertains strictly to the species. Is it the same for a species to have been developing for millions of years as one that has just been spawned by a thousand years ago. How long does a species live? How long does an individual of the species live before dying (i.e., getting old and dying)?
- 2. Food: The food a species eats, especially toward the end of its existence when it has become exceedingly specialized.
- 3. Genetic drift a species suffers a loss of genetic diversity after thousands of years of experiencing population bottlenecks and interbreeding.
- 4. What are/were the density-dependent birth rates of the species.

Causes of a background extinction, include:

- Aging
- Food
- Genetic Diversity
- Carrying Capacity

- · Materials availability
- Knowledge availability
- Biospheric availability

4.6 Life-space

A.k.a., Life space, lifespace, living space, societal life-space.

A living space (life-space) is a spatial environment where an organism lives. All organisms need a place to live. Because there is finite space on earth, species (existing [in real-time]) at the planetary scale must cooperate to avoid harm, necessarily.

Generally, the term 'life-space' denotes an individual's external environment, including the extent that, the individual accurately perceives it. Life-space refers to the natural and built environments, and the dynamic array of living relationships therein. Physical existence and action accounts for the life-space.

The fundamental concept of a life-space can take on any complex of the following conditions (italicized with their associated societal-type tag):

- The life-space can exist free (community).
- The life-space can be commodified (market).
- The life-space can be taken (State).
- The life-space can be designed (State of System).

4.7 Life-systems macro-algorithm calculation

A life system (e.g., a human society, sub-composed of systems) can be designed to be a viable system of earth coordination (management) that enables (rather than disables) life capacity, without loss, and with cumulative gain over generational time. To accomplish this at planetary population scale, a macro algorithm ("life calculation") for life support (in particular, and all services in general) is required to resolve a decision into a state change to the material environment. Algorithms facilitate coordination by automating information processes in order to proceduralize the environment so that intention can be executed more quickly. Algorithms resolve the ability (i.e., it takes algorithms to coordinate) at the system's, planetary-scale population level.

Thus, the proposed solution is, in part, an algorithm. Every algorithm has an input and output, the data goes into the computer, the algorithm does what it designed to do, and outputs (outcomes) the result. In social economics the data sets these algorithms most closely work with are known as "economic input-output tables". In every sense, an algorithm is a vector/purpose-based program of an instructional set, given meaning to by a designing user.

Every sub-system of the total societal system has its own algorithms, its own procedurally-based inputs and outputs. These algorithms process information via some operation in order to resolve some [issued] situation in some [intentional] direction, given an environmental situation of common resource access-ability. The social system has information-type algorithms that process socially accessible information in an optimal manner for their users with whom they are interfaced (Read: sociotechnically interfaced).

In a society, the decision system uses information based algorithms that process access-decision information (for all information and material resources). A cyclic way of living one's life could be considered a life algorithm.

The material system is composed of an experienced, actualized, material environment and an experienceable, potential, material environment. The material information environment describes the materializing -encoding of algorithms into the lives of individuals among a population at global scale. The material environment itself is the material encoding of what was previously (recognized or not) a prior cognition of a social information- and decisional-based system. The materialized system is the built and larger universal environment that influences the builder in-kind. Technically, the algorithms present at this level exist in two dimensions (categories): they exist in the minds of individual humans, in their consciousness, and they exist in the built environment as materializations of some cognition. In either case, it could be said that the algorithm is "encoded", into the mind or the real-time material environment. In the materialized environment, it could be said that there are algorithms present in two categories: universal algorithms as that which would exist regardless of "our" presence (e.g., ecological services and physics), and controlled-encoded algorithms as the intentionally re-configuration of the environment to express a given condition, where the condition[al feedback] is the algorithm. Architecture is the most well-known conception of a materialized algorithmic expression. An as we all know, architecture affects cognition, consciousness, and behavior.

Architecture is a description of a boundary, which has been (or, is to be) designed, around some material (physical, real-time) environment. It is no great leap to understand that changes made to a materializing [environment] due to the design of the new materialized [environment] boundary.

Together, all these algorithms exist, unified or not, at the societal scale of [environmental] operation for human (and other ecological) intentional access fulfillment. These algorithms can be recognized by the experiencing population, or not. These algorithms can be designed by the experiencing population, or not. These algorithms can be open to participatory contribution and modification, or not.

4.8 Life-value analysis

NOTE: The integrity of a value or societal understanding is only as good as how aligned it is with the lifeground of human need, which is the common ground that all humans share (as the human system).

A life-value analysis is the documented discovery of all elements relevant to the fulfillment of all common human requirements. A life-value analysis is a tool to produce coherent common understanding of that which is of common life interest, the human and its dynamic relationship with an ecology. In some respects, a lifevalue analysis seeks to root out hurtful [mental model] abstractions (e.g., "rights" and "privileges") so that the next iteration [output of the society] is more integrated, understood, and optimally aligned with the explicit direction. A life-value analysis accounts for the human experience of environmental inputs and conditions. The output of the life-value analysis tool is data that may be used to:

- Maintain or improve the ecosystem upon which organic life-depends.
- Inform the design and operation of the habitat service system that produces and distributes services, goods and resources that satisfy the liferequirements of human beings, while ensuring:
 - · Equity in access.
 - Health in biology.
 - Well-being in life.
- Satisfy the conditions of all higher human development, and do so universally.
- Facilitate the discovery and expression of lifecapacities.

Therein, that which is a necessity is a necessity because it is recognized and understood through a scientifically verifiable criterion of life-value (i.e., the output of life-value analysis), expressed as the discovery, identification, and logical ordering of humankind's:

- 1. Life services (inputs, needs, and other requirements; life necessities)
- 2. Life capabilities (life's potential capacity for expression)
- 3. Life orientations (values for the controlled encoding of decisions)
- 4. Life approach (methods for the controlled encoding of decisions)

Life-value analysis is a process to fully discover_life needs and life's capabilities:

- What are the human life needs, requirements range? The analysis begins with human [life] needs as its grounded direction, for humans are the potentially fulfilled.
 - The identification of human [life] needs begins with the [ecological] life ground, for humans exist within relationship to a naturally supportive

[ecological] life environment.

- What are the human life capabilities, functions range? Are life capacities more restricted or reduced in range without the life necessity (or good) than with it?
 - What capabilities are possible [in humans and the ecology], when fulfillment is optimal?
 - What capabilities are lost [in humans and the ecology], when fulfillment is sub-optimal?

NOTE: In a market-State society, a life-value analytical result may be grounded in "rights" and "retributive justice". In community, a life-value analytical result is grounded in human needs and capabilities.

4.8.1 Life-services (direction)

The life-value analysis identifies, and logically orders (prioritizes) humankind's universal life necessities, its required inputs. Therein, life-value is data about the real [world] life [system] requirements of human beings and the larger ecology in which human beings exist in interrelationship:

- What are the requirements of human life?
- What are the requirements of human life support systems?
- How are humanity's universal life necessities most optimally fulfilled -- with what categorization, composition, and frequency?
- What are humanity's necessary life [fulfilling] needs through to services?
- What do humans require to live full lives (given what is known, knowable, and available)?

4.8.2 Life-values (orientation)

The life-value analysis leads [in part] to the explication of a set of values that maintain a strongly aligned relationship with the following attributes [of a common societal value system]:

- Self-evidence insofar as its denial is nonsensical.
- Universality across all domains and issues of value judgment insofar as there is no domain of value to which it does not apply.
- Integration reduces presupposition in value judgments and conflicts across domains (safety).
- Objectivity insofar as its value is independent of anyone's recognition.
- Impartiality insofar as it cuts against or privileges no common life interest.
- Completeness insofar as it includes every life form, domain, or change to ill or better in distinct or holistic comprehension.
- Sovereignty in that it overrides any other value in cases of conflict.

- Measurable in degrees of value insofar as greater/ lesser ranges of thought, felt being and action can each/all be decided from any given reference body of value.
- Contingent pattern of long-term evolutionary and historical development.

QUESTION: What must humans value encoding if they are to optimize and adapt their fulfillment together?

4.8.3 The life-value test (method)

The life-value test (i.e., the life-value method) is a test used to tell whether any claimed value, however powerful it is in the world, is in alignment or not with a stated direction (survival and/or development). The life-value test is a calculation that uses data from scientifically establishable limits of life capacity range and the degrees of its reduction correlating with the degrees of deprivation of it. The parameters apply across need-capacity domains, with very different lines of necessity and loss from deprivation of different universal life necessities.

Insufficient breathable air leads quickly to incapacitation by the degree of deprivation, but deprivation of natural space or sunlight may take far longer to show the loss of ability to function through range. Deprivation of a transportation system, on the other hand, is more complex and less dramatic in its effects, but is still expressed in life capacity loss.

4.8.4 Applying a life-value analysis to society

NOTE: The ancient formula of justice, survive and thrive together, is understood throughout a community-type society in systematic and objective life-value terms.

In the context of the larger, unified societal information system the life-value analysis is a component of, and produces information into, the Social System Specification (in specific), and a significant portion of the fundamental structure of the societal project plan is derived from its information set. Through the encoding of human need and expressed capability, as the 'direction', value 'orientation' [decisioning] conditions and resources can be developed to ensure that decisions impacting the material environment (and common heritage resources) orient life in the direction of need fulfillment, and full life-capability expression, of all.

At the level of decisioning, those values that orient toward a specific direction can be encoded as algorithm sets within a larger combining system's level [decision] algorithm representing the decision system itself. Values become decision oriented decision spaces for a society, so it is essential to structure them intentionally [for fulfillment].

Community values (a specific type of orientational

decisioning states) orient the resolution of decision spaces such that human need fulfillment is optimized (or adaptive). Life values (for community) are not determined by sovereign individual judgements about what is desirable. Instead, that which is of actual life value is that which enables life to survive, reproduce, develop, and freely express and enjoy its life-capacities. For finite living beings, consistently judging states (and circumstances) as valuable when their consequences for life-activity and life-potential are deleterious is selfundermining and ultimately materially irrational and harmful.

4.9 The life-ground

The life-ground is everything that is required to keep living, fully. The life-ground is the conditions of all life and substantive value to each and everyone. The lifeground [of value] is the connection (relationship; need) between living things and the material conditions that sustain them, allow them to grow, and act in their intentionally fulfilling (characteristic) ways. Here, the objective "ground" is that of an informational-material landscape upon which there are resources (information and material) that can be mobilized (configured) into services for regularly completing human access fulfillment requirements.

Most simply expressed, all the conditions required to take your next breath. Axiologically understood, all the life support systems required for human life to reproduce or develop. The life-ground is to be distinguished from the concept of "the life-world" which refers to background beliefs.

The life-ground is the base of all terrestrial value. It explains the validity of any and all positions by its relationship to life, seeking beyond competing partialities to coherence with life requirements without whose satisfaction life capacities are always despoiled. Human values and rules must cohere with the common life support systems that enable the fulfillment of all, or else disaster follows.

APHORISM: Beyond the trauma, it is possible to communicate with, and to trust, Earth. The earth grows things that allow you to understand her in greater detail.

Note here that the idea of cultural relativism (solipsism) is the negation of a common life-ground. The moral (orientational) consequence of encoding the disconnection of values from the "ground" (cultural relativism - where values are relative and not "grounded") is the higher and unnecessary potential for acceptance of whatever goals a social group proclaims, irrespective of their network effects or their implications for others (other groups), now or in the future. Solipsism cannot provide a universalizable direction (morality) of wellbeing, because it disconnects social decisioning from the life-ground of what humans universally, commonly require to live an optimally well life. **NOTE:** Life systems are self-organizing sets of sub-systems that perform separate and complementary functions for the generation of higher organismal functioning.

Societies can be "grounded" in the life of the planet, in the [f]actual requirements of ecological and habitat services, or not. In fact, humanity shares one common life-ground composed of one primary, ecological service system, and a secondary, controlled habitat service system:

- The life-ground is the ecology, for which the living complex is the biosphere.
- The life-ground is the habitat, for which the living complex is the habitat service system.

The life-ground conception is composed of:

- Earth life support systems That which is common to all planetary life as a life-ground.
- Human life support systems That which is common to all planetary humankind as a life-ground.

The common life support system(s) of the planet are the first layer of the life-ground, which stretch out from the cosmos through each individual human organism as a set of common human needs. The life-ground is that which resides in nature and extends into human population density's in the form of a controlled habitat service system. The life-ground is another term for the life support systems (natural and human-made systems), without which human beings cannot live, or are unlikely to live well. The life-ground includes those systems and relationships that have value, so far as humans (and other sympathetic life) cannot exist or flourish without them.

NOTE: It could be said that human needs clarify the composition of the life-ground.

For humankind, life needs (or necessities) are that without which life capacities are lost. Therein are life resources and necessities that are required for human flourishing; these form the life-ground. The term 'lifeground' refers to the presence of a common materiality (and relationships therein) in the fulfillment of the life-existence of humans, who are [at least] material. The life-ground is the real and experienced base of all fulfilling (i.e., "legitimate") societal structures - what they must account for and cohere with to be morally valid. The life-ground [of humanity] is (described as):

• A vital platform of [life] support systems upon which all real-world beings exist. Therein, it could be viewed as a set of service-fulfillment relationships, both explicit (e.g. the habitat service system) and implicit (e.g. eating, dwelling, and seeking medical assistance).

The life-ground [of humanity] is (sub-composed of):

- 1. Environmental outputs/signals: These are signals produced outside the boundary of the individual human with a set of needs.
 - · Ecosystem [habitat] services Production of specific, native composition and frequency of environmental signals.
 - Controlled [habitat] services Production of controlled environmental signals to provide certainty of fulfillment of human needs.
- 2. System inputs/signals: These are signal-response connections that excite (allow for) continued and/or greater capacity.
 - · Human needs Necessity for [reception of] specific composition and frequency of environmental signal to develop and maintain capacity. Humans must maintain a frequency and composition of connection to the outputs of the life-ground (a set of specific environmental signals).

An adaptive, sustainable society encodes (operates through) fulfillment-oriented structures that consistently enable individual human fulfillment commensurate with the reproduction of terrestrial life support systems through generational time.

4.9.1 Ecological theory

A.k.a., Bronfenbrenner's ecological systems theory.

Ecological systems theory (also called development in context or human ecology theory) offers a framework through which individuals exist in relationship within communities and the wider society. Humans will necessarily encounter ecological systems composed of different environments/dimensions throughout their lifespans, and these exposures may influence their behavior to varying degrees. These systems include the micro system, the MesoSystem, the ExoSystem, the Macro System, the Micro System, and the ChronoSystem. Then there is the InfoSystem (information), AlgoSystem (algorithm), HabSystem (habitat), and TeamSystem (contribution). In a living ecology, there is also a biosphere where ecological theory applied in kind, reducing it to a series of understandably inter-related and inter-dependent systems that produce a parameter of conditions for life.

Life needs ecosystems:

- 1. Basic needs Ecosystems provide most of the material needs of humans.
- 2. Economic needs Efficiency by which ecosystem

services are converted into the fulfillment of human needs [for service].

• Examples of direct interaction of ecosystem condition and services and economic well-being include renewable and non-renewable natural resources, tourism, fisheries, and agriculture, tourism, recreation, fisheries, and agriculture; beauty parks; park-city life-work environments.

It can be easy to confuse 'ecosystem services' with the 'environmental needs' associated with human 'wellbeing'. Ecosystem services are the services actually provided by the ecosystems in question; for example, alterations in nitrogen concentration in water, alterations in carbon concentrations in the air. Environmental needs are equivalent to Maslow's hierarchy at multiple levels (e.g., physiological, safety, and aesthetic needs) and would relate to an individual's or population's demand/ desire to have clean water and air, minimal exposure to toxic contaminants, minimal light and noise pollution, acceptable levels of biodiversity, acceptable levels of safety, acceptable level so of activities, acceptable levels of environmental conditions that are significantly distant from ecological tipping points.

4.9.2 Ecosystem life-ground analysis

A.k.a., Ecosystem service limits, ecosystem valueanalysis, ecosystem capacity-limit determination

There exists a repository of information relation the persistence of organisms on/in a landscape, and wherein, there are natural and human behaviors. The Encyclopedia of Life Support Systems (EOLSS) describes ecological limits, given what is known. Ecosystem services have limits; they have capacities. Earth's ecosystem services include:

- Water purification
- Air purification
- Radiation protection
- Soil formation/fertility
- Climate control
- Food/fiber production
- Nutrient cycling
- Thermal control
- Waste decomposition
- Disease/pest control

4.9.3 Ecosystem services

NOTE: *The overexploitation of an ecosystem (any* eco-system) may temporarily increase material well-being and alienate immediate poverty, yet prove to be unsustainable, and in the end, severely reduce material well-being and increase levels of poverty.

Ecosystem services are the benefits that society receives from ecosystems. It is possible to measure how changes in ecosystem structure, functions, and processes influence the quantities and qualities of human fulfillment (as ecosystem service flows). The presence, design, and functioning of ecosystem services will influence the freedoms and choices available to a population (because ecosystem service produce resources). Ecosystem services can play a role, sometimes a significant role, in the basic needs associated with human well-being, ranging from a somewhat minor role in InterSystem tasking, to a major role in childhood development.

Ecosystem services are material systems. Material systems have needs that must be met in order to remain in material existence. Ecosystems have needs in order to maintain the existence of the ecosystem (as a living system). Humans have needs which depend on ecosystem services. In order for humans to continue to have their human needs (human requirements) met, ecosystems must have their ecosystem needs met. The following ecosystem "needs" are viewed from the human perspective:

- Caretaken maintenance of the ecosystem by humans - humans can take care of the ecological environment of the planet by maintaining ecosystem services that provide for the continued availability of life. It is possible for humans to improve the wild natural "landscape" for life.
- Protection of the ecosystem by humans warning and protection systems against planetary environmental degradation and natural and manmade disasters. It is possible for humans to protect the wild natural "landscape" for life.

An ecosystem is a dynamic complex of macro and micro organismal systems and the non-living environment, interacting as a functional unit. As the apex planetary species, humans are an integral part of the planetary ecosystem. Ecosystems provide a variety of benefits to organisms therein, and for humans, these include: supporting, provisioning, regulating, cultural, and supporting services.

Ecosystem dynamics form ecosystem services that fulfill the needs of organisms (or not) in the ecology, including human well-being. Natural ecosystems perform fundamental life-supporting services (functions) upon which human organisms depend, and which can facilitate or hinder human well-being. These services are the result of natural principles, and do not cost the world's population in an abstraction (e.g., currency is not encoded, and neither profit, nor the behavior consequences therefrom, some of them result from a negation of reasoning to root, system-level conception). Life itself, as well as the entire human system (and the economy in particular), depends on goods and services provided by Earth's natural systems. Human pressures on the environment can profoundly influence the functioning of natural systems, optimizing or reducing the quality, quantity, and delivery of these services. It

is important to note here that the flow and delivery of these services depends on the presence and application of a unified societal information system and biophysical processes.

Climate change, bio-diversity change, resource degradation, ozone depletion, global elemental cycles, biodiversity change, chemical contamination of food, air and water, alien/invasive species have all been shown to have negative effects on physical well-being at localized and global scales. Positive impact through engagement with the natural environment and its services has been documented on psychological well-being individually and at the community level. Communal green spaces in urban areas have been linked to higher levels of community cohesion and social interaction among neighbours. (Kuo et al., 2001) Pretty et al., (2007) demonstrated the impact of access to green space on both physiological and psychological well-being.

Ecosystem services (or more accurately, ecosystemhabitat services) are the beneficial usable functions provided by ecosystems to humans. These functions are generally distinguished as provisioning, regulating, cultural, and supporting (services). In society, these services may be co-produced by humans and nature (in the form of a controlled habitat service system). As ecosystem services have direct and indirect impacts on human well-being, they must be accounted for in planning and materializing.

Here, the idea of 'ecological safety' is that there is sufficient data, given what is known, to state that environmental ecological inputs (and conditions) are sufficiently far from ecological tipping points (equating to a loss in local and global access to required inputs, humans reasonably desire to live within environmental safety parameters and protocols when interacting with the larger ecology, in order to ensure continued access abundance (and sufficient encoding of our elevating values with the fulfillment of our needs).

NOTE: In the market, ecosystem supporting services are known as "externalities", which means they are external to that which is accounted for. Markets and policies (authoritybased rules) are often unable to value ecological services.

4.9.4 Ecosystem services and environmental needs

It can be easy to confuse (interpose) ecosystem services with the environmental needs associated with human well-being. Ecosystem services are the services that are actually provided by the ecosystems in question (e.g., reductions in nitrogen concentration in water, reductions in carbon concentrations in the air), regardless of whether humans are present or not. There is a flow of material and information between the larger ecology, and the human system. At a fundamental planetary level, humans exist because of ecosystem services. The direct influence of ecosystem services on the quality of air and water is obvious, and the desire of individuals to have air and water quality that is as good as possible seems simplistic.

Ecosystem services may be may be modified by the habitat service system (the city systems). For instance, air quality can be improved by air purification services that moderate airborne particulates, air temperature, and humidity. Similarly, the habitat service system could pass some of its water through natural ecosystem services to modify its composition and structure.

Direct and indirect experience with nature has been and may possibly remain a critical component in human physical, emotional, intellectual, and even moral development. Think of ecosystem services as nature, and environmental needs as a sub-category of human needs. Herein, 'biophilia' is the proposition that humans have a fundamental, genetically based human need and propensity to affiliate with nature.

There is a relationship between **biodiversity**, ecosystem services, and humans' operational service fulfillment. Changes in biodiversity, through changes in species traits (and behaviors), can have direct consequences for ecosystem services, and as a result, individual and social activities. Biodiversity and human well-being are linked, and that relationship is well established.

Ecosystem services are a conceptual through to physical device or "vehicle" that can be used to help humans visualize the importance of the flow of all elements through nature, themselves an integral part of the functioning of nature. One of the greatest problems inherent with today's decisioning is the production of unintended consequences that often create a situation worse than originally existed. Consideration of nature, of ecosystem services, will minimize risk to human existence.

4.9.5 The ecosystem services

Ecosystems provide well-recognized provisioning services (goods), including water, timber, forage, fuels, medicines, and precursors to industrial products that are harvested from ecosystems. Ecosystems also provide regulatory services such as recycling of water and chemicals, mitigation of floods, pollination of crops, and cleansing of the atmosphere, as well as cultural services that meet recreational, aesthetic, and spiritual needs (Figure 4; Daily 1997; MEA 2005). All of these services depend on ecosystem processes that are sometimes known as supporting services. These processes include bio-geo-chemical cycles, diversity maintenance, and disturbance cycles.

Basic ecosystem services are a clear and vital requirement for human well-being. All of the ecosystem services (#2-4 below) depend on ecosystem processes (#1 below) that are sometimes known as supporting services. The following categories represent the humanusage of ecosystem services:

4.9.5.1 The primary ecosystem processes

An ecosystem is composed of objects and processes:

• Ecosystem processes (a.k.a., ecosystem cycles; supporting ecosystem services) - These are the fundamental/axiomatic ecosystem services make it possible for the ecosystems to provide services such as food supply, flood regulation, and water purification. The so-called "supporting" services are regarded as the basis for the services of the other three categories of benefit. Supporting services are functions that foundation all of the other services.

Examples of ecosystem processes include,

- 1. Bio-geo-chemical cycles
- 2. Soil formation
- 3. Primary production (intra- and inter-species)
- 4. Nutrient cycling
- 5. Water cycling
- 6. Biodiversity

Unless these underlying ecosystem properties (processes/cycles) are maintained, other services that are more directly recognized and valued by society (#2-4 below) cannot be sustained.

4.9.5.2 The ecosystem services (human need satisfiers)

Ecosystem maintain the following types of service:

- 1. **Provisioning services** These are products of ecosystems that humans use as raw materials.
 - Water supply
 - Food production (and medicinal resources)
 - Raw materials/resources (e.g., minerals, biogenic minerals, wood, etc.)
 - Energy
 - Genetic resources (genetic diversity)
 - Aesthetic ("ornamental") resources
- 2. **Regulating services** These are the control processes that maintain an equilibrium for the persistence of life.
 - Soil quality (soil regulation)
 - Air quality (air regulation, air condition[ing] regulation)
 - Climate regulation
 - Water regulation (hydrology, water purification)
 - Terrain regulation (e.g., flood regulation)
 - Disease regulation (disease and pest control)
 - Waste decomposition and de-toxification
 - Pollination
- 3. Socializing services (a.k.a., aspirational services, social services, "cultural" services) These are the human generated benefits (material and non-

material) that result from human interaction with a social environment.

- Discovery (including use of nature for scientific discovery)
- Learning (including use of nature for education activities)
- Location
 - Spiritual (including use of nature for spiritual events)
 - Historic (including use of nature for heritage events)
 - Including: Solastalgia [neologism] describes a form of separation distress caused by environmental change.
 - Including: Topophilia [neologism] the feeling of affection of which individuals have for particular places.
- Recreational experiences (including direct, such as walking and climbing through nature; or, indirect, such as a racetrack through nature)
- Aesthetic (for healthy consciousness and psycho-physiology) In order to maintain healthy psychological functioning we need beauty and in order to sustain beautiful environments we design in accordance with these patterns.
- Therapeutic (for recovery and optimization; and including (e.g., physiotherapy and animal assisted therapy)
- Digitization/recording (including use of nature as motif in books, film, painting, symbols, and architecture)

4.9.6 Ecosystem services and human wellbeing

In order for humans to maintain well-being, the larger ecosystem of which they are a part (within which their controlled ecosystems (habitat service systems, or "cities") exist. The larger ecological system has its own requirements that must be sustained for continued existence on the planet in a state of well-being.

The dynamic relationship between ecosystem change and human well-being has both current and future dimensions, and short-term impacts to the ecosystem may not have the same direction as longer-term impacts. For example, the overexploitation of an ecosystem may temporarily increase material well-being and curb immediate poverty, yet prove to be unsustainable, and in the end severely reduce material well-being and increase levels of poverty.

There are a multiplicity of interactions that influence the dynamics of ecosystem functioning. These influences vary from negligible to major. Biological through to planetary processes, by definition, are integral to ecosystem functioning.

Relationships between ecosystem services and

enhanced physical or mental health indicate a direct influence on human well-being. Furthermore, influences of these services on human/childhood development and cognitive learning represent a linkage between ecosystem services and well-being. Many studies have described effects of ecosystem services on physical health and exposure to disease. Reduced recovery times from surgery and reduced pain have been associated with the simple service of trees and functioning ecosystems being in view of the recovering organism.

The well-being of the human population may be understood within an ecological and ecosystem services framework, as an expression of the life-supporting capacity of the environment (a cosmic service).

The connections between ecosystem services and psycho-social health have been well documented, and are easily experienced. The restorative benefits of nature suggest an integrative framework that accounts for the larger context of human-to-environmental relationships.

Natural environments are particularly rich in the characteristics necessary for restorative experiences. The following incomplete set of [interaction] characteristics are indicative of natural experiences: natural forms, shapes and textures; sunlight and its absence ("darkness" or "shadow"); dynamism, growth and its absence ("decay"); molecular motion and its absence (aromatics and surfaces); motion and its absence ("stillness" or "silence"); thoughtfulness and its absence ("thoughtlessness" - as "zen", "mindfulness", or "careless").

The interactions of natural settings and childhood development are not completely understood but the absence of this interaction has been dubbed as "nature-deficit disorder" by those who see the benefits of nature from within a society where nature is significantly absent.

The desire by individuals and society to minimize exposure to toxic contaminants clearly relates to desires for good physical health. Toxicants can affect ecosystem services in numerous ways, with many of them ultimately relating to human health. Ecosystems can provide filtering and sequestering services to reduce human exposure although these processes may endanger health indirectly through food consumption. Light pollution or night sky pollution directly affects an ecosystem service (darkness) that has been shown to impact sleep and potentially human health (Chepesiuk, 2009) as well as causing deaths of migratory birds and sea turtle hatchlings (Longcore and Rich, 2004). Even light can become a toxicant at night to other species under certain conditions.

4.10 Symbiosis

The word symbiosis literally means living together (from Ancient Greek $\sigma \dot{\nu} v$, syn- "together" and $\beta \dot{\iota} \omega \sigma \iota \zeta$, bios- "life"). The word "symbiosis" conveys the meaning that (one) lives together (with another). In a strictly biological sense it refers to organisms that live in close

approximation; often one cannot live without the other -- there are interconnecting and life-supporting relationships that are necessary for continued biological survival. Symbiosis can occur between organisms of the same species as well as between two or more different species.

There exist 4 types of biological symbiosis:

- 1. **Parasitism -** parasite benefits, host is hurt. The parasite meets its needs at the expense of the fulfillment of the host's needs.
- 2. **Commensalism -** one species benefits, the other is neither hurt nor helped.
- 3. **Mutualism -** both species (or organisms) benefit. When two organisms of the same species cooperate toward mutual, common fulfillment then mutualism may be said to occur.
- 4. **Mimicry** one species imitates another to gain the benefits enjoyed by that species. For example, a Banded snake eel mimicking a venomous sea snake in order to deter predators.

The very idea of "symbiosis" conveys the understanding that there exists an interrelated nature (or reliance) between all environmental life on Earth. This understanding is crucial for the emergence of the concept of sustainability. And, without this understanding there is no socially intelligent direction for human ingenuity when utilizing the Earth's resources. It is unrealistic to expect that someone who has been enculturated into a scarcity-driven society will have the ability or understanding to outgrow the desire for resource possession [at another's expense] if they do not fully understand symbiosis, sustainability and the emergent nature of understood thought.

Humans are bio-psycho-social organisms and are affected by their environment in subtle and complexly symbiotic ways. We live in a world community, and it is about embracing that global relationship.

5 Need

A.k.a., Need, demand, requirement, desire, motive, gap, state, measurable life element, satisfier.

A need is something that is required [for some things existence and/or function]; it is a type of demand placed on the environment by a system (internal and/or external of boundary). Note here that any given individual having needs doesn't make that individual needy in any pejorative sense (i.e., having needs doesn't make "you" needy in a bad sense. In a purely technical (engineering sense), a need is a gap between current and desired results (not as insufficient levels of resources, means, or methods). Socio-psychologically speaking, a need is typically characterized as an inner motivational state. Observationally and socially, a need is a goal state (safe, healthy, etc.). Human needs are objective, plural, nonsubstitutable, and satiable (cyclically). It is possible to be unaware of one's own [true, truest potential] needs. Needs generate (cause, create, initiate) [the cycle of lifeform] behavior, but are not the totality of the expression of behavior [of the life-form]. 'Need' refers to a particular category of goals which are universal. The contrast with wants, goals which derive from an individual's particular preferences and cultural environment, is central to our argument. A need is a gap in results.

In the broader sense, 'needs' are means, namely shapes, conditions, objects, activities, or services, required for achieving desirable goals. Need conceives of a motivational (intentional) force (drive) instigated by a state of disequilibrium or tension set up in an organism because of a particular lack [of a solution, that requires conscious attention].

Needs could be considered a particular category of imperative (e.g., direction or goal) - as that which is experienced as universalizable [to everyone in the species], because they are necessary conditions for flourishing, and for avoidance of suffering and serious harm to individuals in that species. In this sense, it is a 'need', because it is 'needed by everyone' - a [societal] systems-level recognition of an imperative direction.

Note that need-based imperative/directive statements are more exigent that other sorts of statements that make demands [on the environment for resources and services]. A need-based statement asserts that unless the stated condition is met, the goal (a capacity or condition, a destination or resolution), cannot be realized. A need is a gap between what *is* and what *ought* to be [for a capability or condition to be expressed]. Completing a need leads to some measurable, desired (intended, positive) outcome or result[ing shape or condition].

There is resistance to the meeting of needs due to the entropic nature of the universe. Resistance forms the space for negative efficiency. All efficiency is negative; there is only the optimal ("best") that can be done up to now.

Needs may be defined similarly from different

contextual perspectives.

NOTE: Need is like requiring without yet acquiring -- 'to need' is equivalent to 'to require'. A need, or requirement, may be otherwise called a 'demand for service'.

The simple systems definition of a need is:

- A need is that without which a systems capacities/ abilities are always decreased.
- A need is a relationship that when completed [with spatial or informational content] sustains or improves the state (condition, and/or dynamic) of a conscious entity, who is in embodied relationship.
- A need is a construction plan, temporarily formed to allow consciousness to develop and experience more greatly the all.
- A need is a service[able] habitat, temporarily formed to allow the global human population of conscious entities to live, experience and grow together at a global scale.

From an environmental systems perspective,

- A need is the reason a system requires outside environmental input.
- A need is the [labelled] state where environmental outputs or conditions co-join with an internally bounded structure to make or evolve a system.
- A need is the [labelled] reason for the functional existence of some system.
- A need is the [labelled] input conveying the potential for expressing greater "ability".
- A need is the [labelled] input that creates or sustains a specified capacity or condition in a particular system.
- The concept of a 'need' refers [in part] to a relationship between some environmental system and a subject system, wherein some action(s) fulfill the relationship expected by the subject system.
- A need is a gap between what *is* and what *ought* to be [for a capability or condition to be expressed].
- A need is a requirement to access a particular environmental composition at a particular time interval.
- A need refers to a drive or a potential (capability).
- A need is a requisite for achieving an objective. Thus, the requisite's necessity depends on the status of the objective, and on how essential it is for reaching that objective.
- Needs give goals their psychological potency and influence which regulatory processes direct people's goal pursuits.

From an entropic (Read: information coherency) perspective,

 A need is anything that when deprived of results in harm or lost potential [ability]; the loss of a greater decision space to embodied consciousness; the loss of overall information coherency and integration available to embodied consciousness, less wellbeing or greater suffering.

From a scientific perspective,

- A need is some "thing" required for existence or function.
- There is knowledge available about what humans need; methods available to acquire more information about what humans need.

From an engineering perspective,

- A need is a gap between the current and desired.
- A needs is a desired state, an end goal.
- A need is a requirements.
- A need is a representation of a problem or constraint, with potential value to a system.
- A need is some relationship with the potential to orient ("deliver value to") a system by solving a problem or conforming to a constraint.

NOTE: *In engineering, needs must be principally* logically (linguistically, conceptually) linked to measurable abilities to ensure the coherence of their realization. Linguistically, an analysis is a search for description and/or explanation given [some set of] data. Synthesis is creative construction into materiality from a set of data consisting of self-awareness and greater technological capability. Humanity presently has the ability to build million individual gardenlike circular walking cities in a grid-like manner spanning some current market-State jurisdiction that has the self-awareness to facilitate the design and execution of a model that accounts for the common heritage and all of human need, among a population of individuals who are open to understanding that a common model for human need fulfillment is attainable and sustainable, and is at both the planetary, and many lesser, scales.

From a genetic perspective, the purpose of a genetic [human] life is (in part) maintaining the genetic [human] species. This purpose derives into three tasks that involve:

- 1. Staying alive and surviving.
 - These are basic needs, given 'life' organization.
- 2. Fecundity (the ability to produce an abundance of healthy offspring) and upbringing.
 - These are basic needs, given 'genetic' organization.
- 3. Exploration, self-development, and coordination.
 - These are basic needs, given an 'uncertain'

environment (i.e., it is better to learn about, share, improve, and coordinate together if the genetics are to be passed on in an uncertain environment, or even better for consciousness, to be improved upon).

In order to embody genetic material with consciousness to become a human life in an uncertain environment (i.e., be human here now in a consequential physical environment), the following is [at least] required:

- 1. Humans embody [on surface, 'land']
 - A. Humans locomote [land/ship cycling]
- 2. Humans absorb and expel
 - A. Humans breathe [atmospherics cycling]
 - B. Humans eat and drink [materials cycling]
 - C. Humans procreate [genetics cycling]
 - D. Humans bleed [vehicle/body cycling]
 - E. Humans enlight [spirit cycling]
- 3. Humans shelter
 - Humans separate from biospheric elements [architecture/building cycling]
- 4. Humans tool
 - Humans use informational and spatial transformations to improve the ability to express intention [power cycling]
- 5. Humans coordinate
 - Humans communicate useful information, activities, and outputs to improve the ability to integrate intention [information cycling]

Simplistically speaking, "we" all do on this level is running around, trying to eat, trying to have sex, and get some sleep. That's what we do. Breaking these tasks down into activities, these are food gathering aka grocery shopping, being socially active aka socializing, aiming at getting a well-paid and ideally inspiring job, and so on. And these activities derive into needs. Needs are for example maintaining a healthy nutrition level or aiming for an adequate social standing. Also, we express these needs. Humans say things like "I really like you, I think you're a really nice person" to build inner-human relationships or "I love this company" when they want to get or maintain a certain job.

CLARIFICATION: When value is being realized through a service, the service is often called a 'solution'. When value could be increased or realized through a service, the service is often called a 'need'.

From a more linguistically technical perspective,

• 'Requirements' are a more technical term or technical representation of a 'need'.

Resources, services, and other environmental signals and conditions "complete" the needed relationship,

wherein the environmental object or condition is the satisfier (input) of the need. Needs have to (must, ought to) be satisfied if at all possible. Therein, needs are served by satisfiers.

A habitat service system (city) could be designed as a solution to the problems of human need fulfillment by coordinating access to services as satisfiers. The subsystems of the habitat manifest themselves in concrete usage patterns. A usage pattern is observed as people being motivated by certain values using services and objects for a specific purpose in a particular environment (e.g., in a city, the service circulars and sectors provide for these functions) at a repetitive interval. It is thus an integrated pattern of thinking and doing that becomes a well-functioning habitat with a flourishing population. Usage patterns can be determined through research and provided for by engineering. This pattern is observable and to some extent understandable independently of a particular model of human needs. It is thus important that usage patterns form the basis of research on the way in which people satisfy their needs by living in a habitat.

It is possible to develop and maintain a plan of service (Read: operational service system plan) that addresses the integration of human physiology, human psychology, human performance, and the interconnected system of the human and habitat in a highly integrated manner.

Needs occur in space and time, and hence, they may be physically and temporally indexed (i.e., need at time, *t*). Together, human needs are best expressed in the form of a spreadsheet or database, although they are often seen visualized within a triangle, square, or circular shape.

Where **needs** describe priority functioning, **satisfiers** describe that which is environmentally necessary for the functioning.

In system's usage, needs are complied into lists, so that categorization, sorting, prioritization, and statistical calculation are possible on the data set:

- A 'needs list' documents the exigent inputs and/or conditions needed [for a system].
- A 'human needs list' documents the exigent inputs and/or conditions needed for human survival and flourishing [for the stability and continuation of a human societal system].

CLARIFICATION: An information need is an individual or group's desire to locate and obtain information to satisfy a conscious or unconscious need (or, motive) for information. Information demand refers to a demand that may be vocal or written and made to a library or to some other information system.

5.1 The fundamental structuring of 'need'

NOTE: All living bodies contain and can read instructions in deoxyribonucleic acid (DNA).

The structured expression of 'need' is described by access to a specifically desired environmental composition using time to complete a system cycle. In other words, the completion (i.e., fulfillment, achievement, etc.) of a need necessitates an environmental structure that includes two variables, composition (formation) and frequency (timing):

- **COMPOSITION:** What is the form/structure of the satisfier? How is the relationship composed? How is the relationship not composed?
 - Needed composition that which is optimal or adaptive.
 - Actual composition
- FREQUENCY: What is the frequency of the satisfier? How often is the relationship initiated? How often is the relationship concluded? The frequency of a need can be any of the following:
 - Continuous
 - Periodic (cyclical)
 - One-time, Multi-times

In their completion, each of the two variable attributes (composition and time) have a performance measure of one of the following (as fulfillment completes):

- **Optimal** the frequency and/or composition of the completion of the relationship is the best available to maintain capability.
- **Adaptive** the frequency and/or composition of the completion of the relationship is not the best available to maintain capability, but is the best available for adapting/extending capability.
- **Sub-optimal** the frequency and/or composition of the completion of the relationship is not the best available to maintain or extend capability.

5.2 The substitutability of 'need'

TRUISM: There is a common desire for accessing what is needed, when it is needed.

Substitutability refers to the ability, or not (nonsubstitutability), to substitute one capability or object (e.g., a decision, need, resource, case, etc.) with one set of properties for another object with another set of properties. In [economic] decisioning there exists the idea of demand substitutability. A state of substitutability exists if one course of action, can be substituted for another, and obtain roughly equivalent outcomes in terms of their prefer-ability. The question is: Does substitutability exist between two decisions (courses of action), or not? Substitutability is a binary state between two courses of action-it either exists or does not. If it exists, then there is a state in which two courses of action can be substituted for one another "without loss", without a significant change. In the context of society, this "significant change" is the prefer-ability of

outcomes expected to follow from deciding between various courses of action. A state of substitutability exists between two sets of decisions (e.g., economic behaviour) if it is possible to swap one for the other, and then, to find no significant change in the prefer-ability of outcomes. If a point of substitutability does not exist, then there isn't a state in which two courses of action can be substituted for one another without a significant change in the prefer-ability of outcomes predicted to obtain from them.

As organisms, humans have two types of [economic] relationship with the environment in concern to demand substitutability:

• Non-Substitutable Needs (threshold needs)

- encompass all needs (fundamental demands) required for well-being (as in, states of being: happiness, consistent flow, consistent health, etc.; e.g., states of having: food, energy, shelter, transportation, contribution, etc.; e.g., states of doing: dwelling with a beautiful vs. ugly view, nutrient rich food vs. poor quality food). Threshold needs (e.g., food, water, buildings, etc.) are things someone cannot make oneself endogenously, and must acquire exogenously. If some course of action doesn't satisfy a need, it simply cannot have expected outcomes as preferable as those associated with some course of action which does. and there is therefore no point of substitutability between the two. Herein, non-substitutable needs are met by tangible resources.

- Substitutable needs (non-threshold needs, not true needs, preferences) - all the preferences (want demands) that may be nice to have, but are not necessary for well-being (e.g., using a boat to go fishing now instead of scheduling its use, using a gold toilet, cooking with conduction instead of convection, or eating one apple off a tree in an orchard instead of another apple off another tree in the same orchard).
 - In community, substitutable needs are decided by the critical selection of methods and "weighing trade-offs", establishing an order of necessity.
 - In the market-State, substitutable needs are decided by the imposition of a dictatorial hierarchy, establishing an order of necessity.

Substitutability for the individual with the demand could exist between a flat white coffee and a latte (a slightly different white coffee), if the consumer expected roughly equivalent outcomes in terms of prefer-ability to follow from their drinking. To someone with a highly refined, sensitive palette, the difference between the two coffee drinks may not be substitutable; the variety and/or quality of the beans in the coffee or the same for the milk, may not be substitutable. In community, a state of substitutability is likely to exist between two transport vehicles of the same category in two different cities, because they are built in the same optimized way with optimized locomotion, power efficiency, structural integrity, safety, etc.

6 Life needs

A.k.a., Life-needs, life necessities, life requirements, life qualities, life attributes, life sciences, life studies.

Organisms require certain environmental conditions (elements) to survive and to thrive (optimize. For example, biologically based need conceptions posit that organisms require certain requisite goods for healthy functioning, such as water, air, sleep, etc. These services and goods are requirements. All living organisms must satisfy (i.e., fulfill) their need for external, environmental system input, and stable internal conditions. Here, need are a-cultura/a-preference attributes of embodied conscious human existence together. Living systems are complex adaptive systems.

What an organism (e.g., humans) need in order to be happy and healthy was honed through its shared phylogenetic development, forming a same basic set of inputs for all individuals organisms of a species (e.g., for humans-people). Therein, individual's of a given species (e.g., individual plants) may vary to some degree in how much they can tolerate water deprivation, for instance, but this variance is constrained by the para-meterization of the need across the species.

Though perhaps not all individual humans, as members of a social species, suffer to precisely the same degree from access exclusion, there are likely few, if any, who fail to feel a loss of fulfillment or increase in suffering.

It is not necessary that the need processes are completely invariant for universality to hold; people can develop different dis-positions [onto-genetically] concerning phylo-genetically constant needs.

The simple definition of living (alive) is:

 'Living' (or, alive) is a natural object that intentionally moves [primarily] against gravity, against the path of least resistance. A living entity can move against that natural progression of nature. Life is the collection of all living entities.

The simple systems definition a life need is:

• A 'life need' is that without which life capacities (a.k.a., life abilities-opportunities, life fulfillment, life potential actualization) are always decreased.

A life need enables life in a way not possible without it—the necessity condition of value. Life needs are possible connections or completions of a relationship that without which life capacities are lost. The sufficient fulfillment of need will leave an organism better off, more capable, in better condition, and more likely to survive and thrive. Life act toward completing required relationships at some internally, or environmentally signalled ("triggered"), frequency. If life needs are not fulfilled at some appropriate frequency and with some appropriate composition, then there will be some waning in the optimization of one's life experience. There is a probabilistic certainty that the fulfillment of some need in some requisite period of time with some environmental composition, sustains [optimal potential] functioning and life capacity. Life need is intuitive selfevident to life (although awareness can be disabled) and commonly testable.

The defining principle of all universal human life necessities and goods is:

- 1. That without which the life capacity of anyone is reduced,
- 2. by the degree of the good's necessity,
- 3. to the extent of its deprivation when,
- 4. the means are available to provide it.

This is also the exact line and measure of economic in/competence and social in/justice at the same time. Economic and moral rationality are not opposed as they long have been in the ruling disorder. They are reintegrated in life-coherent framework to apply across domains.

The universal goods that are provided or deprived are, in turn, goods which have:

- 1. Objective value (sometimes called, intrinsic value) so far as they are felt and conscious to human being (e.g., the air, water, etc., are felt as values in themselves).
- 2. Instrumental or ultimate value without which human life is reduced or destroyed by degrees.
- 3. Mark injustice or dis-economy to the degree of the systemic life loss without them.
- 4. Mark social justice and economic advance to the degree access and sustainability is enabled through time.

The defining principle of all universal human life need (i.e., necessities) is:

- 1. That without which the life capacity of anyone is reduced (or destroyed).
- 2. 2. By the degree of the input's necessity.
- 3. To the extent of its deprivation when the means are available to provide it.

Thus, every human need entails a set of principles that form what is commonly called the need axiom (or n-axiom). Every human need necessitates:

- 1. A universal service (i.e., a system, process, product, or good),
- 2. which is also a universal life necessity, and
- 3. holds across individuals and societal compositions,
- 4. if and only if, and to the extent that, deprivation

of the need (N) always results in reduction of life capacity.

Accounting for life need is the threshold, and measure, between societal justice and societal injustice. Herein, the universal satisfiers (i.e., systems, services and objects) are provided or deprived, and thusly,

- 1. <u>Have "intrinsic" value</u> (*existence*) so far as they are felt and conscious to human being (e.g., the air, environment and fellow beings felt as values in themselves).
- 2. Have "instrumental" or "ultimate" value (usage) without which human life is reduced or destroyed by degrees. Instrumental life values are defined by the range of life-requirements that a given organism must satisfy if it is to survive, develop, and express its vital capacities. Human beings share with all other life-forms physical-organic requirements of survival, but there are more complex ("richer") cognitive, imaginative, and practical-creative capacities entailed by social and temporal requirements for which humans know of no real analogues in the rest of nature.
- 3. <u>Signal systematic injustice</u> (*suffering*) to the degree of their necessity, deprivation, and life loss without them.
- 4. <u>Signal social justice</u> (*fulfilling*) to the measure of the protection and enabling of their provision through time by society's process of generating and sustaining opportunities (benefits) for flourishing.

Herein, reduction in life capacities is quantifiable (measurable) by loss of life's functional (life-function) range. Although need satisfiers and choices may vary, a reduction of life capacities, without the presence of any satisfier whatsoever, is quantifiable by a loss of [life] function range.

Healthy living organisms have the innate ability to detect that which they need from their environment; possibly a desirable characteristic for survival. This innate ability can be interfered with, and possibly damaged (or at least, reduced in capability), by an aberrant environment during upbringing, and also in the reinforcing structure of a society itself. For example, humans, through aberrant conditions and conditioning, can come to participate with objects, and in actions, that degrade their own, and others, immediate and longterm fulfillment.

NOTE: *Life needs form part of the common lifegrounded interest of humanity.*

From a systems perspective, life needs may be defined similarly as,

• Needs, whose completion (at some frequency and composition) conveys a potential for life capacity

(capability) and condition (quality of).

- Needs involving physical life-processes with quality attributes related to [the experience of] life existence.
- A need describes a category of bio-physical [life-] process; it is those bio-physical processes that sustain, evolve, or devolve the [potential expression and experience of] a living organisms.
- A need describes a type of relationship, between a living system and its environment, wherein the relationship is required for the living system's continuation or evolution.

From the perspective of a living system,

- Needs are impulses that initiate and guide particular actions (behaviors) toward particular states of the internal and external word to convey the development or optimal expression of capability in the world.
- Needs as universally required conditions and inputs for optimal and adaptive [conscious-organismal] functioning.

From an entropic perspective,

- Needs are states of dependency (in respect to not being harmed or artificially limited), which involve the having and using of resources, and the experience of environmental conditions.
- Needs are the experience of an internal pressure [for the input of some physical or non-physical element].

Life has two interrelated, but primary categories of capacity. A life need is a need where the absence of the environmental input will reduce the potential [capabilities] of life to:

- Survive (life capacity to exist) The emergent presence of living.
- Flourish (life capacity to thrive) The emergent expansion of capabilities past those associated with survival.

6.1 Life

QUESTION: What is universally necessary (i.e., required) for bio-spheric life, and human life therein?

The nature of life is that of a consciously embodied existence in some physicalized system. Therein, life is universally understood to require a source of energy and a mechanism with which to harness it.

Conscious self-questioning about life involves, at least:

- What does it mean to live (feel)?
- What does it mean to live well (feel well)?
- What does it mean to produce materializations that meet the requirements for living well? (i.e., What does it mean for a society to produce materializations that fulfill human and ecological requirements for living well?)

What people need in order to be well in society?

- What do they need to have?
- What do they need to do?
- What do they need to feel?

When the word 'life' is used, it implies that there is another state that isn't 'life', which entails a second set of socially conscious self-questioning:

- Are "we" (individuated units of consciousness) having the experience of 'life'? If we are having the experience of 'life', then:
 - Can* the experience of 'life' be <u>better</u> [for anyone]?
 - Can the experience of 'life' be <u>worse</u> [for any individual consciousness]?
 - Can the experience of 'life' be <u>optimized</u> [for ourself and/or everyone else]?

*"Can" means "Is it possible".

Physics is, in part, a set of rules that happen everywhere in this reality. Life does not happen everywhere; it is not a physical constants that happens everywhere. Thus, if life is not defined as an objective value orientation (morality), then it is unlikely that it will be "positively" oriented toward. The existence of need means that there is a moral dimension to human [social] life. If unmet needs mean severe harm and/or an exclusion from social life, then they imply a strong moral decisional orientation to relieve that suffering and meet the needs that enable growth and participation.

NOTE: Given what is known, every living physical embodiment is going to physically die (and deattach) the embodiment.

6.1.1 What is life?

Often, in natural language [to consciousness], the term 'life' alludes to a process, not to any specific entity or composition. Itself, the term 'life' is a linguistic noun (in syntactical grammar, or linguistic logic, which is used for the purposes of formulating syntactically correct[ly meaning] sentences). 'Well-being' is an informational construct, and 'happiness' is an operational state (or, 'feeling'), measured most precisely in the moment as 'life' satisfaction [of naturally conscious living objects]. In its proper context, the term 'life' alludes to an abstract concept as well as a syntactical noun. The Scientific category 'living' exists for figurative (conceptual) 'life' entities. In an abstract, conceptual sense, an entity has 'life', for the sake of scientific precision, an entity is 'living' or 'alive'. The term 'life' is an abstract concept only used in ordinary speech. Biology studies first and foremost, entities; specifically, entities categorized as living. In their proper context, the terms living/alive are dynamic concepts. They allude to a process, an activity, etc. Of course, all entities, whether living or non-living undergo various dynamic processes because they are perpetually moving (in some sort of mass/atom gravitational system).

Living is datum-absolutely intentional motion; a corollary to thinking, sensing, experiencing, behaving, acting, etc. Intentional motion in any environment is sub-characterizable by (i.e., has three needs, that of integration, matter, and information):

- Motion and reflection (integration of 'now') The two properties of integration here are that of motion and that of reflection, which go together and cannot precede or follow one another.
 - Matter (motion of 'matter') In a material sense, a potential scientific definition of a living object could be: that which moves on its own against gravity.
 - Information (reflection or experience, motion of 'meaning') - In an informational sense, a potential scientific definition of a living object could be That which can experience itself as a whole sharply distinct from all other objects. That which can both act and be acted upon could be a secondary definition. This last definition leads to the idea and/or feeling that autonomy of thought and action, and non-coercion of choice, becomes optimal and is naturally desirable.

Machines are not living because they are not natural entities. They are artificial in that they are created by a living entity, and for a purpose. Machine purpose and human purpose is not the same thing but it's hyperrelated. The machine purpose is based on the human purpose of surviving and to maintaining its species. Understanding that meaning and purpose of the machine essentially is perceiving our own meaning and purpose.

The characteristics of life include, but are not limited to:

- Life has requirements of its environment.
- Life grows and dies.
- Life feeds back information to itself.

What is a sufficiently high-level, material definition for 'life' so to be transparent to all unknown compositions, characteristics and behaviors of any living [material] entity, whether on Earth or anywhere in the Universe?

- Living entities undergo their own dynamics irrespective of the perpetual influence of gravitational pull from all the other entities in the Universe. Inert entities cannot accomplish such a feat. Inert entities are pulled by other entities without offering any self-directional resistance to them. Living entities necessarily resist the gravitational attraction from all other entities in the Universe.
 - A living entity moves on its own against gravity.
 - Before a living entity can breathe, eat or reproduce, it must move against gravity to do so.
 - Before a living entity can be analyzed to prove it's made of cells, DNA, organic matter (CHNO) or whatever, it must move against gravity, otherwise nobody would study it as a living entity.
 - Even for a cell, before it can nourish itself or reproduce, it must move against gravity.
 - It is impossible for any natural entity to be alive unless it is resisting gravity.

Living entities undergo their own dynamics irrespective of the perpetual influence of gravitational pull from all the other entities in the Universe. Inert entities cannot accomplish such a feat. Inert entities are pulled by other entities without offering any resistance to them. Living entities necessarily resist the gravitational attraction from all other entities in the Universe. A living entity moves on its own against gravity. Before a living entity can breathe, eat or reproduce, it must move against gravity to do so. Before a living entity can be analyzed to prove it's made of cells, DNA, organic matter (CHNO) or whatever, it must move against gravity, otherwise nobody would study it as a living entity. Even for a cell, before it can nourish itself or reproduce, it must move against gravity. It is impossible for any natural entity to be alive unless it is resisting gravity. Gravity is not an object ('thing'). Gravity is an action (process, behavior, etc.) that objects ('things') do (e.g., action-at-a-distance as movement toward a common point in space. Given what is presently known, gravity is a reality-based phenomenon where objects pull each other in direct proportion to their matter and in inverse proportion to the square of the distance that separates them. A natural living entity does what no other entity in spatialization can do by itself, it moves in a way that violates Newton's Law of Universal Gravitation: GMm/d² by moving on its own against gravity. What does this say about Newtons first law not being able to be violated (there is consciousness, intention to). All living entities violate Newton's Law; because, they move against the pull of gravity. Living is a term that refers to a natural object moving by itself against the gravitational pull from all the other objects. Resistance to gravity is the only dynamic criterion that unambiguously elucidates the observable materializing context of the term 'living'.

Life may or may not be the only self-sustaining

process possible; there are biospheric processes, all of which inherently include life, including atmospheric phenomena, self-sustained within the atmosphere. Some of which are more influenced by the sun, such as twirling storms (e.g., hurricanes, tornadoes, typhoons, etc.). Given what is known, 'life' involves a chemical process that self-replicates. Before an entity can even begin to perform this activity (a), it must move against gravity (internally and/or externally). Cells can selfreplicate. A robotic machine with sensors is not a natural entity, and thus, is not alive.

Something that is alive, must, move against gravity. The fundamental unit of a living entity is the cell. Cells are the smallest natural entities that can move on their own against gravity. Hence, they are the building blocks of all living entities. DNA is not the smallest life form, nor is it the building block of life. DNA, amino acids are inert molecules. There is also the decision space view of life, where all life has a decision space, prior to thought or action where processing can occur, or not, and decisions are resolved. That life decision space is highly determined by the organism being animated by consciousness. Where creators can consciously become their own creators, there is the likelihood of reflective decision, and the potential for true exploration.

A basic list of characteristics for living things, could be:

- Bodily motion
- Breathing
- Organization
- Protoplasm
- Assimilation
- Irritability
- Reproduction
- Growth
- Adaptation
- Metabolism
- Excretion
- Conscious Motion
- Affection
- Contribution
- Empowering
- Suffering
- Pleasuring
- etc.

A sufficiently complete material definition of 'life' may be (i.e., A sufficiently complete definition of life may be what?):

 Given what is materially observable, before a living entity (whatever it may look like) eats, reproduces, or dies, before it can be comprised of cells, DNA, etc., before it can have any unknown material characteristics, A living entity must be able to move on its own against gravity. The only unambiguous and consistent characteristic that all living entities have in common is that they can move on their own against gravity.

 A sufficiently complete conceptual definition of 'life': Given what is conceptually understandable, before a living entity embodies an object in physicalmatter reality and starts to compute (this reality), before it starts to think for itself and take action to meet its own knowable requirements, before it can have any unknown conceptual characteristics, A living entity must have conscious self-separation of information and materialization [via a sensation interface].

6.1.2 Earth life-forms

On earth there are fundamentally three categories of life forms that operate against the flow of gravity:

- Single-celled life forms the cells operate independently of each other.
- Multi-celled life forms specialized cells co-join to form an animal.
- Viruses rely on implanting themselves into other cells to reproduce (special case of life gravito-transport).

6.1.3 The fundamental structure of life need

Each need by a living system can be sub-classified as follows:

- Need type (is description, abstraction)
- Environmental resource **satisfier** (*has* physical composition, and possibly, frequency, is 'necessities')
- **Action** (*is* physical process *over* duration, frequency)
- Internal drive (is feeling)
- A **gap** between current constructions and demanded need constructions (is problem).
- System responding **construction** (is capacity, capability, or condition)
- System resulting **state** (is computed)
- Or,
 - Need | resource satisfier > act of satisfying the need > until need is satiated > as need is satisfied, system responds to new information > satisfaction feedback > satisfaction periodicity

For example, the human organism has a need for 'nutrition', wherein 'food' may be required several times a day as the environmental resource, and 'eating' as the act of fulfilling the need for nutrition. Therein, 'hunger' is the label given to the organismal feeling that drives 'food-seeking', and 'eating' action (behavior). The optimal or sub-optimal, and very continues existence, of 'the body' is the construction.

A visual sub-classification of nutrition is,

 Need (nutrition) | resource satisfier (food) > act of satisfying the need (eating) > until there is no hunger

In other words,

- Need type: Nutrition
- Environmental resource satisfier: Food
- Action: Eating
- Internal drive: feeling of hunger (complex of inputs)

6.1.4 Biological needs inventory

What is science? 'Science' is the study of 'reality' using/ applying [by consciousness] the scientific method (a process) to spatialized objects in [this dimension of] reality. In other words, science is the study of reality (i.e. existence) for the purposes of accumulating a collection of rational explanations (i.e. theories) for natural [realitydimensional] phenomena using the Scientific Method. What is Biology? Biology is a specific branch of 'physics' (the knowledge structure of science) that exclusively studies objects categorized as 'living' (alive, etc.). Biology is the study of living objects.

A biological needs inventory is an list/database of the needs of a [biological] organism.

6.1.5 Life-needs are life-requirements, to an engineer

There is a unifying complete set of universal life needs (services, objects, goods, necessities, etc.) without which human beings variously (are likely to) suffer life capacity loss (towards inertia), disease and possibly death. In the unifying life-value framework of life needs, each is a universal life requirement, because no individual across societal compositions can be deprived of it without losing life capacity. And of course, each is a distinct from each other because none can be provided for by any or all of the rest.

When needs are understood in universal terms, applied across time and place, then humanity can plan for and measure progress toward social and environmental goals, both globally and into the future.

The universality of need rests [in part] upon the 'if, then' decision structure:

- 1. If [human] needs are not satisfied, then
- 2. serious harm of some objective kind will result, and
- 3. sub-optimal expression is probable [by degree].

Notice the bracketed words in the structure above, "[human]" and "[by degree]", because this is where

a society may be classified by how it expresses its "humanity" (i.e., how much a complete and sufficient human are they, by degree of need fulfillment)? In other words, the question, Is there humanity it that specific societal system? And, the question Is answered by inquiring into (studying) the universal fulfillment of individual human organisms therein.

This [primary] harm implies [unified (mental, emotional, moral, social, physical) societal system] obstacles to successful **social participation** and **adaptation**. All individual action is predicated on prior social interaction; hence, it follows that participation in some form of social life without serious systematic limitations is our most basic human interest. Basic needs are then the universal preconditions for effective participation in any complex form of social life.

To break down this complex meaning, this harm implies societal obstacles to successful social participation, individual expression and development. There are 5 primary ways (categorical information sets) of consciousness experiencing the physical world:

- 1. Mental (self-cognition)
- 2. Emotional (self-ignition)
- 3. Social (whole-relationship)
- 4. Moral (whole-relationship development)
- 5. Physical (the existing), which maintains inertia in the mental, thus generating a time, as the iteration of the constant now from a source (to consciousness) point of reference.

Simply, five ways consciousness experiences its unified societal system in a materialized and embodied form are: mental; emotional; moral; social; and physical; which, all become the unified, integrating experience of a conscious physical reality.

Often, this is best explained thusly, "Whenever there is a physical malady, for example, there is also a social disturbance (i.e., a social malady)". Almost invariably, whenever there is a social malady there is a physical (embodied, structural, etc.) disturbance; as well as a social and morally experienced disturbance also. They are a unified experience that generates greater and lesser states of fulfillment and/or suffering. Humankind is a social organism, innately. It is wired into our "nature" (used loosely here). There are [at least] mirror neurons for patterning, and otherwise entraining to that which may facilitate one's own development and help in bettering those who an extension of themselves.

Hence, it is significant to remember that if there is an emotional malady, then there is a social disturbance. The drama that feeds back against the repetition of mental narration disturbances, probably, throughout one's life experience.

The fabric of a embodied-human life [experience of] existence is a mental, emotional, moral, social, physical matrix, and when there is a "rip" in the fabric there is a statistical spread of disturbances, as signs of a problem in the total matrix of the social organisms' individual lives and social relatedness. In a more technical sense, when there is attachment to the materializing iteration, an inertia can build instability in the unified system generate emergent states of suffering (or fulfillment, i.e., "what may come next for humanity, more suffering by degree, or potentially greater levels of dimensional fulfillment)). A constant conscious inertia through attachment to materialized "conscious" objects (i.e., attachment to possessions at any level of unified experience) possibly, though this is speculation, maintains a conscious dimensional experience? Possibly, these 'constant dimensional patterns of embodied experience' or 'constants' are represented (per dimension) with the logical notation of a physics iteration (or pattern), time (t), and its change delta t or Δt ? These questions deserves further scientific inquiry and the knowledge therein is missing from the model.

NOTE: Community is the conditions (the 'matrix' of Society sub-composed by its information systems: social, decision, lifestyle, and material; with the materialized habitat service system (ecology (native), decision, life support, technology support, facility support); and conscious embodied domains of experience (mental, emotional, moral, social, physical); and the human needs, goals, and other directives, which together, as a unified information set inform a projected design plan, to generate a the next optimal iteration of the society, a place where people can better thrive, can be [f]actually observed and studied (or designed) to thrive (i.e., flourish, survive and thrive, etc).

6.1.6 Life's environmental signalling

NOTE: *Is early 21st century society mismatched with human needs (which is a natural system)?*

There are certain environmental signals (across millions of years of hominid evolution) that reliably signal either well-being and evolutionary success, or danger and failure. Recognition and cognition of these environmental signals allows for orienting the human species in the right (most accurate) time, space, and behavior. And, disrupting those signals reliably leads to dis-orientation, and the consequences therefrom. Humans have, to a large degree, become reliant on these signals to calibrate their embodied experience (e.g., training the immune system) optimally or correctly. In essence, there is a relationship between inner motivating states and environmental signals (as conditions).

Life has a need for environmental signals at some periodicity, which trigger beneficial responses.

NOTE: In a dynamic environment, the response of an adaptive system conveys the potential for a greater or lesser capability through time.

6.1.7 Pleasure and pain drives [motivation toward need fulfillment]

QUESTION: What does the relationship signal.

Pleasure [to consciousness] is the result of need fulfillment, and pain [to consciousness] is the result of need insufficiency. George John Romanes, a prominent biologist and follower of Darwin wrote (Galindo, 2018),

"Pleasures and Pains must have been evolved as the subjective accompaniment of process which are respectively beneficial or injurious to the organisms, and so evolved for the purpose or to the end that the organism should seek the one and shun the other]within reason and context]." -Romanes, 1984

6.1.8 The conscious mental drives

The conscious mind has biological and sociological drives.

The human mind has biological drives:

• There are biological drives for pleasure (met needs) and for the avoidance of pain.

The human mind has sociological drives:

- There are two primary categories of fear:
 - Fear of not being enough (sufficiency, anxiety)

 not quick enough, not handsome enough, not good enough, not ... enough. This fear can have harmful consequences, but it can also have a growth potential because it keeps us growing. When you overcome this fear you grow for the sake of contribution and self-actualization/ evolution.
 - B. The fear of harm to the physical body (fear of danger and of monsters).

The human mind can feel fear. Fear can be overcome simply by changing the meaning a situation or thing has. Fear may be viewed as a triality force-based model:

- 1. *Force 1:* **Driving force** Motive to select a direction. Composed of top 2 needs. The driving force is the target of life, and includes, but is not limited to certainty, variety, significance, connection/love, growth, and contribution.
- 2. *Force 2:* **Guiding force** Motive to select an orientation. The guiding force is the orientation, composed of a model (value, belief, or other system) that processes information for alignment with a direction. For example, a global value or belief system, and rules for information processing. Force 2 results in action on the part of needs.
- 3. *Force 3:* **Active choice** Emotions selected, given that which is available. There are empowering and dis-empowering environments.

Every need state [identity] is composed of these three concepts (meanings):

- 1. **Focus** what is your attention on? Focus on your desire, on your desired feeling. Feeling is life.
- 2. Language (word construct) what are you saying to yourself? What is our running commentary in our heads creating meanings and interpreting at every moment? Is the commentary empowering and expansive or limiting? Emotion is life.
- 3. **Physiology** is the foundation of all effective focus and change.

In terms of the meaning of a need for service, service states may be designed to meet specific needs (and wants) of people. There is a direct relationship between the need and the output. These outputs can be categorized in three ways:

- Desirable to undesirable
- Intended to unintended
- Immediate to delayed

7 Human needs

A.k.a., Human satisfiers, inelastic demand, human life satisfiers, human requirements, human life requirements, human necessities, human life necessities, human standards, human life standards, human life qualities, human modalities of flourishing/wellness/ well-being, social-psychological theory of motivation, natures socio-economics, nature's economics, natural economics, natural law, human essentials, human life elements, human categories of potential life quality, life conditionals, human life gaps, human life cycles, life self-becoming gaps, human capabilities, human life capabilities, human needs of the system, biological inventory, basic human goals, fundamental human motivations, etc.

Human needs are the proposed requirements of human flourishing. Human needs are the universal needs of all humans, universal to all human; all humans seek to meet their [common] needs. What is shared among individual humans is a desire for individual fulfillment therein. Human needs specify the necessary conditions for human growth, human integrity, and well-being. Fundamentally, when human needs are fulfilled, individuals experience improvements in well-being and life-satisfaction. Human needs must be understood as a system; that is, all human needs are interrelated and interactive. People have real needs while embodied in a real-world environment. In other words, to remain well embodied in a physical environment the conscious body has certain elements that must be interacted with and conditions that must be met to live well.

One of the problems with the concept of 'needs 'is that the word itself is used in a variety of different idiomatic usages, both as a verb and as a noun.

Three distinct generic meanings of the noun 'need':

- Need as an underlying internal forces that drive or guide our actions. For example, acquiring clothes and a dwelling to protect oneself from the biospheric elements. Failure to satisfy such a need has a detrimental effect on the overall felt state of the individual.
- Need as a configuration of environmental resources upon which the individual interfaces and throughputs at some identifiable cycle. For example, the configuration resources that form clothes during the day and a dwelling every evening.

CLARIFICATION: A 'need' is an information and/or material gap that occurs cyclically in the conscious life experience of all individual humans, which is temporarily resolved through information and/or materialization satisfiers. Simplistically, human conscious embodiment carries with it (i.e., has) needs:

- Being in need being a conscious physicalized organism (i.e., being in a physical body, at a specific location, understandable by consciousness as spatialized information).
- Doing what is needed discovering, planning, engineering, and contributing to what is required.
- Fulfillment of need survival and thriving in an environment where all individuals of the same species have common needs.
- Having what is needed access, as temporally/ cyclically required, to material and informational satisfiers.

It is possible to define several quasi-subcategories of need, including (note: these are not technically needs, but are categories of life that relate to need):

- 1. Felt need occurs when an individual senses something is missing.
- 2. Expressed need occurs when the individual is not only aware of the gap, but can verbalize through to visualize it.
- 3. **Self-determined needs** are those subjectively identified by an individual.
- 4. **Assessed needs** are those objectively identified by a population of individuals.
- 5. **Normative needs** refers to an actualized system's capabilities, functions, and qualities in relation to (comparison) a recognized standard (e.g., the Community Specification Standard).
- 6. **Comparative needs** refers to an individuals actual capabilities and values in relation (comparison) to that of another individual or group.
- 7. **Process needs** refers to some action, activity, or process, and/or constraints on the action.
- 8. **Tool needs** refers to what a tool or instrument must do, and/or the condition it needs to create.
- 9. **Resource needs** refers to some material surface amount (quantity).

Human needs apply to all humans on the planet. This is a powerful attribute because it enables a degree of comparability and repeatability and avoids some of the problems of relativism, although the ways in which needs are met are context specific. Human needs are also sometimes known as universal lists of well-being criteria, representing a set of basic constitutional principles that should be used to facilitate mutual, global benefit.

NOTE: The idea of a sustainable form of societal development (i.e., 'sustainable human development') is generally intended to mean that there are a set of requirements for meeting all human need and extending to all the opportunity

to fulfill their aspirations of a fulfilling life.

Human needs provide life essentials without which the person would incur serious harm of an objective kind. As such, human needs provide a critical minimum threshold of human well-being/welfare for global access decisioning.

Identifying specific characteristics of each need could enable their measurement. Whereas needs are considered universal, the ways in which they are satisfied (i.e., whether people are above or below a level at which the need is met[threshold of harm]) may vary indifferent contexts. For each need therefore, a list of need indicators may be derived by asking humans to describe conditions under which another human is doing well or badly for each need. This was equivalent to a human-needs threshold [of harm], above which a need is met and below which a need is unmet.

NOTE: One of the key characteristics of something that is alive (and existing) is that it can die. One of the key characteristics of something that is alive and feeling is that it can suffer and flourish (i.e., experience a spectrum of feelings from those that feel "well" to those that feel "unwell").

Human needs are the physical and non-physical *elements* necessary for human subsistence, growth and development, as well as those things humans are innately driven to attain, which together sustain well-being. Humans, because they are physically embodied in the genetics of a social organism require inputs, including physically objective conditions (e.g., food) as well as socially objective conditions (e.g., touch by another human). More simply, individual humans require objects, and specific configurations and motions of objects, to live and to live well.

Human needs are few, finite, and classifiable. In other words, human needs are knowable, experienced, and finite in count. Human needs (such as those contained in the system proposed) are the same in all cultures and in all historical periods. What changes, both over time and through cultures, is the way or the means by which needs are satisfied human needs are the same in all cultures through all historical periods. In the context of human need, for any given society, the one element that changes is the way the needs are satisfied. The dwellings have transformed from caves to high rise buildings.

There are different methods and strategies for meeting needs. For example, violence and coordination are two different strategies for meeting needs. Violence is an unfortunate strategy to meet needs as it involves the experience of conflict. Conflict can arise from competing strategies (i.e., value diversity, and not value unity) to meet needs.

'Fulfillment' and 'need' are concepts for living together; they are information with useful association to all humans, because all humans have exist with commonality in a common environment. As a verb (process, action), fulfillment and need represent:

- 'Fulfillment' represents the process to complete a need (to serve).
- 'Need' represents a process requiring input, which in a cycling ("living") system generates a drive (to motivation).

As a noun (conditional of the state of the world), fulfillment and need represent:

- 'Fulfillment' represents [the state of the conditional world where there exists the] completion of a need (to be complete or resolved). The term fulfillment refers to the completion of an appropriate systems input.
- 'Need' represents a cycling system with a boundary condition and system requirement for accepting input. The term fulfillment refers to the existence of a system with requirements in a given environment.

INSIGHT: It is possible to list [for the current temporal context] every conceivable satisfier related to a need (e.g., shelter>dwelling), given what is known and available.

The common, universal characteristics of need satisfiers (indicators of need satisfaction, success, performance, progress, pleasure and self-development and growth) include:

- Adequate nutritional <u>food and water</u>.
 - The human organism is "wired" to eat.
- Adequate <u>protecting housing</u> for dwelling and work (life-work cities).
 - Sleep is a universal need of all human beings, and when sleep is abundant minds flourish, and when it is not, they don't.
 - Activity (work) is a universal need of all human beings. When healthy work conditions and spaces are available, healthy work results are likely to flourish.
- Non-hazardous environment.
 - An appropriately safe life-work environment is possible for everyone when global coordination occurs.
- Appropriate medical care.
 - The human body is physical and can vary in healthy functioning.
- <u>Connection</u> in childhood and belonging throughout life.
 - The human organism is wired to socially connect with others.
- Global economic access to all that humanity has to

offer.

- The human organism is wired to see socially unequal access to all that humanity and the biosphere have to regeneratively offer as immoral.
- Mentorship into understandable complexity (education).
 - The human organism is wired to learn and grow, as well as facilitate the learning and growth of others.

Assumptions in relation to global human accesscoordinated fulfillment, include:

- 1. Humans are wired to be nice to others when their needs are met (friendship).
- 2. Humans are wired to meet their own and others needs.
- 3. Humans have categorically known (predictable) requirements. Human needs (human requirements) are not categorically unpredictable.
- 4. Humans can coordinate the transfer of biospheric resources into optimal human habitation, and back into biospheric resources sustainably. The biosphere is the source of all life on the planet. The sun is the source of all planetary life.

7.1 The simple view of human need

STATEMENT: *Humans have need of a coordinated societal and habitat service system if they are to survive and thrive together in a unified biosphere.*

Human need can be sub-conceptualized through lifepersistence concepts:

- 1. Life
 - Life has 'needs' to persist in a material reality.
- 2. Cycles
 'Needs' are experienced as cycles to life.
- 3. Gaps
 - In an uncertain environment, life-cycles may have gaps in their completion (Read: the lifecycle gap).
- 4. Requirements
 - Life (consciousness) has requirements for completing gaps in its life cycle if it is to persist and express its potentials.
- 5. Satisfiers
 - Materials (for the physical embodiment) and information (for consciousness) are the two types of satisfiers that complete gaps in a life-cycle.
- 6. Capabilities
 - To meet requirements and complete gaps in a life-cycle, an entity (human) must have

some ability (Read: capability) to influence its environment (Read: control, mastery). Note here that capabilities can be expressed at different levels of potential. The highest level of capability known is 'flow'.

7.2 Societal organization and human need

INSIGHT: The simple insight is that once individual happiness is no longer based upon possessions (but instead, 'human need') everyone gets along better. Most things someone could reasonably want are available, and thus, there is no need for (i.e., no encoding of) laws of violence and coercion to protect property. Community does not encode or structurally materialize the idea of 'property' (defensible personal ownership of materiality).

Needs represent an axiomatic relationship, a principal organizing structure for human [societal] life together. The optimal condition for a social population would be for individuals of the population to meet their own needs, while facilitating, and not deterring, the fulfillment of others' needs.

Growth like any ongoing function requires adequate input from the environment to meet the needs of the growing individual. Colloquially, needs have been called "experiential vitamins" with the attendant benefits and decrements that nutritive processes generate (i.e., thriving when nutriment present, withering when absent or in excess). In both the conditions of surviving and thriving, there is possible obscurity inasmuch as 'need' is sometimes applied to the objective [shapedenvironmental relationships] and sometimes to the implied requisite [feelings], though both can be accounted for.

For example, some needs are psychological "nutriments" that are universally required types of experiences that afford optimal functioning. Under this view, everybody needs to have these "nutriments", but, like each plant in a plot of farmland, the extent to which each person (or plant) is receiving adequate amounts of the required nutriments can vary from person to person, and so, individual customization and satisfaction may vary. Maslow (1954) likened psychological needs to vitamins, and so his famous hierarchy outlines a view of a healthy psychosocial experiential "diet".

The content of needs derive, in part, from the requirements of being:

- 1. A competent member of one's [physicalorganismal] society.
- 2. Of avoiding fundamental, physical harm [to functional capability].

Whereupon, the societal structuring of need becomes sub-divided at a high-level into the self-individual scale,

ant that of the larger socio-technical scale, of need[ed] recognition:

- Commonly individual-human needs (common human requirements) as the set of needs common to all individual humans.
 - Common socio-technical human needs (common socio-technical requirements because a common habitat) as the engineered Habitat Service System has a set of needs, which are common to all city systems and fulfilled through operational processes, and relate back to their source at individual human needs.

Human needs may be viewed as tendencies to seek out certain basic types of experience, to a somewhat varying extent across individuals, and to feel good and thrive when those basic experiences are obtained, to the same extent across individuals. Most research to date supports the notion that the needs for autonomy, competence, and relatedness are experiential requirements. A lonely person should seek company, an incompetent person should seek greater mastery, and a person who feels controlled should seek greater autonomy. This definition encompasses both ontogenetic imperatives to obtain certain incentives or experiential rewards and phylogenetic tendencies to benefit when those experiential rewards are obtained.

People become dispositionally oriented to pursue certain types of goals and incentives more than others, via early learning and reinforcement.

Some types of goals, even when achieved, may not lead to positive outcomes, whereas other types of goals do produce thriving and growth. Therein, rewards and punishments "sensitize" people to different types of experiences, such that they develop characteristic motive dispositions, which affect the front-end perception of situations and the affordances they may contain.

The pursuit and attainment of culturally congruent aspirations and life values should be associated with well-being only to the degree they provide greater satisfaction of the human needs. Therefore, a distinction is made between intrinsic aspirations (i.e., goals such as affiliation or personal growth) and extrinsic aspirations (i.e., goals such as attaining wealth or fame).

APHORISM: *If you want to change peoples minds, you have to address their needs and wants.*

In the narrow, short-term sense of the term, "needs" are uncontrolled necessities or compulsions; these are conditions, objects, activities, or services. People need air to breath, water to drink, balanced food to eat, and time to sleep. However, the need for balanced food doesn't imply that the food should be tasty. People don't need tasty food for their bare existence; they want to eat tasty food. People need to sleep somewhere from time to time. Yet, they do not need to sleep on a bed under a roof in a closed room; they want it. Still, for many people, eating tasty food and sleeping on a bed under a roof in a closed room are considered as real needs.

INSIGHT: Humans need sensation. The quality of the sensation affects the quality of the experience. There are fulfilling experiences where the need is met and the quality is high, and there are less than fulfilling experiences, where either the need is not met or the quality is not high.

What, above all else, do humans strive to avoid losing connection with, and in what order? What categories of experience will they fight most to protect? Now, design a society that doesn't signal that desire to protect by fulfilling what the organism requires to develop, and be, a full expression of themselves (to be fully capable in the world).

INSIGHT: *It is, in part, the sufficient fulfillment of needs (B-values) that lead to peak experiences for individuals.*

All individuals everywhere in the world, at all times present and future, have certain common needs. All humans, everywhere in the universe, at all times present and future, have certain basic needs. These needs must be met in order for people to:

- 1. Develop fully
- 2. Avoid harm
- 3. Participate in society
- 4. Adapt to (reflect critically upon) the conditions in which they find themselves.

IMPORTANT: When the basic needs are met, there is more time for play and development. When children's and adult's basic needs are met, then they have plenty of time to play and explore.

Here, needs are universal terms, applied across time and place, and hence, a population can plan for and measure progress towards social and environmental goals, both globally and into the future.

When needs are understood in these universal terms, applied across time and place, humanity can plan for and measure progress toward [social and environmental] goals, globally.

Human needs are physical and non-physical elements that individuals are innately driven to attain and which are needed for human growth and development. Human needs are the basis for generating a set of indicators for both quality of life (QOL) and subjective well-being (SWB). Human needs are the generic requirements of human beings in order to be healthy and experience fulfillment.

INSIGHT: The organismal experience, can be understood through conception and measurement. For the individual, sensation is truth, but when individuals come together as society with technology, they use instrumentation and networks to collect and share measurements. Measurement science, collection and sharing can be used to facilitate an individuals sensation of a shared measurement as accurate ("truth").

The human organism has a set of needs (human requirements) common to its organism. This type of need is generally called: common needs, human needs, human requirements, and human goods. Human needs (requirements) are the necessary conditions for healthy human development and functioning. Human needs are a distinct category of demand, because they have no obsolescence, and are by their nature, necessary and continuous (because they necessary for survival and thriving together as humankind). The fulfillment of human need maintains the conscious, living, physical and social existence of a human organism. Humans have a common set of objectively required inputs, also known as needs. Individual humans experience conscious and unconscious desires, feeling, and yearnings to fulfill these needs, which provide for functioning in a real world. The pull by these needs can be sensed [by consciousness], and can be lessened or made more sensitive [by consciousness training].

Simply, human needs are the particular physical and psycho-social experiences that form the necessary inputs for human survival and thriving. Having those conditions produces optimal growth and development (given what is known), while being deficient in them will hinder growth and ability.

NOTE: Possibly, humans are a meta-conscious learning system that can not only learn "things", but also to discover how to learn "things", the most salient of which are those "things" most required by humans.

Consciousness, while embodied in the human organism, is innately driven [encoded informationally] to attain an initiation, integration, and completion of some physical relationships, periodically (and possibly after if beliefs are maintained?).

NOTE: In concern to human needs, a "satisfier" is any element (material or non-material) whose use, consumption, or sensation determines the fulfillment or satisfaction of a need, desire or aspiration.

Human need is central to a human organism's identity and interface with the world. The drive toward required fulfillment is innate and instinctive, because the body and mind exist together as an organic experience. Therein, however, cognition and behavior can be aligned or misaligned (by degree) with that which is fulfilling and/or required for fulfillment. In other words, human recognition and cognition (i.e., embodied interface operation) can be aligned with its own fulfillment, or not (i.e., can be taking decisions and actions that cause suffering and inhibit fulfillment). Human needs are the preconditions to achieve well-being.

NOTE: That an organism requires certain elements to thrive is both a long-standing and innate; though, its sensation and very recognition can be diminished, bodily and conceptually.

There are a set of universal human life experiences (frequency states of composition with temporal and physical relationships) without which human beings variously suffer life capacity loss towards inertia, higher entropy, disease and death. In other words, a human need is a type of environmental relationship or condition that involves the human organism and requires periodic fulfillment (in the form of: connection>integration>release through the human organism), and relates to the fulfillment of the human organism. Fulfillment of human need generates human existence and well-being therein, as well as performance toward goals; whereas, thwarting need leads to ill-being or performance decrements.

INSIGHT: Those basic needs that are innate to a cell are also innate to the base existence of the human organism. If not the same needs, the type of needs humans and cells experience are, at least, similar. The needs of cells (living system with a boundary) are related to need of a human (e.g., nutrient input, waste removal, area for movement, a conducive electromagnetic environment, etc.).

Not anything that some human may claim to "need" is, after critical inquiry, a human need. The common test for a human life need (necessity) is whether anyone could live without it (under the same habitat as everyone else) and not suffer a loss of life capacity (regardless of whether the capacity is acted upon). Only that without which organic (or other dimensional) capacity is harmed regularly and unequivocally counts in identification as need.

NOTE: *Experientially, there is an order of priority to human functioning. There must be land (a appropriate surface) beneath our feet before there is procreation and nutrition.*

Human needs can be fulfilled (satisfied) in ways that barely meet requirements, subsistence, or in ways that meet and possibly exceed requirements, flourishing. With available information, the external process becomes a matter of optimizing the fulfillment of a specific need, which is not a preference, but a technical physical requirement; the inputs of fulfillment being capable of comparison, and hence, optimal selection.

NOTE: In any given situation there are things that matter most to us. Sometimes needs are recognized at a personal and social level as being those things that matter most, and other times not. The interrelationship between human needs and satisfying services (satisfiers) is:

- Permanent (i.e., always present)
- Cyclical (i.e., it has a frequency, cycle, period)
- Dynamic (i.e. moves within a range)

A human (fundamental) need will (i.e., is highly likely to):

- 1. Have affective qualities (i.e., engage emotion).
- 2. Cause direct cognitive processing.
- 3. Lead to ill effects when thwarted (e.g., addiction, poor health, poor adjustment, etc.).
- Elicit goal-oriented behavior designed to fulfill (satisfy) the completion of a relationship, and subject to motivational patterns, such as object substitutability and satiation.
- 5. Be universal, in the sense of applying to all people.
- 6. Not be derivative of other motives.
- 7. Affect a broad variety of behaviors.
- 8. Have implications that go beyond immediate psychological functioning.

7.3 Human motivation

QUESTION?: Without feeling, why take any action? What in society is actually de-motivating or reduces motivation over time?

Motivation is an internal state that induces a person to engage in particular behaviors, in a given environment (external state with a particular set of conditions). There are a complex of inputs that form a given state of human motivation, they include but are not limited to needs, goals, values and beliefs, rewards, and punishments. Behavior is lawful to need. Under an aberrant environment, human behavior (lawful to need) will be aberrant; need will be aberrant.

Most simplistically, if humans were compared to the four basic drives of bacteria, then the four evolutionarily pre-determined drives are:

- 1. Food
- 2. Reproduction
- 3. Friendship/family (social connection) and Shelter/ Fire (protection)
- 4. Fighting (when the other three are scarce, or when sharing is not present)

Here, it is presumed that humans are not "broken" and it is more likely that humans will be nice to others (maintain friendships and not conflicts) when their needs are met, because they are not competing with each other for the fulfillment of their needs.

In concern to fighting, for example, people can be motivated by the degree of inequality (in access to food, reproduction, and friendship opportunity) more than the state of well-being they have. Inequality is a powerful motivator of behavior. Among these are the individual's self-evaluation and one's psycho-social memory-interpretation of behavioral events.

Motivation ("drive") may also be noted in terms of its absence ("lack of drive"). For instance, a satisfied need is (temporarily) not a motivator of behavior. Motives that initiate and guide behavior tend to be salient at the beginning of an action sequence, whereas experiences resulting from the action sequence are salient at the end of the sequence.

Fundamentally, humans can have natural internal drives that they motivate them to act that they have little to no conscious awareness of.

TERMINOLOGY: Enteroception - ability to recognize the internal [need] state [from different organs of the body]. More precisely, it is the conscious reception of sensory stimulus from internal organs.

7.4 A commonly evolved nature (human commonality)

Human needs are an independently experiential and conceptually understandable base of commonality among humanity. From that initial base arises the temporal formation of a materialized service system architecture to fulfill humankind, together.

Infants do not have need categories that differ from one another. Their initial goal is to eat, sleep, expel waste, and experience social comfort.

Humans share a common (species) life-requirement boundary, because humans share a commonly evolved organic-psycho-social [material] nature. Humans also share a biosphere (as in, planetary ecology) where each individual human expresses a set of requirements from (i.e., demands on) the environment. Hence, the biosphere is a common interest, and without coordinated organization, the requirements placed on the environment by individual human beings may easily lead to disaster, such as resource depletion and systems that produce harm. Hence, the common interests of human life involve objective life requirements at ecological, individual and social levels. In other words, there are a set of life-interests common to all human beings, and these common life-interests are [at least] the life requirements of humans and their ecology. Said in another way, there are life-interests grounded in liferequirements that are common to all human beings.

STATEMENT: *Human needs are a common interest and concern of all of humankind.*

Within the life requirement boundary, humans express a range of physical and behavioral variance. In some cases that variance is conscious; for example, someone can train themselves to hold their breath for longer durations of time, or train to perform well in extreme temperatures. In other cases, the variance is environmentally determined, such as, when acquiring food from a completely wild landscape. Humans living in a jungle will have access to a specific set foods, whereas humans living in a temperate climate will have access to another set of foods. And further, within each food "landscape" there will exist some degree of access, from scarcity to abundance. Therein, social exposure to the different degrees of access is likely to produce a set of commensurate behaviors adaptive [given what is known] to that environment.

It is significant to understand that individual, psychosocial development (i.e., conscious embodied experience after birth) can change an organism's relationship to the natural world, but natural necessity never disappears from human life, and remains as a constant underlying set of life-requirements.

Although people's stated wants may differ significantly from person to person, what humans truly need in order to be well, happy and healthy was evolved through our shared phylogenetic development, and is the same basic set of inputs for all humans. To extend the example of an organism, individual organisms of a given species may vary to some degree in how much they can tolerate water deprivation, but this variance is constrained by the parameterization of the need across the species.

APHORISM: *We can experience nature in common.*

7.4.1 The natural, organic-social nature of human need

INSIGHT: *Needs do not necessarily imply awareness by the needer.*

The social self-consciousness that enables humanity to generate meanings, is not an abstraction, but a development of the specie's organic, genetic nature. Human social (and cultural) evolution arises organically from the adaptability of the species to an environment. Although adaptability is structured into the genes, it is possible for adaptability to operate (at a higher level of organization) through mechanisms in the societal system itself (and, at a lower level, in the central nervous system of individual organisms). In this sense, there are "natural" needs, as needs which are programmed into he organism by nature. They have evolved over generations as mechanisms by which the organism survives and thrives.

MATERIAL LIFE SERVICE STATEMENT: Humans maintain a requirement for the interface and input of adequate material elements of [at least] air, food, H₂O, and waste-handling [cycling] systems.

Human nature is [at least] organic-social. To be a human being is to be an individual of a species that can construct its own society, evaluate it according to theoretical, hypothetical, and moral standards, and change it in response to systemic problems and contradictions (given the necessary conditions to do so). The natural ties established between human beings and nature by organic life-requirements are also social ties binding individuals to one another through different forms of "collective" input (contribution or labour), and through which these societies are built, interpreted, and changed.

The total life-ground for human beings is inextricably natural and social. Therein, work, as the most basic social requirement of human life, connects the natural and social sides of the human being within a materialized environment. In society, work occurs through the structure of an [economic] decision system, understood in its instrumental life-value as the structure and activities through which human beings fulfill human liferequirements. In community, the [economic] decision system is the necessary condition for effecting a change of matter between humankind and nature.

In order to universally fulfill all human need, any materially fulfilling economy must prioritize the system's production and cycling of use-values, which have lifevalue. Since human life cannot persist without the production of life-values, the first shared socio-cultural requirement of human life is an decision (economic) system that is in fact life-grounded. The material environment, and any economic movement therein, is a space of social interaction within which intrinsically life-valuable cognitive and creative capacities can be developed and expressed.

There are at least three assumptions underlying the claim that needs are present for individuals, and that they can be fulfilled together at the social-/societal-level:

- 1. Needs relate fundamentally to the life of an organism.
- 2. The appropriate fulfillment of needs make it more likely for a healthy self-organism and commonly healthy social structure to emerge and be sustained.
- 3. Needs fulfillment/satisfaction provides a firm basis for forging a common identity between individuality and sociality.

7.4.1.1 Social life-requirements

INSIGHT: Knowledge is power, but it is also a limit, as one can only do (or at least do well) that are which is known; more knowledge is more power, because knowledge conveys ability to change reality, by entity, in reality. For example, how to build a fire to produce a higher order function [change] in a given environment.

There are a set of objective, universal social requirements to human life. These requirements of social life are not relative to distinct societies. The comprehensive conditions for well-being are not reducible to the physicalorganic requirements of life; there is also, from multiple organically similar and interactive individuals, a social dimension. There is a shared human life-requirement for social organization that enables all individuals to participate as socially self-conscious agents in the ongoing processes of socio-economic development and societal evolution. A social life requirement is the requirement for transparent organization that enables the effective contribution of individuals to continuation and developed evolution of the society. Socially, human life (i.e., individual conscious intention) becomes capable of accessing life's requirements fairly and optimally.

Whether life requirements and personal goals are accomplished depends on the physical availability of resources and knowledge. If there is sufficient resources, the problem is not natural scarcity, but the structures (institutions) and value system(s) that manage the use of those resources. All societies have some organized ("instituted") means of arriving at and taking ("making") commonly ("collectively") binding decisions on the access and usage of resources.

In the market-State societal model, these institutions are commercial and political, and they function to determine how collective life will be governed by force. In community, there is an open source, unified information model that algorithmically resolves a decision space, which materializes change in the physical environment. Some of that change is performed by humans, or else it is performed by a variety of automated services. There are macro decisions, such as how access is determined (as personal, common, etc.), and there are micro decisions, such as group requesting access to a set of resources, or possibly a change request to the materialized habitat service system (i.e., city).

In the Market-State, human life often becomes reduced to a tool or instrument[al form] of exchange. Therein, the harm to which people are liable as socially self-conscious agents is to be reduced to the status of tools or instruments (of systems and/or other human). What is harmed is the human interest in the socioeconomic system, as well as the human capacity to effectively participate in the determination of decisions.

7.4.1.2 The first social life-requirement

The first social life-requirement is an organized, higher order 'decision', and lower order 'economic' system that organizes and coordinates contribution ("labor") to produce use-values that have instrumental life-value as well as producing organic life-requirement satisfiers.

- **Instrumental life-value** resources, structures (institutions), relationships, and practices that maintain life.
- **Intrinsic life-value** the expression and enjoyment of the capacities that the satisfaction of life-requirements enables.
- **Good** does not express a mere subjective preference, but an objective determination that the object will satisfy a real life-requirement so as to

enable higher-level expression and enjoyment of life-capacities.

All human values are at the root life-values: they are a conceptual object which satisfies a life-requirement and that in human experience and activity which is enjoyed as an expression of human capacities to feel, sense, think, imagine, and create.

7.4.2 The nature of human need, requirements of a human life

Prior to any social (socio-cultural) shaping of consciousness, consciousness is born with a human body, whose possibilities and capabilities do not belong to any culture. The experience of the body may be socio-culturally influenced, but the body itself, prior to social experiences, provides limits and parameters that ensure a great deal of overlap in what is going to be experienced where hunger, thirst, desire, and the senses are concerned.

The basic requirements of a human life are not cultural or social constructs. Human biology is not an abstract [mental] construction, and it is not superseded by historical events or socio-cultural creations. If eating is not a material reality, and it is just a social construction, then so too is mass starvation a social construction. If mass starvation is a social construction, then it cannot be criticized on the basis of the life destruction it causes, because there is no material reality to be damaged. Consciousness, in its thinking, can abstract itself from the life-ground that forms the real material conditions that keep the consciousness alive in a physical body. Actual ignorance of the real material conditions of life would kill or cause significant harm to the body. Similarly, actual ignorance of the real social conditions of like would cause suffering to be likely. Fundamentally, there is a difference between a construction and the materials out of which the construction is built.

ASSIGNING MEANING: It is possible to assign some meaning to some thing in material reality that does not naturally or intrinsically carry that meaning. There is nothing in the thing (standard) that causes it to mean anything more or less than what it expresses, or what it might express under different conditions.

Humankind, like all organisms, lives (i.e., continues to exist) in some degree of alignment with its evolved biology. When organisms do not live in a sufficient degree of alignment with their biological-organic requirements, then there are biological-organic detriments that are likely to lower the potential [life-capabilities] of the organism.

7.4.2.1 The life requirements

All life exists within (i.e., requires an environment of a specific composition):

- Requires definite ranges of tolerance.
- Requires definite ranges of environmental conditions.
- Requires definite ranges of inputs of natural resources.

Each factor (or, fact-or) is measurable (or potentially measurable) due to its existence within a physical, material environment.

The fulfillment of each required factor (tolerance, condition, and input) is affected by a given society's organized structure and the active value system therein that encodes ("legitimates") that structure. The material requirements of life are not only environmental, but include the active value system that determine the access and usage of environmental resources.

7.4.3 The nature of a set of life requirements, known in part, as human needs

There are at least three dimensions of human nature through 'human need', which are universal:

- 1. All human beings are **organisms**, and these organisms encodes physical-organic requirements of life.
- 2. All human beings are **potentially socially** self-conscious agents (Read: social potential, opportunity). The realization of this potential depends on the satisfaction of definite social requirements of human life.
- 3. The lifetime of all **human beings is finite**, and the **free realization of an individual human capacities depends** on both the quantity and the quality of the environment (and life-time therein). Thus, there is a distinct life-requirement for freedom (free time), without which the free realization of human capacities is not possible. Free-time is time away for open-ended structure activity free from externally imposed deadlines, this time is required for flow "time". (Noonan, 2014)

The above three universal dimensions of human nature become the three high-level categories of human life requirement fulfillment:

Organic ("physical-organic") life requirements

 (biologically material requirements) - Physical organic requirements of biological life. Life
 happens through a physicalized vessel, and in this
 reality (dimension), it requires a biological vessel
 (given what is known)There are a set of physical organic requirements to all living organisms (i.e.,
 to human life), including: air, water, food, shelter,
 etc. Fulfillment of these requirements leads to the
 development, sustainment, and optimization of
 biological life. Access to life support is required.

- Wherein, insufficient fulfillment here is likely to cause harm in an organisms biology.
- 2. Socio-logic ("socio-cultural") requirements of life (socially material requirements) - The conditions of self-conscious, socially engaged agency require the satisfaction of definite psycho-sociological requirements of human life, such as the ability to contribute and participate, and access to information. Psycho-sociological requirements are the social conditions required to develop the individual capacity to identify with and care about others—as opposed to encountering them as competitors or potential rivals for access to means of subsistence or other life-requirements. Fulfillment of these requirements leads to the development, sustainment, and optimization of social life. Access to community services is required.
 - Wherein, insufficient fulfillment here is likely to cause harm in an organisms humanity.
- 3. **Temporal ("personal") requirements [of free human life]** - Requirement that the environment afford/allow sufficient free time to develop any capacities or interests, beyond staying alive, that someone intends to develop and express. Time is required if social self-conscious agency is to developed optimally. What are the access opportunity requirements, given a temporal and condition environment, free[ly self-integrating] human life.
 - Wherein, insufficient fulfillment here is likely to cause harm in an human organism's potential.

7.5 'Human need' universality, and thus, society

Universal needs provide an common grounding for the planning, design, and living development of society. Because life, and its optimization, has requirements, there are (intuitive and testable) requirements placed on society. A society can select to fulfill these requirements, or not, and by degree.

The method is to propose the satisfaction of 'basic' (Read: global, universal) human needs. There are different views on the complete overall view of the whole human system. One of those sets includes the recognized needs of: identity, security, and recognition, as the underlying organising principle for designing social structures, and to apply that conceptual framework to the task of creating functional institutions designed by working groups and members of the habitat service system team, working together. In other words, at the global level, the fundamental characteristic of all common, human categorical 'need', is [what do "you" propose; working together as an integrated and unified unite

within a larger environmental system in which there is the potential of intentionally embodied movement.

This type of reasoning is sometimes called the 'needsbased approach'. The needs-base approach accounts for the sufficient fulfillment (i.e., sufficiency or enough) of needs through an access service system, transparent to everyone (so that that which exists can be accounted for commonly by everyone).

Here are the categories of experience as related to a common human experience:

- Nature (ecology/natural): Natural services are the renewable and non-renewable goods and services provided by ecosystems.
- Information (memory and processing): The information system consisting of human memory and externally accessible information repositories. An accurately aware ` information system is required for optimal operation of a resource using system.
- **Coordination (social):** Time and place networks and norms that facilitate cooperative action. Cooperative action is required for optimal usage of resources and a the functional operation of habitat services (in the form of a city).
- Operation (built): The habitat service system is a localizable set of [nature re-configuring] operations that use resources to produce goods and services that regenerate global fulfillment.

There are two general categories of need, given material conditions (materiality - the ability to think and act in a physicalized environment):

- Material needs are those needs that cannot be satisfied without some level of material throughput in the economic system (i.e., the materialized habitat service system, material satisfiers).
- Non-material needs can conceivably be satisfied without any extra material throughput beyond the [sharing of the] human relationship (i.e., internal and social conditional quality satisfiers; e.g., social connection, self-direction, and safety).

7.6 Human needs assessment

A.k.a., Human research program, human systems design standard, human systems engineering and integration, human factors (human factors integration), human integration, controlled environment systems research.

The output of a human research program is a set of working-group human system design standards. These are standards to be applied in human systems engineering (a.k.a., societal systems integration). Here, the idea is that the human organism is an integrated factor in the system's design.

7.7 Principal characteristics of the 'human needs' list

As with all systems, the system that composes that which humans require, described at the level of commonality (human need), has the following principal characteristic:

As in many systems, the full satisfaction of a level [in the supra-system] is not necessary so that a human seeks and gets satisfaction of higher level needs.

What is the acceptable level, the decisional selection, of need satisfaction? This necessitates the evaluation method of specifying a target level and then measuring the shortfall or error between observed levels and this target. Thus, a given indicator (e.g., 'health') shortfall or new dis-ease indices a measurable the health gap, which is a societal gap. The question then arises: how is the target level set?

- 1. Basic need threshold (for life support)
 - Basic needs maintain a moral threshold (life support and some technical) - the only morally relevant threshold for basic need satisfaction is the optimum level. In principle, [need] satisfaction is adequate when, using a minimum amount of appropriate resources, it optimises the potential of each individual to sustain their participation in those constitutive activities important for furthering their critically fulfilling interests. This could be considered 'human dignity', such that everyone has that which they require accounted for as a single system.
- 2. Intermediate need threshold (for exploratory/ facility support)
 - Intermediate needs maintain a life developmental threshold (facility and some technical) -Intermediate needs apply to properties of services, products, activities, and relationships that enhance health and fulfillment in society. These are Facility (service system) and some Technical (service system) needs. The threshold is where additional increments of an intermediate need generate decreasing increments of basic need satisfaction, until at a point no additional benefit is derived. This threshold point is called the minimum optimorum (or minopt) threshold: the minimum quantity of any given intermediate need satisfaction required to produce the optimum level of basic need satisfaction. In principle, this defines threshold levels for each intermediate need.

- 3. **Inequality need threshold** (for decision support)
 - <u>Inequality in access threshold</u> inequality in access to services from common heritage resources and services.

7.7.1 Common terms related to the information category of 'human need'

There are two common terms related to the category, human need: universal needs and absolute needs.

7.7.1.1 Universal needs

Think about universal concerns. Food, for example, is a universal concern; everybody needs it.

7.7.1.2 Absolute needs

Absolute (or "categorical", "entrenched") is a [human] need, which if unmet during a specified time period, the state of reduce life potential or cause serious harm will result. Absolute [material] need categories are the same (universal) for each individual of the population.

In terms of the "I", absolute needs may be structurally defined as:

- 1. "I" need [absolutely] to have x,
 - if, and only, if
- 2. "I" need [instrumentally] to have x if "I" am to avoid being harmed,
 - if, and only, if
- 3. If "I" avoid being harmed, then I have x.

As a statement [of input]:

A person needs [the input of] x absolutely, if and only if, whatever is possible to occur within the relevant time-duration, the person will be harmed if s/he goes without [the input].

7.7.1.3 Human basic needs (basic human needs)

Simply, a basic need is that which no one can live without and not suffer a loss of life capacity. For example, one cannot do without oxygenated air or potable liquid or caloric intake in any degree, without a proportionate reduction or destruction of life capacity. For all [basic] needs, there are scientifically establishable limits of life capacity range and the degrees of its reduction correlating with the degrees of deprivation of it. For example, one cannot live X number of minutes (average is 6 minutes) without any breathable air, x number of days without water, etc.

Individuals require access to basic human needs to survive. The basic human needs on Earth, in simple terminology, are [at least]: food, water, shelter and clothing, air, energy, and safety. If any one of these basic needs is not met, then humans cannot survive. After these basic needs are met, the community can express a more fulfilling form of human expression involving social life optimization needs (e.g., transportation, information processing, self-actualization, etc.). The essential basic nature of human needs have not changed (for instance, fire may now be necessary for food's relationship to health, but there is still food as a need), and they are universal requirements for personal survival and thriving together.

The ability of humans to satisfy these basic needs arises from the ability of humans to access ecological services (natural resources), construct operational services (habitat service system), and coordinate time & place tasks/activities (coordinated action). The ability of humans to optimally satisfy all human need arises from the ability of humans to cooperate and coordinate.

7.8 'Human need' inhibition, thwarting, and deprivation

NOTE: Natural law brings the consequences of a life of dis-connection from a necessary frequency of fulfillment.

Understanding the different processes that follow from acute and chronic effects of need inhibition (need thwarting) is important for further understanding need dynamics, as it allows another way of considering how needs and motives can become decoupled.

The absence of the significant [need] satisfiers is likely to cause harm, characterized by degrees of suffering off of the alignment of feeling fulfillment, feeling well. Harm and suffering are "to be" avoided; they are an intrinsic drive of motivation - to be out of suffering (the feeling of being in pain).

QUESTION: *How do we come to know our needs? We, individually, pay attention to our experience over time, integrating our senses and responses.*

Under chronic deprivation, a person's motive to get a particular type of experience may become extinguished because efforts to satisfy that need have traditionally amounted to wasted effort. However, though the motive is extinguished, the requirement is not and will still produce dissatisfaction. Thus, a person may develop a motive that maintains an aim to satisfy the basic missing requirement but, because the person does not perceive readily feasible routes, they pursue compensatory, indirect routes that often fail to satisfy the underlying need.

When conditions exist or events take place that limit our ability to meet our needs and affect our bodily or psychological structure, to some degree, some individuals experience a trauma. As a result, in order to cope, we then may develop defense mechanisms to block out awareness of or desperately attempt to meet those unmet needs, often in a misguided fashion. This process involving unmet needs, trauma and defense mechanisms is a central one that lies behind many of the most destructive aspects of a culture that doesn't account for needs. When a need isn't sufficiently fulfilled, either in composition or frequency, then there are body [stress] effects. When there isn't enough water to meet needs, then there is the experience of human stress (sometimes called "water stress"). However, there is complexity to the effect. For instance, a human can practice breath holding or reduced breathing and the body adapts by becoming more flexible and resilient (via eustress, hormesis). Conversely, the long-term stress of poor nutritional eating leads to the body experiencing a state of chronic dis-ease (a.k.a., chronic stress, distress). A need scarcity-fulfillment index (e.g., water scarcity index) is a measurement of the ability to meet all resource or condition (e.g., water) requirements for basic human needs.

Fundamentally, stress comes from social (and physical) pressures. Stress can be unnecessary, hormetic & adaptive, chronic, etc. A society that accounts for the presence of social and physical pressure will likely also reduce stress on the individual over all domains of measure.

NOTE: Some societies acknowledge, account for, and fulfill human needs, and others do not. Sometimes human needs are confused with other conceptions, such as money or belief, and sometimes not. It is possible to not know what is missing.

Vital signs of life naturally deteriorate when deprived of natural environmental form and stimulus. Insufficient breathable air leads quickly to incapacitation by the degree of deprivation, but deprivation of open space or light take far longer to show the loss of ability to function through range. Generally, it is not possible to be deprived of need fulfillment without losing life capacity towards disease and death. Deprivation of any of these universal life necessities (needs/services), and to the extent of this deprivation across the need categories, generates human suffering and social injustice demonstrably follow.

Human life is harmed, damaged, or reduced in lifepotential when:

- There is a failure of life-requirement fulfillment the range of expressible activity is reduced because certain essential life-requirements have not been met. A failure of life-requirement satisfaction constricts the actual content of life-activity to a subset of its potential.
 - A life abundant in capacity expression is better than a life impoverished in this dimension.
- 2. There is the presence of social coercion lives may be abundant in expressed capacities, but those capacities are expressed through coercion (e.g., coercive routines those imposed by the demands of the money-value system); versus the intrinsic realization of life-capacities.
 - A life abundant in capacity expression is better

than a life impoverished in this dimension. The free realization of life-capacities presupposes, in addition to the satisfaction of the first two sets of life-requirements, the experience of time as free.

Insufficient fulfillment produces harm. For instance, an insufficient amount of nutriments results in a failure to thrive (organically, socially, etc.). Some inadequately met needs will lead to death (e.g., lack of the correct atmospheric gas composition). Other inadequately met needs may not lead to premature death, but are likely to cause suffering and lead to the failure to achieve one's potential. Depending upon environmental factors, human senses and capacities may or may not develop, and, may or may not develop fully. Harm lies in the impoverishment of human sensibility and capability caused by a misaligned relationship with nature and other humans. Further harm lies in the emotional internalization of the impoverishment through the experience of suffering.

NOTE: Among community, whenever any condition, relationship (etc.) harms or hampers the prolonged, secure, universal fulfillment of needs, then dis-value ensues. To dis-value some condition involves a critical study of the condition and its relationship to human harm. Once complete, the newly understood information is integrated into the pre-existing value system, which becomes re-structured, reorienting society more greatly toward fulfillment, and away from the information set now known/ understood to cause harm. The category-level label given to this information set is, 'value'. Some values orient more greatly toward fulfillment, and others orient less greatly toward fulfillment, which means they orient more greatly toward harm [to fulfillment].

Humans, like all living organisms, have a life-capacity potential that is diminished when life-requirements are not sufficiently or appropriately fulfilled. Accompanying the diminishment of life capacity is the emotional aspect of insufficient embodied fulfillment, the experience of suffering. Deprivation of life requirements (inappropriate frequency and/or composition) will inhibit life capacity and generate suffering. Human lifeforms can be harmed and limited in potential by too lengthy a dis-connection from, or too malformed a composition of, a required input.

Humans are liable to shared forms of harm, because they have shared life-requirements. When value determinations become misaligned from this underlying, common life-ground, actions tend to generate more or less-destructive effects, on individuals, social fields of life-development, and natural fields of life-support.

If human social self-consciousness is to be able to produce meaningful constructions, then consciousness requires access to definite social relationships and organizations (or institutions), without which the highest level human-conscious capacities are less likely, unnecessarily so, to develop. Possibly, these organizations (optimal organizations are as necessary to humans (as social beings) as oxygen and water are to humans as organisms (as organic beings). Where certain groups of people are denied access to these organizing systems of society (e.g., in the market), they are harmed in their humanity, just as those who are deprived of organic life-requirements are harmed in their organism.

In society, harm can not only come to humans, but it can come to the systems that support and sustain human fulfillment also. Humanity's common life interest is understood to begin with the universal life support systems that all human life (i.e., the life-ground), life conditions and fellow life depend on, the ultimate bottom line of terrestrial existence. When a societal system (decisioning, in particular) harms the common life support systems that enable the survival and thriving of all, then some degree of suffering and disaster is likely to follow.

NOTE: When humans go for a long time without having all of their needs fulfilled, then it is likely to become difficult for them to begin to personally allow for their needs to be met (now that the environment is different). For example, a person who doesn't get enough sleep may insist that they can do without. A person who has grown up without deep connection to others may insist that they prefer to live in relative isolation. Additionally, individuals who have deeply rutted routines will resist change when it is offered to them, making change all the more unlikely. Possibly, humans have a naturally protective process that occurs when a need goes unfulfilled. Therein, they develop beliefs that justify the ignoring of suffering, or if not suffering, then a lowered potential of capability in the world. They are in denial. There are a common set of human needs, for every single person on the planet needs such experiences as food, water, shelter, and sleep on a regular basis.

Because humans are social animals, they are capable of experiencing not only physical harm to their organic body, but also psycho-social harm from the social aspect of the environment. Without access to socially needed inputs, people are harmed in their humanity, just as those who are deprived of organic life requirements are harmed in their physical organism. Fundamentally, failure to fulfill social life-requirements undermines humans' capacities to be of help to one another, as well as oneself. In other words, failure to satisfy human social life-requirements undermines humans' capacities to work in both instrumentally and intrinsically valuable ways. It inhibits individual's ability:

- To care about, to relate to, and to interact with other people as unique bearers of life-value.
- To think openly, analytically, and critically; to imagine and plan for new possibilities of action and social organization.

- To perceive and appreciate the beauty of the natural world and creative expressions.
- To work together to ensure that society satisfactorily and continuously sustains the life-requirements of everyone.

NOTE: The lack of awareness of loss brought about by a loss of connection with fulfillment may not always be realized [even though suffering is being expressed through consciousness]. For example, a human brain deprived of oxygen for several relative minutes will suffer damage to its cognitive capacities. These capacities may be damaged or limited to such an extent that the person in question may not realize or be able to articulate the full range of what s/he has lost. The loss, however, can be measured objectively.

Fundamentally, people living in a state of dis-connection and suffering create and sustain societal constructions that limit potential and inhibit self-development, rather than build fulfilling and restorative living systems. Lifedeprecating services (and goods) include, for example, the production (and sale) of addictive and life-disabling ("junk" and "entertainment") drinks and foods, and further, the injection of toxins and carcinogens into consumables that afflict countless people with disease and a lowered life-potential. Some of the elements of these products are unresearched or undisclosed.

NOTE: Outside of community, the fulfillment of any need can be hijacked and used as a mechanism of social control.

Like the physical-organic requirements of biological life, the social requirements of human life are defined by the objectivity of the harms that ensue for those who are systematically deprived of them. The specific forms of harm caused by deprivation of the different social (sociocultural) life-requirements find their common basis in the instrumentalization that anyone systematically deprived of them suffers.

7.8.1 Human needs and harm avoidance

Reasons for needing are essentially common, and involve a shared understanding of what sorts of systems (and decisions) actually do avoid harm.

The universality of need rests upon the experience that if needs are not satisfied then serious harm of some objective kind will result. Serious harm is the significantly impaired pursuit of goals which are deemed to be of value by individuals. Serious harm is 'fundamental disablement in the pursuit of one's vision of the good, whatever that vision is'. It is not the same as subjective feelings like anxiety or unhappiness.

It follows that a current population has obligations to protect future generations against serious harm, if such harms can be reasonably predicted.

If future generations are to exist, humanity has a

requirement to ensure that the global life support system is not so damaged such that it threatens the basic needs or universal satisfier characteristics of future humans.

The idea of universal human needs provides two supporting arguments:

- Humans have requirements ("obligations") to meet the needs of their children and grandchildren within the overlapping generational nature of society.
- 2. An individual's well-being will be severely compromised if s/he lives in a world where their other individuals (of the global population) suffer profound (or even just ameliorable) harm.

7.8.1.1 Harm as stemming from some degree of impaired social participation

Another way of describing such harm is in terms of impaired social participation. Whatever our private and public goals, they must always be achieved on the basis of successful social interaction, past, present or future, with others. This definition explicitly acknowledges the social character of human action. Whatever the time, place and cultural group we grow up and live in, we act in it to some extent. Following Braybrooke (1987) we relate needs to what is necessary for social functioning. It follows that participation in some form of life without serious arbitrary limitations is a most basic human interest. Basic needs are then the universalizable preconditions for non-impaired participation in any mutually accessible form of life.

7.8.2 Competition preference function and irrational behavior

The combination of irrational [behaving] humans with a [societal] protocol preference function orienting individuals, or groups of individuals, toward competition (e.g., the market-State) is a combination of unknown human decisioning (irrationality) and unknown preferences (the market solution). Observing the behavior of combining unknown human decisioning and unknown human preferences, then explaining the behavior in terms of many different combinations of non-rational decisioning, plus preferences is common in early 21st century society; and, is likely to miss, the realworld presence of fundamental needs not being met, the real life-grounded structure). There is a "fact of the matter" (i.e., there are facts) in real-world decisioning. Irrational [behaving] humans and a societal protocol based with a preference function as axiomatic is unlikely to use facts at the organizational level to sustain global [access] fulfillment (instead, it may use facts at the technical engineering level).

7.9 'Human need' and social justice

NOTE: Fairness is not the same as sameness. In other words, fairness in coordinating opportunities for socio-economic access is not the same as either an authority treating subjects equally or all individuals having the same interests and aspirations in life.

Inherently, the concept of human needs raises questions of human equity and justice. A societal system that encodes the value of justice [in part] as equity of fulfillment [by common heritage resources and contributed services] requires the following essential equity-based principles applied to absolute human needs:

- No person's non-substitutable need may be sacrificed to the desires or lesser needs of any group of other people.
- All humans have [sufficiently] equal access to all needed satisfiers.

A goal of fulfilling everyone's life needs is to enable everyone to fully develop, fully express, and fully enjoy their lives and capacities, together; thus, reducing the worst possible misery to its least possible occurrence. Take note, however, that this goal presupposes that the projects people engage in during their lives are consistent with the health of the natural field of lifesupport and other people's projects through common decisioning.

At the social level, the idea of self-significance becomes an important conceptual encoding:

- Selfish: I only value my own needs.
- Selfless: I only value others' needs.
- Self-full: I value my own needs with others' needs (equally at the socially coordinated level).

7.10 'Human need' integrated into a materially significant social system

NOTE: When needs go unidentified, they are easy to neglect.

If all individual humans have a set of common needs (some of which are material), then needs become relevant at the socially significant level, and thus, must be accounted for at the societal level. At the societal level, the idea of 'human need' has material-social significance:

- In science (human combined body of knowledge), a 'need' primarily represents a desire to know and understand more, to inquire into a material environment.
- In engineering (human combined body of processes), a 'need' primarily represents a requirement to resolve a socio-technical problem.

In a unified [societal] information system, the term 'need' is recognized as having applications at multiple levels of scale:

- In the context of humanity, the term '**need**' is synonymous with: human need, life-need, life requirement (life-requirement), and human requirement, human interest.
- In the context of humanity, the environmental objects (with geometric shape) that complete the need are called 'resources'. 'Resources' (a.k.a., need satisfiers) are that which exist and have the potential of completing the need/requirement. Synonymously, the idea of 'life-requirement satisfiers' (a.k.a., need satisfiers) is that there exist objects and conditions of relationship between objects that [f]actually satisfy the requirements of a given life.
- In the context of humanity, the concept **completing a requirement as expected** is synonymous with: met requirements, fulfilled requirements, and satisfied requirements.
- In the context of humanity, the concept not completing a requirement as expected is synonymous with: unmet requirements, unfulfilled requirements, and deprived requirements.

For a system to orient strategically, it must identify that it has a spectrum of needs [through to requirements] for expressing two capabilities:

- · Living in the present (sustainability), and
- Planning for the future (attainability).

Contribution through participation on an InterSystem Team represents a higher level of socio-technical participation, where individuals are able to contextualise their own form of life, to criticise, and most importantly, to do something to transform it.

NOTE: Individuals [in society] have a need to understand the societal system in which they live; because, every society is designed, and before 'design', there is 'need' (Read: the need for a designed solution.

7.11 In service of 'human needs'

A.k.a., In service for humanity.

Because individual's needs necessitate an outside input for fulfillment, each individual needs the "means" to do be fulfilled. Together, humanity can organize a common "means", a unified societal information system with a materialized habitat service system, and in so doing, free everyone for the experience of their higher potentials.

INSIGHT: The way forward is having, sharing, and using knowledge about what is required to

survive and thrive on the planet.

The fulfillment of need through service involves (the 'service' syntax):

- 1. *Identification* of that service without which the life capacity of anyone is reduced.
- 2. *Determination* of the degree of the service's necessity and extent of its deprivation.
- 3. *Operation* of the service system when the means are available to provide it.

Fulfillment services (or goods):

- 1. Have ["intrinsic"] value so far as they are objectively felt by human beings.
- 2. Have ["instrumental" or "ultimate"] value so far as without them human life is reduced or destroyed by degree.

At a societal level, the fulfillment service spread identifies systematic, structural:

- Injustice to the measured degree service fulfillment is deprived.
- Justice to the measured degree service fulfillment is protected and provisioned through time.

The basic syntax of [habitat need fulfillment] service is:

- 1. The structuring of access (or activity or production),
- 2. for all individuals (in the population),
- 3. to life services (resources and goods),
- 4. whose generic criterion is: that without which human life capacity is always reduced.

7.11.1 Needed habitat services

NOTE: *In the fulfillment continuum of human needs, services are the satisfiers.*

It is upon the foundation of need that the habitat service sub-system categories are based (as where and when universal human fulfillment emerges). Every discipline/ system that may be regarded as of common interest (i.e., commonly valuable) follows into an economic prioritization matrix for fulfilling all human demand, which includes firstly, human need. Of greatest priority are those sub-systems of the life support system, including architecture, medical, water, and energy. The technical system includes communications and transportation; and the facility system includes: art, sport, and scientific exploration.

The encoding of these concepts into a society's information system opens a calculation space where further crucial issues may be addressed; specifically, surrounding initiation and maintenance of cities (our integrated service systems), implicit and explicit motivational

processes, human personality development, and optimal well-being.

A population can fulfill [common] human needs through a [common] service system that cycles [common] human resources. That service system could be coordinated into continuous operation by teams working through the design and implementation of the societal system specification. From this cooperation come integrated service systems, of which the habitat service systems (i.e., cities) are one type of integrated system.

There are services and material products required for the flourishing fulfillment of all human. These services and material products can be designed, integrated, and used as either a service itself, or as an object of a service. The collection of things [to be] generated from work (including physical and organizational structures) are defined in a 'specification' as [habitat service] requirements.

7.12 'Human need' services

INSIGHT: There are times when wants do not contradict desires, and those are needs. It is when that we see that all need it is service it is that we see more clearly.

In order for a need to be completed, a service must have existed. Every service is an interaction between the provider and the recipient effectuated through four media:

- The environment (the given information)
- The organizational framework (the structure)
- The needs (the requirements)
- The method (the approach/strategy)

The classification of human needs, despite any deficiencies and incompleteness, establishes a falsifiable (capable of being proven wrong) model for classifying human [fulfillment] services.

Six key elements common to all human [need] services:

- 1. The provider of the service ("Employer")
 - Unified societal system
 - Habitat service system
 - InterSystem team
- 2. The recipient of the service ("Customer")
 - The community of users
 - The InterSystem team
- 3. The environment of the service ("Externalities")
 - The solar-planetary ecosystem
- 4. The organization of the service ("Market")The habitat service system
- 5. The need for the service ("Human")
 - The human requirement
- 6. The method ("Business-State")

• The unified and open system

NOTE: Omit the word "basic", stating that all human services share a common feature: they are all designed to meet human needs

Defining "human services" as responses to human needs rather than responses to needs indicates that the "human" attribute of "human needs" is significant. These are the necessary conditions required to allow "decent" bodily-human existence, or "decent" socially-human existence.

Human services to provide a support structure for humans to flourish toward their highest potential(s). Therein, human services are also those services designed or available to help people who are having difficulty with life and its stress.

The optimized, efficient fulfillment of need requires cooperation - systems of mutual assistance and transfer; global coordination, co-operation and complementation; shared resources and access.

7.13 'Human need' structural subconception

From the perspective of human-embodied consciousness, 'need' is sub-composed of the states of:

- An internal being (inner being, feeling an aliveness)
 - An inner [consciously] motivating feeling-state (a.k.a., inner states). Feeling [shape] needs exist due to the consciousness that is embodied in a material [density].
 - For example, the physiological needs of safety, belongingness, love, esteem, contribution, and self-actualization.
- A material environment (outer Being, doing an activity)
 - A set of **relational belonging needs (a.k.a., material relationships)** to which embodiments become actively related (a.k.a., conditional needs). Material [shape] needs exist due to the physics of the [material] reality in which the consciousness is embodied.
 - For example, the human requirement for hydration periodically given the human individual.
- A conceptual environment (Conceiving, having a method)
 - A set of instrumental [control] needs (a.k.a., constitutive needs or 'values'), which exist due to an ability or method. Conceiving [shape] needs exist due to the information-based nature (structure) of conscious awareness (and thus, society as a whole).

• For example, the human requirement to optimize the technical hydration system given the technology resources state available now.

7.14 The fundamental 'human need' for measurement

In order to orient (in society, toward the fulfillment of needs) there must exist the ability for measurement (measurability) of an environment:

[Formatting of list]

The pure category (idea).
The market overlay upon the pure idea/category.

[The list]

- Service (Goods) what is engineered; systematically contributed life services.
 - In the market, a service is any priced commodity which may be bad for ecological and human life, or any authority-determined output.
- Necessity (need, requirement) what is needed by the lives of human individuals.
 - In the market, the necessity is the demand of what those with money want to buy from private corporations (the State included).
- **Resources (Supply)** the commons and ecosystem services.
 - In the market, a resource (supply) is any priced commodities, or anything for profit.
- **Productivity** optimization of life fulfillment (lifegoods, life-potential).
 - In the market, productivity is measured by ever more manufacture, transport and/or sale of profitable commodities at lower financial (monetary) costs.

7.15 The testability of a 'human need'

There are, at least, four testable and systematic generalizations of need:

- 1. **Needs are objective**, because they exist (are true), independent of anyone's subjective perception of them. Existence is testable by embodied sensation.
- 2. Needs have unlimited validity, because there is no exception to them, which is testable by searching for one.
- 3. Needs are universalizable, because a system derives its existence from them.
- 4. Needs are the priority over other types of system processes.

7.16 The standard linguistic expression of

a 'human need'

A [human] 'need' is that without [human] 'life' capacity is reduced (in its efficiency to flourish), and it is only provided [for in 'fulfillment' > 'service'] by [human] 'life' capital (Read: information to material expression).

7.16.1 The relational need formula

A need [as a relationship's presence] may be expressed with the following conceptual formula:

 A need (S), if S is a necessary condition for A to achieve N, and N is either directly an approved priority or is a necessary condition for achievement of the accepted approved priority P.

What is a need?

 A drive or some inner state that initiates a drive.... Here "need" refers to a motivational force instigated by a state of disequilibrium or tension set up in an organism because of a particular lack. Individual organisms have needs, and species have common needs.

All needs are relational, in that they relate a system and its capabilities (capacities and functions) to the system's environment in which those capabilities are expressed. Relational statements generally conform to the structure:

- Person (P) needs (N) in order to express (E, achieve).
- Where, P refers to a living organism, E the function that is to be generated, and N is the resource that is required.

This meaning can also be expressed as a conditional: if E is to be functional, then N is required by P. Hence, any reference to a sub-category of needs as "relational needs" does not make sense, because all needs are relational.

All needs are also conditional, in that they relate the expressed and expressible capacities of a system to a set of conditions which must exist. A conditional statement is based upon the logic that for capability/event 'A' to occur, conditions 1,2,...,n must exist (or, P needs N, in order to E). A need always requires at least the occurrence of one external condition. Hence, any reference to a subcategory of needs as "conditional needs" does not make sense, because all needs have one or more conditions that must be met.

7.16.2 The 'human-life need' criterion (n-criterion)

The N-criterion denotes all life needs. Thought experiments (i.e., hypotheticals), as well as scientific findings, demonstrate that there is no vital [human-life] need that does not satisfy the N-criterion, and also, that a claimed need that does not satisfy this criterion is not a [human] life need.

To be a need, a criterion must be met - the need criterion (n-criterion, principled criteria for being a need) is:

 N is a need, if and only if (and to the extent that), deprivation of N (or N's input) always results in a reduction of life capacity (expressible as capability).

There is no life capacity that is not also measurable by this [N-criterion] principle; for example, the need for drinking water measured by the calibrated life capacity loss without it through time.

NOTE: There is no life capacity (life function to survive and thrive) that is not also measurable by this principle - for example, the need for drinking water measured by the calibrated life capacity loss without it through time, or the need for the external storage of information, calibrated by life capacity lost over time.

The syntax of [life] need (N) is:

- 1. N is a need,
- 2. if and only if,
- 3. deprivation of N always results in a reduction in a [desired] measurable capacity or condition variable.

7.16.3 'Human need' criterion selection

What is required at the baseline of understanding and prescription is an incontestable and sufficient <u>criterion</u> of [human] life necessity, coherent with others' same necessities. Such a criterion must solve for three problems (Note: these problems are unsolvable in the market-State, but are solvable):

- How to distinguish *needs* (system required inputs) from mere wants and habits (optional system inputs)?
- How to provide a <u>criterion</u> that is consistent with, and works <u>for, all needs</u>?
- How to provide a <u>criterion</u> that applies across diverse ways of life and individual differences? The criterion must be <u>capable of providing feedback</u> through iterative testing and studied observation of change in the environment.

In order to error check the final set of human needs, the questions of whether the need set is "too broad?" or "too narrow?" must be asked:

- Is anything claimed that is not a demonstrable universal need/good by the N-criterion?
- Or is anything missing from the set or any part of it?

7.16.4 'Human need' criteria

What conditions define any given 'need' in particular. In order to distinguish between life-requirements and consumer demands we must ask: if anyone were deprived of the given resource, relationship, practice, or institutional structure, would they suffer harm to any of their human capacities to experience the world through the senses, to feel the range of human emotions, to think and imagine, or act and create in life-valuable ways?

If deprivation causes objective harm in the form of loss of life or vital capacity, such as would ensue if one were deprived of all shelter in a cold climate, then the object, relationship, practice or institutional structure in question is a requirement of organic-social human life. If only subjective feelings of relative deprivation ensue, as in the case of Marx's man jealous of his neighbour's house, then no life-requirement is involved, but only a preference, want, or consumer demand with no or negative life-value.

Since human beings have only a finite life-span, they are harmed to the extent that their life-time is structured as a closed routine rather than an open matrix of possibilities for life-valuable activity.

Universal human needs have (at least) six theoretical features that resolve identifying sustainable well-being:

- Human needs are objective statements about wants are subjective, whereas statements of need are extensional (i.e., their truth depends on 'the way the world is' and not 'the workings of my mind').
- Human needs are plural needs cannot be added up and summarized in a single unit of account.
- Needs are non-substitutable one domain of need satisfaction or objective well-being cannot be traded off against another. More education is of no immediate help to someone who is ill through lack of vitamin C. Thus certain packages of need satisfiers are necessary for the avoidance of harm. This is quite different from consumer preferences in economic theory, where substitutability is the default assumption: given a bundle of two goods it is always possible – by reducing the amount of one fractionally and increasing the amount of the other fractionally – to define a second bundle between which a consumer is 'indifferent').
- Needs are satiable It can be shown that the amount of intermediate needs required to achieve a given level of need diminishes as their quantity increases, eventually plateauing. Thus, the contribution of calories, dwelling space, even levels of childhood security, to basic needs can be satiated. In the case of the basic needs of health and autonomy, thresholds can be conceived where serious harm is avoided such that acceptable levels

of social participation can take place.

Needs are cross-generational - The consequences of current behavior progressively impose dilemmas of intergenerational fulfillment of human need. The epistemology of reasoning about needs remains extensional, not intentional, and thus avoids the indeterminacy of reasoning about future preferences. Until the genetic make-up of Homo sapiens changes significantly, population successors will need specific amounts of the full range of basic and intermediate needs. As technology and understanding develops the specific biological (or otherwise) constituents of the fulfillment of a category of need may change (i.e., evolution or de-evolution), but that category of need, itself, is unlikely to change. There are a particular set of biological experiences that form necessary inputs for human thriving.

7.17 Cultural [societal] differences in societal structure

While basic needs are universal, they are satisfied in countless different ways and through different strategies, which vary across environments, societies, cultures, and times. Whether humans have needs that must be fulfilled to survive and thrive is not a choice, just as whether the sun is at the center of the solar system is not a choice.

What is valuable as a need satisfier (i.e., liferequirement resource) is anything that satisfies (or fulfills) the requirement. The local environmental (cultural) differences between the contents of liferequirement satisfiers (of groups in different geographic locations) do not express fundamental differences of the common human life requirements across cultures.

In some cases satisfiers, as conditions and resources, do not vary, and in other cases they vary enormously. However, the needs served by a satisfier (i.e., fulfilled by a service) can be shared and stable; and thus, it is possible to distinguish levels of generality and stages in causal sequences.

Image for a moment someone claiming to have a preference for one specific type of food. Here, context is important. There is desire and motivation because there is a need. That need does not come from the psychology of the organism, although it can be influenced by the psychology of the organism; instead, it comes from an objective requirement of the body for material nutrition. At any given time there may be a selections of options from which to choose to eat. In nature, flavour is the guide for conscious selection between different (but similar) options. And therein, there is an optimal choice for nutrition given the body's own nutrient requirements and circumstantial conditions, otherwise, there is no need to eat. This innate body understanding of what is optimal to eat at any given time, and when to stop eating, can become impaired by aberrant psycho-social and material conditions (e.g., foods that confuse the body's own ability to tell what it requires as material nutrition).

It is claimed that cultural and individual differences, and beliefs about freedom, make any universal principles of good (fulfillment) and bad (insufficient fulfillment) impossible, or undesirable, or both. For example, some choose to satisfy their need for food in the form of fish and beans, others by meat and potatoes, and still others by vegetables and fruits, with many further variations among these menus. Hence the false inference arises that even the need for food is not universalizable, because of these cultural and individual differences. More careful consideration resolves the problem, however, because it recognizes that the organic need is for a complement of nutritional food which can be spelled out across these different fares by the objective N-criterion and primary axiom of value. No one "decides for others" this or any other life necessity and good. It is a necessity of life recognized by a scientifically verifiable criterion of life-value understanding, and it admits of endless degrees and choices within its objective principle of determination. Whether recognized or not, the objective criterion of life value always remains a constant.

Nothing worthwhile in life that is excluded because all that people do or choose to do requires life capacities, and they in turn require the goods that meet needs to flourish, however free and unique they may be. Whatever the manifold variations and choices within the generic goods of these universal life needs, no lifecoherent possibility is pre-empted.

7.18 When services become an 'end' in themselves

When a societal system makes goods and services an end in themselves, then the alleged satisfaction of a need by the societal system, actually impairs its capacity to create potential for the individual with the need. In other words, when goods or services becomes the end, then the real need [of the individual] goes unrecognised, which reduces the individual organisms ability to sense its real world fulfillment; its sensitivity to its real world need fulfillment becomes diminished. Life, then, is placed at the service of systems, rather than systems at the service of life fulfillment. The question of quality of life can become overshadowed at a societal level by artifactual, system constructs.

In some societal arrangements, the speed of production and the diversification of objects become ends in themselves, and as such, human needs become forgotten in the design of goods and services, in the design of cities and habitats, and in the design of society in general.

In a fulfilling [critical] version of society, it is not sufficient to specify the predominant satisfiers and economic goods produced within that society. Service systems must be understood as iterative productions, which are the result of accumulated knowledge, and consequently, liable to change. Thus, it is necessary to retrace the process of reflection and creation that conditions the interaction between needs, satisfiers and economic goods.

7.19 'Human need' as priority functioning [service] satisfiers

Needs are satisfied by a relationship of appropriate shape. Therein, satisfiers are material services (and/or material objects) that allow the relationship to complete its functioning. Satisfiers vary enormously in contextual application, whereas the needs they serve can be shared and stable. It is possible to distinguish levels of generality and distinguish stages in causal sequences.

TERMINOLOGY: Access is being able to attain a functional capability. The idea of "access" exists between functioning and capability.

The habitat service system exists between guaranteeing attainments and strengthening capabilities (in other words, service exists between functioning and capability).The habitat operational processes exist between orders of priority; for example, incident response is given highest priority, above facility servicing.

In a service system, there is the satisfier as a category (e.g., food), then there is the quality of the food, which arrives via a service.

7.20 'Human need' satisfiers

QUESTION: *How can a social group identify needs and appropriate need satisfiers?*

Satisfier disambiguation:

- Max-Neef satisfiers are processes/strategies.
- Material satisfiers are resources or other people.

In order for a need to be completed, a satisfier must exist. Need satisfiers are the systems, services, processes, activities, tools, relationships and goods required to satisfy needs in any given social context. Determining need satisfiers entails a problem-solving process, rather than a preference aggregating one. Meeting human needs requires a socio-economic system that produces and distributes the necessary and appropriate need satisfiers – and ensures that all this does not threaten planetary limits.

It is essential to identify the distinction between universal needs and specific satisfiers. For example, the needs for food and shelter apply to all peoples, but there are wide varieties of cuisines and forms of dwelling that can meet any given specification of nutrition and protection from the elements.

Max-Neef identified five types of satisfiers:

- Satisfiers [f]actually satisfy.
 A. Synergistic satisfiers fulfil several needs at once.
 B. Singular satisfiers that fulfil one at once.
- 2. **False-satisfiers** do not [f]actually satisfy (only viewable over the long-term).
 - C. **Pseudo satisfiers** are a unique case that give only fleeting fulfilment (a temporary feeling of well-ness that does not last, and may degrade actual fulfillment over time).
 - (4) Violator satisfiers (violators of satisfaction) inputs that claim to be actually satisfying, but completely fail to satisfy, yet one may be habituated to them.
 - D. (5) Inhibiting satisfiers satisfy one need (often a short-term one), but at the consequence of reducing satisfaction of other needs.

The requirements of human physical and mental health relate inherently to the three human need modes:

- 1. Basic human needs (e.g., food).
 - Need as a noun.
- 2. A lack of basic human needs (e.g., these people need food).
 - Need a verb about the needing of a noun.
- 3. A lack of habitat service system (e.g., these people need a food service).
 - Need as a looped verb about the needing of a process (or service).

The third mode refers to a particular method or satisfier (e.g., food service as part of a habitat service system) for fulfilling the more general need (food).

The two need modes are:

- Need is a term used, in an evaluatively neutral description or explanation, to refer to a drive for potential completion or want. Need as a factor that motivates individuals toward survival and thriving.
- 2. Need is a requisite for achieving an objective. Need as a functional prerequisite. What is required in order to do or achieve something, which in application are generally called 'resources'.

Satisfiers are ways of meeting needs, some of which completely fulfill the actual need, and others do not:

- **Single satisfiers:** meet one need with one environmental input or condition.
 - For example, breast milk fulfills the need for nutrition for a baby. Note that in common parlance, the term satisfier is often used to refer to a behavior. In this case, the baby has a need for nutrition (sustenance) and someone provides the baby access to breastmilk through the behavior of breastfeeding. Breastfeeding is

the satisfying behavior (or service). Breastmilk is the resource accepted by the baby as an input for nutrition.

- **Synergistic satisfiers:** are a case an where environmental input or condition meets multiple needs simultaneously.
 - For instance, where a habitat service system is designed to fulfill needs simultaneously. Humans have a set of common needs, and a habitat service system can be established to synchronously fulfill those needs. The habitat service system's services are the satisfying (fulfilling) behavior.
- **Violators:** claim to be a satisfying need, but in the real world, it makes it more difficult to satisfy a need.
 - For example, a dictator claims to be fulfilling the need for protection.
- **Pseudo satisfiers:** claim to be satisfying a need, yet in fact have little to no effect on really meeting such a need.
 - For example, using a social network to satisfy a need to intimate human connection. Or, a piece of sugary synthetic cake being claimed to satisfy the need for nutrition. In the case of someone starving, such a piece of cake would be a single satisfier. However, when not under extreme conditions, such a piece of cake is not a fulfiller of nutrition (and is more akin to eating entertainment).

7.21 'Human need' thresholds

QUESTION: *By what satisfactory degree are human needs being met?*

The idea of a need carries with it the idea of sufficiency and insufficiency (as well as threshold) for the system with the need. Herein, sufficiency is definable by the margin gain, or loss, of life range with, or without provision.

Sufficiency is reached when no life need is missing from this set without which life capacities are reduced—a condition that flourishing human lives and societies both enjoy and provide for.

Living in stress is [on the psychology and biology of most individuals among a social organism] living in survival.

Meeting human needs requires a societal (socioeconomic) system that produces and distributes the necessary and appropriate need satisfiers, while ensuring that all action does not threaten planetary [capacity] limits.

Just like humans have capacities (functions) that can be extended and limited, developed and damaged, the planetary system has life-carrying capacities that can be expanded and limited. Although there can be cultural (localized) variety in meeting needs, the only morally relevant threshold for basic need (through to flourishing) satisfaction is the optimum level for every individual, given what is known.

In concern to human need, there are two fundamental types of need thresholds:

- 1. **Survival Needs** The needs for socio-organic functioning are met. Survival threshold needs are those needs that are necessary to be met for a life-form to relax to the degree to which it can effectively focus on things of even greater depth and importance than survival.
 - To what relative degree is there survival?
- 2. Flourishing Needs The needs for developing and sustaining higher intentional capabilities are met. Flourishing threshold needs are those needs that are necessary to be met for a life-form to express its capabilities to the fullest intended extent possible.
 - To what relative degree is there flourishing?

Need is a threshold concept or, put another way, basic needs and intermediate needs (universal satisfier characteristics) are (temporarily) satiable. But how are appropriate thresholds to be decided and measured? Possibly, critical optimum levels of health and autonomy can be operationalized in practice by reference to the best level of need-satisfaction attainable anywhere in the world at the present time, or a higher standard which is materially feasible at the present time.

A the level of universal satisfier characteristics, it is possible to identify a 'minimum optimorum' (minopt) threshold. It is possible that increasing inputs of universal satisfier characteristics, such as nutrition or child security, will yield increasing increments of health or autonomy, but with diminishing returns, and beyond certain point there is no further benefit. As a principle this could possibly define threshold levels of each universal satisfier characteristic.

Future people will have needs for affiliation, cognitive and emotional expression, understanding and critical thought. To achieve these they will need specific minima or minopt levels of water and nutrition, shelter, a nonthreatening environment and work practices, significant primary relationships, security in childhood, physical and economic security, education and health care.

NOTE: All socio-economic (or socio-technical) systems can need to be assessed according to their ability to produce enough appropriate need satisfiers.

7.22 Basic human need (the category of)

A.k.a., Basic human needs (BHN); the basic [category of human] need.

The notion of basic human needs has been in the rhetoric of modern economics since its beginning, appearing in the conversations of those attending the Lake Placid conferences (1899-1909). Brown (1985:257) explained that a small cadre of participants at Lake Placid believed families have a moral obligation to attain and gain satisfaction from attaining basic human needs. At the 1902 meeting, Alice Chown explained, "home economics in its broad sense was a subject for developing...the meaning of the physical, social, moral, aesthetic [sic] and spiritual conditions of the home" (as cited in Brown, p. 263).

All human life, everyone in the world, at all times present and future, have certain basic needs. These human-life needs must be met in order for a human to:

- Avoid harm (resilience).
- Participate in society (contribute and participate).
- Reflect critically upon the conditions (learn and create).

Basic human needs are the universal preconditions for effective participation in any form of societal life. Whatever a person's goals, whatever the configuration of practices and values, certain prerequisites or basic needs are required, in order to achieve those goals. Therein, to participate is to formulate goals, understand how to completely solve for them, and act to achieve them in practice through action in time.

There is general agreement that basic needs (whether survival- or non-survival-oriented) are central to human motivation, because needs are forces that induce people to action (Burns et al., 1989). Resultant human behaviour from these actions creates the living conditions of humanity.

7.22.1 Conception enables (Read: conceptualization - the ability co conceive)

Conceiving of human need as something common enables the conceptions of measurement and evaluative comparison of human experience, human well-being and life capacity, across time and space.

7.22.1.1 Human Life functions

The life functions are key. Well known life support functions include, energy, sewer, etc. All life support functions include technology as part of a unified habitat service system [supra-function]. The technology support service enables all other services, of which life support is the priority and the facility (leisure and secondaryopportunity fulfillment are secondary; "wish" fulfillment needs come after life-support needs). The life and technology support services are the [InterSystem] engineering life [service system] functions of any given society. Note that under market-based conditions, what could be a unified [in operation] InterSystem Team becomes divided into a structure market laborservice competition among individuals -- people are not working cooperatively for everyone's fulfillment, people are working [at socio-economic organization] toward sometimes competing ends (objectives).

7.22.2 The primary axiom of [life] value

The N-criterion is based on the axiom of life value, which states:

- x is of value if and only if (and to the extent that), it constitutes or enables a more fulfilled range of life than without it:
 - within the fields of life as thought (conceptual and image),
 - felt side of being (sentience, emotion, mood), and/or
 - action (animate movement through space-time).
- X is of dis-value if and only if (and to the extent that), it disables life so pre-defined.

8 Human requirements

A.k.a., Human-life requirements, human-life needs, human needs, human necessities.

Humans have requirements for the fulfillment of their needs. Human requirements are built from human needs and human objectives (and, they are influenced by goals and intentions). Human requirements include physical (tangible) and non-physical (non-tangible) elements necessary for human subsistence, growth and development, as well as those things humans are innately driven to attain. Life-requirements are not simply demands for use-values that are lacked, they are actual observably shaped connection to the natural field of life-support and the social field of life development. Thus, life requirements are the essential direction to the fundamental, practical question of what a life-coherent system must produce (and account for in the production of new relationships.

Knowledge may be used to resolve the identification of what an individual needs. 'Needs' reference knowledge, as the entire range of predictable understandings (formerly codified, explicit model) and accumulated problem-solving (procedural, tacit model) about human requirements. Knowledge about human-embodied requirements can be visualized in a knowledge space (a model).

8.1 Requirement

NOTE: A society not constructed around the requirements for that social organism is likely to suffer a lack of well-being.

On the demand scale, from the mental to the materially constructed, a 'requirement' is a usable representation of a 'need'.

Therein, a requirement is any one of the following three definitions:

- 1. A condition or capability needed by a system to solve a problem or achieve an objective.
- 2. A condition or capability that must be met or possessed by a solution or solution component to satisfy a specification.
- 3. A specified representation of a condition or capability as in (1) or (2).

Hence, a requirement is:

- 1. A representation, not the thing itself.
- 2. A condition or capability of some relationship to orient (or re-orient) a system by conferring an ability, a characteristic, or an experience.

And, from an engineering perspective,

- A requirement is a representation of some relationship that could deliver value to a system by solving a [design and construction] problem.
- A requirement can represent constraints that a solution must conform to.

Requirements include, but are not limited to, past, present, and future conditions or capabilities of an organization, and descriptions of organizational structures, roles, processes, logic, rules, and information systems. At the societal level, a requirement may describe the current or future state of any aspect of the society.

NOTE: Requirements and Designs are labels used to express the determination of value [or value orientation].

8.2 The nature of life-requirements

CLARIFICATION: *Life-requirements (life requirements) refers to the requirements for live to survive and develop.*

A set of human life-requirements can be systematically derived and applied (via systems engineering) to the benefit of everyone in society. The real material world, as described and explained by [material] science, may not be all there is to reality, but it nevertheless has its own dynamics to which humans must align for their surthrival (surviving and thriving). In this material reality, human beings and their capacities of thought and action are a product of, and entirely dependent on, material reality (and not the other way around). This extant relationship does not exclude the possibility that human thought can shape or change the material world - provided, of course, that the thought in question is located in, and acted upon by, living human beings. Human beings are in a direct and causative relationship to the life-sustaining, life-enabling as well as life-damaging and life-destroying dynamics of nature.

All human life requires [a frequency and composition of environmental] inputs to survive and develop fully. There is a connection between life and life's requirements-resources. Through [life] sciences, significant knowledge has been accumulated into what fundamental organic life-requirements must be satisfied if human life-capacities are to develop more, rather than less, fully.

It is an observable fact that all living things, and not just human beings, must exert conscious effort to maintain connection to that which sustains and fulfills their lives. Therein, conscious humans realize, to varying degrees, that they are dependent upon certain substances (at a specific frequency) from their environment. A human consciously experiences a need for air and water, which cannot simply be conjured out of no-thing (nothing) or satisfied in the realm of mere thought. The human organism requires (i.e., needs) not only the surrounding natural [environmental] world, but also other human beings, and the work they do as part a society to survive and thrive. Humans are not only naturally dependent (i.e., dependent on nature), but also socially interdependent in a way that is intimately intertwined with this natural dependency. Even the most self-sufficient foragers rely on the accumulated knowledge of their habitat and edible plants that is developed and communicated to them by others, including techniques for hunting and gathering.

In early 21st century society, no individual human being can fulfill even the need of living for more than a day or two into the future without relying on a massive amount of work done by countless other people --growing, harvesting, and transporting food and other basic necessities; maintaining power grids and sanitation systems, etc. Need fulfillment plays an essential role in sustain social bonds (with relatives, friends, and colleagues) -- humans tend to be fulfilled together (commensality); thus, reflecting the social relationships of individuals.

NOTE: It is unwise to develop a false and entitled sense of one's own self-sufficiency, and take all that sustains one for granted.

Humans have relations of material dependence and interdependence, and that experience can give conscious rise to an awareness of mindfulness, gratefulness, and willingness to act to maintain and develop the conditions that sustain them, from social bonds of connection to the cultivation of natural environmental resources.

8.3 Individual satisfaction of liferequirements

The comprehensive satisfaction of life-requirements is limited by the normal operation of global market-State forces -- zero-sum competition and a lack of transparency inhibit the universal and sufficient fulfillment of human life requirements. Alternatively, cooperation (or limited, non-zero sum competition) with a transparently shared and informed societal model is likely to sustain and optimize the fulfillment of human life requirements.

Societal failures to fulfill humankind's sociological life requirements undermine everyone's capacities:

- To work in both instrumentally and intrinsically valuable ways;
- To care about, relate to, and interact with other people as unique bearers of life-value;
- To think analytically and critically and imagine and plan for new possibilities of action and social organization;
- To perceive and appreciate the beauty of the natural world and social creations;
- To work together to ensure that community continues to fulfill life requirements, and life itself,

evolves.

NOTE: In community, as we develop in age, independence and capacity, we acquire the capability to access ("carve out") a life space for ourselves.

8.3.1 Habitat exploration human research subsystem

The Human Research Project (HRP) shall:

- 1. The Human Research Project (HRP) shall quantify the human health and performance risk associated with habitat operations or exploration projects.
 - A. This HRP requirement is to quantifiably describe the likelihood and consequences of the risks. The uncertainties associated with these quantities should be narrowed to the target values identified by each standard or to the greatest extent practical to facilitate proper decisions for operation and exploration, including human procedures, hardware and software design, and project design.
 - B. The Human Research Project shall develop countermeasures and technologies to monitor and treat adverse outcomes of human health and performance risks.
- 2. The Human Research Project Science Coordination System shall develop ways to improve estimates of the integrated human health and performance risk associated with human habitation and exploration projects. Generally, each risk is written with respect to an adverse outcome.
 - A. The intent of the HRP is to prevent the adverse outcome from occurring. If that cannot be done, the intent is to develop and validate novel countermeasures (devices, drugs, procedures, etc.) that will mitigate the adverse outcome. In this context, "mitigate" means "reduce the severity or reduce the probability of the adverse outcome."
- 3. The Human Research Project Science Coordination System shall ensure that their processes and products comply with the standards directives and procedural requirements listed in applicable standards document.
- 4. The Human Research Project Science Coordination System shall provide the enabling capability to facilitate human habitation with respect to the human system.
- 5. The Human Research Project Science Coordination System shall ensure preservation and maintenance of core technical capability and expertise in human research, technology development, and operations

coordination.

- A. The core competencies are those that are necessary to maintain and nurture an understanding of the existing evidence base regarding human habitation. This core competency involves sustaining and maintaining a dedicated scientific discovery and exploration InterSystem team, and robust scientific participation. It also requires adequate testing capability.
- B. Preservation and maintenance of this capability is necessary to provide stability over the multi-decadal implementation of the vision for human habitation and exploration. This core competency is necessary to facilitate the following: Strategic planning. Identification and prioritization of the risks to the human system and development of long-range plans to quantify, prevent, mitigate, and treat the adverse outcomes requires competency of all inter-connected societal systems; to ensure proper direction to the research discoverygroup for focusing their effort.
- C. Acquisition development, planning, and execution. Acquisition of research and technology development is an inherently sociotechnical function that requires core expertise within the with respect to research and technology development for the human system.
- D. Operations support for planning real-time and real-time operational decisions involving the human system and environment. Laboratory facilities and the expertise to run them and interpret results are necessary to support an ongoing evaluation of the human system response to the space environment and to support the medical operations function during a mission. This involves the internal community, and to some extent, the external community where uniquely specialized expertise must be sought. The requirement is written at the HRP level and not specifically allocated to the Program Elements. However, the Program Elements shall provide inputs regarding their core competency needs and issues. As part of the annual Planning, Programming, Budgeting, and Execution (PPBE) process, Program Management will review the core technical capability of the Program Elements and adjust where appropriate.
- 6. The Human Research Project Science Coordination System shall develop methods and technologies to reduce human system resource requirements (mass, volume, power, data, etc.).

A. The rationale: Methods and technologies that reduce the human systems resource requirements for mass, volume, power, data, etc. must be developed to reduce the overall resource requirements. For example, producing countermeasures and technologies that fit within an extremely limited resource envelopes anticipated for a service project or exploration mission.

8.4 Human environmental design requirements

The environmental designers task is to bring the designed environment into equilibrium with the human biological and non-biological systems. Therein, architectural form, structure and space are no longer considered ends in themselves, but become means to establish this equilibrium. Formally stated, the problem of environmental design is the accommodation of the biological and non-biological requirements of the human organism through the appropriate organization of relevant variables in the designed environment. The decisioning structure in an environmental design problem involves the description of a system of human requirements. (Studer, 1966).

9 Need and wants

A.k.a., Demands (need), and lesser demands (preference).

The difference between a need and a want (or preference) is stability. Preferences are flexible ("plastic"), such that what someone thinks they might like in the future may turn out to not be what is liked; the individual may change their preferences (as a result of experience). Needs are originators of action; they engage, motivate and mobilize [people]. Wants overlay a naturally originating structure of action. Preferences are acquired over time and through experience; needs are due to the embodiment of consciousness in a physical, impermanent form. Need fulfillment sustains the optimal experience of a physically embodied consciousness. A lack of need fulfillment is likely to cause a void of fulfillment (experienced as suffering). Wants motivate people but are not normatively linked to human functioning as basic needs are. Fundamentally, there is a difference between a 'want' and knowledge of what is needed in order to survive and to thrive.

Needs don't change over time, but the way in which they are satisfied does. Needs are persistent, wants are shaped by culture and the development of social standards and technologies. People may be culturally conditioned (programmed and manipulated) to have certain thoughts in their heads concerning wants, which can supersede the fulfillment of needs. Yet, when individuals are not trapped in their conditioning, they can look at all situations as an opportunity to explore their desires, needs, wants and preferences.

The problem for any given society is distinguishing life requirements from the extraordinary range of demands people could possibly place on their natural and social environments. The first step in solving this problem is recognizing that there is a connection between life, the environment, and life's requirements therein; that relationship is most commonly called a 'need'.

In a community-type society, certainly, human liferequirements are distinguished from market-consumer demands, which sometimes are, but sometimes are not, tied to actual, objective life-requirements. The ubiquitous usage of the term, "basic needs", invoked by most market and State organizations is essentially vacuous. Humanity has been a long time without its most basic life-value bearings.

The concept of human need, and thus demand, must be open to continual improvements in knowledge and understanding; for example, advances in the biomedical understanding of health and disease. Demands can be artificially manufactured ("socially engineered") by profit seeking entities that implant desires and narratives that lead to views and purchases (i.e., the implanting of desires and narratives):

- Purchased political influence lobbying & marketing
- Purchased consumer influence advertising &

marketing

The test is, always, whether life-capacities (Read: common habitat services and individual opportunities therein) are more restricted or reduced in range without the life necessity service/good, than with it. The question can be resolved to an answer through empirical evidence (science), which will can confirm or dis-confirm. Every action that a person could choose to do could be said to be categorized by (or "require") life capacity, and the capacity, in turn, requires some set of services/goods that meet needs (inputs/requirements) to exist, and further, remain in an optimal state.

Behavior can be highly affected by environmental variables. Researchers (Geier, 2006) put a bowl of candy M&Ms on the concierge desk of an apartment building, with a scoop attached a sign below that said, "eat your fill". On alternating days, the experimenters changed the size of the scoop; from a table spoon to a quarter cup scoop, which was 4x as big. If people were only eating what they wanted, the scoop size shouldn't have mattered, but it turned out to be significant. When a bigger scoop was present, more candy was eaten. Under certain conditions, some humans don't have a fixed value of how much is wanted. Instead, under these real-life conditions, humans looked to outside gueues to meet their requirements for candy, which is essentially a form of mouth entertainment. The cues in some societies all point toward consuming more, others less.

APHORISM: If you spend more of your time noticing what you actually are, you will rediscover what you are creating. At that same moment, you will be able to choose what you are creating. Try not to get lost in fantasies in the process.

Modern neoclassical [market] economics is generally either casually dismissive or else willfully silent on the subject of human needs. Most market economists eschews all discussion of needs as superfluous, believing human choices are more effectively viewed in terms of wants. In market economics, need is a 'non-word'. Many market economists group desires, consumer preferences, tastes, and demands under the category want, and insist that absolute human or economic need is nonsense. Market economists generally interest themselves in questions of market allocation of resources, and generally refuses to distinguish between different kinds of preferences or the motivations for the use of these resources. All transactions in the market [or, at least those allowed by the State] are assumed to represent the rational decisions of informed consumers, attempting to maximize individual utility in the face of the available choices and their own resource constraints. In reality, market economists collapse different categories of human needs into a flat plain of [infinite, insatiable, unlimited] wants. This means that material wants for goods and services are incapable of being completely satisfied.' Where, occasionally, the concept of need is introduced, it will invariably appear only to be dismissed very quickly in favor of wants or preferences. Anderton (2000:3) for example, introduces the question of human needs on the first page of his undergraduate textbook on economics. 'Human needs are finite...' he concedes.' [But] no-one would choose to live at the level of basic human needs if he could enjoy a higher standard of living. This is because human wants are infinite.'

There are some modest exceptions to this tendency. In an essay entitled 'Economic possibilities for our grandchildren', Keynes distinguished between two classes of needs: 'those needs which are absolute in the sense that we feel them whatever the situation of our fellow human beings may be, and those which are relative only in that their satisfaction lifts us above, makes us feel superior to our fellows' (Keynes 1931, p.326). In the same essay, Keynes looked forward to a point in time - 'much sooner perhaps than we all of us are aware of' when absolute needs had all been satisfied and we could devote our energies to non-economic purposes. Perhaps more importantly, the concept of insatiability underlies the entire edifice of the consumer society. Modern economies are themselves structurally committed to a continuing growth in the national income. Growth in consumer demand is regarded as a vital prerequisite for a continuing improvement in the quality of our lives.

Interestingly, producers, retailers, marketers and advertisers wanting to know how to design and sell products that consumers will buy use the field of human research (known as consumer research, economic psychology, marketing, human persuasion, motivation research, etc.), and have drawn quite specifically from the needs-theoretic framework that formal [market] economics has rejected.

There has been a long-standing and world-wide confusion on these issues. Amidst tireless variations on the slogans of "individual and consumer differences and choice" and "what is a need to some is a want to others," reveal the absence of any grounded understanding of humanity [f]actual organic-social life. In the background, for over 2500 years philosophers have largely avoided the issue of universal life needs and any common life-ground of moral meaning. Economists (market economists) have systematically conflated needs and desires with no recognition of their ultimate distinction by life necessity itself.

ABSOLUTELY NEEDED DIRECTION: Humans have has something resembling needs, and among society, there is a decisioning procedure that will algorithmically tend to choose the thing that society has programmed into it that humans need, and humans prefer.

Human behavior provides evidence for human needs and preferences. In general, the difference between a need and a preference/want is stability:

• <u>Needs</u> are static and do not change significantly in relation to experience -- needs are human requirements given a conscious human exists within a conditional environment (where, conditional = requirements). Needs are due to the embodiment of consciousness in a physical, impermanent form. Need fulfillment sustains the optimal experience of a physically embodied consciousness. A lack of need fulfillment is likely to cause a void of fulfillment (experienced as suffering).

• <u>Preferences</u> are flexible ("plastic"), they overlay needs, and may change in relation to an adaptive experience (a self-interaction with an environment). Preferences are acquired over time. Preferences may not be stable; they may be dynamic. A preference system should be appropriately uncertain.

Statements about wants are intentional, whereas statements of need are 'extensional': their truth depends on 'the way the world is' and not 'the workings of my mind' (Wiggins 1985: 152). It is quite possible to need something that "you" do not want; for example, "you "may need it without even knowing of its existence, as a diabetic needs insulin to avoid serious harm. More education is of no help to someone who is starving. Compared to the indeterminacy of future generations' preferences, need provides a firm foundation on which to build sustainability targets for decisioning, habitation, and ultimately, fulfillment.

What is to be done address various types of:

- Needs (habitat service systems)
- Wants (personal life and growth opportunities)
- Preferences (customizations)

In application, values* [encode] decisions that orient more or less greatly toward the:

- Optimized fulfillment of need, and
- Sufficient meeting of a flexible preference.

It is possible to perceive 'want' more clearly when it is seen as a level of social standing between people.

*Values and preferences are acquired over time, through experience.

Being 'human' comes with innate and stable "preferences" (misnomer) called 'needs' (a.k.a., fundamental/stable human fulfillment requirements). Because individual human beings have needs that may be sufficiently fulfilled to optimally fulfill, they are selfinterested, naturally.

If there are preferences, then they are preferences over all of one individual's possible future human lives? And then, there is the social matrix of preferences combined. Human needs have a sound moral grounding that preferences do not. Human needs coherently link with principles of justice and equity that orient socially toward ever greater states of flourishing for everyone. Claims of need inform moral determination on agents that preferences do not. An important corollary of the moral import of human need is that meeting needs should be given priority over meeting wants whenever the two conflict or if resources are scarce. Human needs, present and future, are prioritized ('triaged') present (and future) before consumer preferences.

QUESTIONS: How is the societal system optimizing and prioritizing for human needs and subjective preference? Then, with preference, there is always the question: Whose [individual] preferences are being optimized for? Which preferences are being optimized for, the current or future probable (i.e., what you want now, or what you want after having the experience fulfilled of what you want now)?

Material interaction can go well or badly for human flourishing (and suffering) depending upon its regulating value purpose: well (toward flourishing), if steered by life-value coordinates to realize human needs; and badly (toward suffering), if steered to maximize private profits or state-party power. There are a wide variety of terms for the idea of material interaction, including 'productive force development', which means nothing but more material output.

Questions for differentiation include:

- How is the societal system optimizing and prioritizing for human needs and subjective preference.
- With preference, there is always the questions of:
 - Whose/which preferences are being optimized for?
 - Are they optimized for the current, or future probable, state (i.e., what "you" want now, or what "you" want after having the experience fulfilled, of what "you" want now).

There is a relationship between needs and wants:

 Needs are innate for functioning efficiently, wants are products chosen - needs as anything people depend upon to function such that a state of optimization is experience by the system; for humans, this would be a high form of wellbeing and fulfillment. On the other hand, wants are products/services identified for satisfying unfulfilled preferences, or services that are not of a primary life-support type. The search for need satisfiers is influenced by societal, environmental, and technological changes, and wants are also influenced by similar forces. Wants can be created, needs cannot - Needs cannot be created because they are considered innate and hence presented as beyond the influence of marketers. On the other hand, wants can be created because they are culturally defined, they are subject to learning, and they can be influenced by individual traits.

There are:

- Absolute needs those inputs required to remain alive (and living, 'well').
 - A need is that without which life capacity is necessarily reduced.
- Wants everything else.
 - If a want is not fulfilled, then life capacity is not reduced.

In early 21st century society, there is a conflation of needs and consumer demands. Objective human liferequirements can be rigorously distinguished from stimulated consumer demands.

APHORISM: You can't truly do what you want until you know what you are doing.

In community, individuals maintain a connection to the things we design and create after they have been placed in the real user world:

- In the market, the perspective is, at least in part, getting people to want stuff.
- In community, the perspective is, at least in part, making stuff that people want.

Life-requirements are not simply demands for use-values that we lack, they are our actual, positive connection to the natural field of life-service support and the social field of life-social development. As such, life requirements are an essential guide to the fundamentally practical question of what a life-coherent societal system must produce.

If human demands at any moment are infinite, then humans need infinite resources, and the problem of scarcity exists de facto. In concern to needs, at least, demand is not continuously infinite. Humans need specific amounts of various inputs (e.g., food, water, etc.).

APHORISM: To get what you want, get what you need. We can't always get what we want, but we always want what we need, though aberrant environments may confuse what is needed.

The second assumption is that there can be no selfmanagement of resources, so society must create rules from authority in order to solve the problem of scarcity.

If a need involves a behavior, then to ever claim that you are done with that behavior does not make conceptual sense. Peace is a process. In early 21st century society,

going to the grocery store to by food is a cyclical process, you are never "done" going to the store. The need has a cyclical task nature that requires the involvement of a self-initiating constructor to perform the task.

When we have our food and shelter needs taken care of we can start responding to the deeper demands for access and opportunity in society, the wants.

If a need involves a behavior, then to ever claim that you are done with that behavior does not make conceptual sense. Peace is a process. In early 21st century society, going to the grocery store to by food is a cyclical process, you are never "done" going to the store. The need has a cyclical task nature that requires the involvement of a self-initiating constructor to perform the task.

In part philosophy is about helping you differentiate that which you can and cannot choose. Whether humans have needs that must be fulfilled to survive and thrive is not a choice, just as whether the sun is at the center of the solar system is not a choice. Knowing the difference between facts and personal/emotional preference. And also knowing what you do and do not have control over.

Human needs, unlike preferences have a foundational moral composition; they come with statements (claims, arguments) of justice (social access) and equity (economic access). Universal needs imply that there is an optimal, [f]actual way to generate human flourishing. In more simple terms, universal needs imply moral decisions, actions, and creations (or "obligations"). An important corollary is that fulfilling (meeting, satisfying) human needs should be given priority over meeting wants if the two conflict ("trade off"), or if resources are scare (i.e., there is not abundance). Universal needs imply that specific formations of societal system are likely to sustain flourishing, while other formations are likely to deviate by degree from optimal flourishing. Human need fulfillment present (and future) is a priority over [consumer, individual, or fundamental] preferences. Note, the three words in brackets in the prior sentence are systems of belief, generally termed: consumerism; individualism; and fundamentalism.

DEFINITION: accommodation (n.)

c. 1600, "that which supplies a want or need, from French accommodation, from Latin accommodationem (nominative accommodatio) "an adjustment," noun of action from pastparticiple stem of accommodare "make fit; make fit for" (see accommodate). A home, today is a place where needs are satisfied. In community, the habitat is the place where needs are completely satisfied.

There are several possible processes that may generate preferences:

- Adaptive processes
 - When people's desires or preferences are adjusted to what it is possible to achieve.
 'Adaptive preference formation is the adjustment of wants to possibilities.

- Preference change through learning that there is a better preference.
- Pre-commitment.
- Manipulation.
- Rationalization

If we aren't fulfilling our instinctual needs then we won't be happy. Why are people the way they are at the instinctual level? When we know that we will have a higher probability of making intelligent choices. We have to find a way to work with our instincts. If we don't meet our instinctual needs then we aren't going to feel "right". If you don't feel like who you are being who you need to be, if you are not serving those instinctual needs, then you will feel unfulfilled, you will feel unhappy, you will feel as if there is something wrong. But, this doesn't mean that we are a slave to our instincts, we need to change, and evolve to our new environment.

Prior to the "want", there is a need. When a need is not satisfied, it becomes a strong stimulus to action on the part of consciousness. Needs may be viewed as "drives", which spur actions aimed at fulfilling a need. A need may or may not be fulfilled by the conclusion of a wanted action or product. A want can have any of the following three characteristics:

- 1. Wants that express themselves as non-functional requirements.
- 2. Wants that express themselves as products and services. Here, want is a specific requirement at the product class level in the market. Needs become expressed as particular arrangements of the environment forming services (which are used), and products (which are used). In the market, products and services are identified for satisfying unfulfilled needs. In a community-type society we design systems that fulfill our common, individual needs.
 - Commercial standpoint: A want is something capable of being learned or experienced in a person's lifetime. However, want will constantly change, unlike needs which remain unchanged.
- 3. In the market, there are also brand-specific wants, concerning the choice between brands that produce the same class/type of product or service. In the market, products are brand specific. In community, products have no brand specificity; hence, there are no brand-specific wants. A brand-specific want concerns the choice between brands that produce the same class/type of product or service.
 - Marketing standpoint: Wants are learned, culturally influenced, and fulfillment is determined by the level of an individual's resources.

Contextually, wants may be synonymous with several other concepts:

- Needs
- Intentions
- Motives
- Drives
- Desires
- Goals
- Driving forces
- Feelings
- Expectations
- Preferences
- Customizations

In regard to these terms, four orientations ("dichotomies") are available:

- Needs can be recognized and fulfilled, or not.
 - Primary needs are innate and come from the code that re-creates humans.
 - Secondary needs (acquired or psychogenic, including desires).
- Motives (orientations) can be toward the fulfillment of real world human need, or not; regardless, real world human need is experientially.
- Goals can be generic or specific.
- Driving forces are internal and external, responses from the inside to signals from the outside, and signals from the inside to which the outside (in scale) responds to.

NOTE: Take a primitive skills/survival course and one will quickly learn the importance of setting one's needs apart from one's wants.

9.1 Implication of need and want encoding for a societal decision algorithm

NOTE: *In many ways, an intelligent approach is also about recognizing what we don't need.*

In a sustainable societal system, the meeting of needs is given priority over the meeting of wants if the two conflict, or if resources are scare. Each generation needs to pass down the conditions for well-being and the regeneration (sustainability) of satisfiers. This can be stated formally, following

- Wp: present-generation human wants
- Np: present-generation human needs
- Wf: future-generation human wants
- Nf: future-generation human needs

The implied priority rule is:

• Np = Nf > Wp/Wf

NOTE: This "morality" protocol means that it is immoral to take action that provides [commercial] luxuries to some at the cost of others' access to [life] needs.

This is a principle or protocol that states that it is not permissible to fulfill the wants of the present generation if doing so would compromise the needs of future generations. The idea/protocol is given many names, including the "moderate sufficiency" principle.

9.2 Infinite wants

APHORISM: Never be so sure of what you want that you wouldn't take something better.

The "infinite wants" culture is a product of the system need for constant turnover in the market economy ("wants that go on and on forever"). One could think up any random item of "want" and then assume not everyone could have it. This is called "scarcity projection" and, in short, it implies people are utterly irrational and upon learning about some new material fashion/good, they will impulsively fight for it. Such thinking keeps the market in place and the consumption ethic going.

Examine every desire and ask:

- 1. Is this a desire that is aligned with the highest truth for all?
- 2. Is this a desire that I want to satisfy my egoic needs?
- 3. Where does the desire come from? A feeling of lack, a sensation of lack (of something missing, of something not here).

Early 21st century society has confused needs with wants and also manufactured desires for products that have no human requirement in order to sustain a profit.

NOTE: Advertisers (marketers) use the presence of human needs to sell more products by associating a commercial product with real need fulfillment.

There is a large amount that could be said on the value system disorder that is essentially inherent in the statement that assumes that people have infinite wants, that everyone wants to live in that 10,000 square foot mansion, or that service systems couldn't be organized to provide everyone on the planet with an extremely high standard of living. The values present in early 21st century society continuously reinforces materialism and acquisition. These are, in part, value system disorders.

Market materialism and its accompanying value system disorder exists not only on the demand side of the employer-employee-consumer model, but also on the production side also, the notion of "harder work" equals more pay. But in reality, low income workers are not poor because they do not work hard; they are poor because they are paid low wages.

INSIGHT: People preferences are shaped to meet industrial needs by advertising.

The following is the irrational argument for infinite (and/or the unplannability of) wants:

"People are different; people live differently. Since everyone's ("our") interests, values, and lives are different, everyone owns different things. Further, everyone's lives ("we") are constantly changing. What someone ("we") own today might not be what we own tomorrow, or even have an interest in, and if we don't make decisions about what to keep and give to others, by default, we will hold on to everything (and our lives will be packed with stuff). Depriving "ourselves" of the natural stream of infinite wants is deprivation, and deprivation is suffering."

Note how, in the argument above, there is little to no integration of commonality, either within or between the individuals. There is also no recognition in the argument that some systems for which humans require continuous input are of continuous interest, and ought to be planned out ahead of time. The idea of infinite wants is dominant in short-term thinking (and not the idea of extant logical and continuous, though temporally finite, relationship between an environment and a social organism, which necessitates complexity and long-term thinking).

In some societies, there is also the manufacturing of unhappiness via industrially manufactured and socially engineered wants, which are often attached to needs by advertisers.

What is less subjective is emotional responses that relate survival and the pleasure and pain principle. While it might be that some people are emotional dysfunctional to the point of not feeling much at all, we will all generally feel the pain of stabbed by a knife, lack of belonging, or of starving, of being homeless, or even just illness. We will all feel the pleasure of having our needs met and of feeling secure in life in general.

9.3 In comparison, the market (as a direction)

NOTE: *Marketers create want; they create (or, at least, influence) a market of consumers for capitalists.*

The monetary market ("want") mindset assumes that more productivity or material output automatically means better lives and life conditions for people. But, without any life-value criterion (i.e., any life-value mechanism) to show or enable this outcome, it is not likely to be the actual outcome. It is unwise to assume that technological advances or innovations in themselves serve human needs and capacities to live fuller lives. They can only reliably do so if life-value standards are involved in decisioning. The idea of ephemeralization (most notably seen in the industrial method of factory and assembly-line production) expanding to ever vaster and world-changing forms can continue to be either by slave-like mass labour and ever more naturedestructive machines and methods or, at the other pole of possibility, organized by coherent life need orienting values (or standards) to ensure humanity's universal life necessities including human contribution and ecosystem integrity. This is the deciding choice process of social rule-system. Fundamentally, community and the market have different information requirements.

NOTE: Competition at the socio-economic level often means that some course of action may be satisfying one need, while simultaneously inhibiting another.

Advance or degradation of the human contribution and common access is the key on all sides—the ultimate need for life contribution and enjoyment which entails free critical speech, thought and creative action in realizing the life capacities and needs of people.

In the market, the claim that a certain product or service improves quality-of-life is a popular notion that is commonly exploited. It is frequently not clear how this concept is understood by those that claim their products and services contribute to the improvement of qualityof-life. On the one hand the multifaceted nature of this notion is more than often neglected; on the other hand the complexity of the subject matter is employed as an excuse not to stipulate how quality of life improvement claims could be verified.

INSIGHT: The market-State system enforces participation under their jurisdictions. Without participation in the market, there is destitution. Without participation in the State (e.g., taxation) there is prison or death.

9.3.1 Market needs

A.k.a., Monetary needs, money needs, financial needs, currency needs, credit needs.

People in early 21st century society do consequential economic actions for an abstraction called money; the structure of their society means that their very lives depend upon this abstraction. Alternatively, people in community do consequential economic actions for real human need and well-being. In early 21st century society, individuals are likely to feel pain when lacking money for any significant period of time. A lack of money tends to mean a lack of access, and so we suffer and may even die as a result. In the real world humans can live without money, but they can't live without food, sleep, etc.

INSIGHT: In the financial market, "you" need money to make money to live and not become destitute. In the ecological environment you need food, water, shelter, and other resources to survive and thrive. There are no currency related economic needs in community. There is no concept of "gross national or domestic product" (GNP or GDP), no economic market, no abstracted costs, no profit, no paid work, no level of income, no private wealth, no trade/barter, and no monetary value. These concepts do not affect any aspect of society in community.

INSIGHT: *Livelihood in the market is irrelevant when the market is not present.*

There are no secret or "indirect interactions" in a community-type societal system. "Indirect interactions" are another name for market-based interactions. Indirect interactions include all of the following types of societal organization: all businesses, all charities, and all State/government organizations (authoritarian or representational). Businesses are indirect, because the life cycle therein is separated (i.e., employee, employer, consumer), and not, unified (user-designers). Charities are indirect, because instead of replacing the old (socioeconomic system) with the new (community-type), they do what is called patchwork. A good analogy is: you can catch a fish for someone and give it to them, or you can teach the person to fish for themselves and maintain the ecosystem from which the fish originate. Authoritarian States are self-evidently indirect because it is the authority that decides subjectively, regardless of an objectively real world. Representational States are indirect because the notion of something or someone being representational (of the actual thing) means, itself, to be indirect. Instead of an open source protocol, in a representational State, decisions are made arbitrarily or based on representational opinion, both of which are indirect, and not, unified organizational structures.

Human fulfillment cannot be explained with property, trade, and force, but you can do it with information, resources, access, and coordination.

QUESTIONS: Can the market-State define and explain human fulfillment in a mechanistic way? Can it tell you how well-being is achieved among the whole planetary human population. Fulfillment, as global well-being, is something different than what market economists and politicians are doing.

9.3.1.1 Market and community perspectives on the atmospheric services

The natural atmospheric [resource] service of breathable air, open space, and light are neither conserved nor protected by the corporate-State rights system, but systemically deprecated insofar as:

- 1. The air is polluted by commodities production and uses.
 - Air composition protocols.
- 2. Open space is cumulatively occupied by same private uses and commodities disabling people's lives (e.g., visual and aesthetic obstruction,

pervading fumes, and motor-spike decibels and subsonic propagations).

- Open-space protocols.
- 3. The light of the sun has been made toxic by effluents having cumulatively destroyed the ozone layer for protecting the earth from infra-red solar radiations.
 - Sun-radiation buffers (by ozone-layer protocol).

9.3.2 Market price

INSIGHT: Community exists beyond exchange, mutual or otherwise. Instead of exchange, there is coordinated access fulfillment.

All that matters for the market's continuation is that there is an exchange, that people pay. The market is bound by price, by money-demand. When needed resources become commodities (anything that can be exchanged, bought and sold), the concept of 'price' becomes encoded as 'value'. For instance, food (as a resource) is no longer valued based on its dimensions of health (a "true", materially fundamental value), but on the tradeable features that can be valued as a 'price' in the market (i.e., its transactional relationship value). Value (that which oriented toward survival and fulfillment) and price are thus mixed up (confused in cognition). That which is of "true" value (i.e., orienting toward fulfillment) is a non-market dimension.

NOTE: Advertising exists to convince people to do things that they would not, necessarily, otherwise choose to do (or, at least not prior to more intentional thought).

9.3.3 Material acquisition and possessions as materialism

APHORISM: Unless we think through what it is we want to happen we are unlikely to make it happen.

The centrality of material possessions in current societies and for certain individuals has triggered a significant amount of research in the social sciences. Belk (1985:291) defines materialism through the importance a "consumer" attaches to worldly possessions. At the highest levels of materialism such possessions assume a central place in a person's life and are believed to provide the greatest sources of satisfaction and dissatisfaction'. At the societal and cultural level, materialism has been taken as a structural variable in order to compare societal types. In social sciences, historically, materialism has been identified with personal values (Richins et al., 1992) and individuals' personality traits, but not with differently encoded understandings of access (as in, cooperative societal structures versus competitive).

There is also the similar, but separate notion that materialist societies are those that focus on Maslow's lower order needs. Maslow regarded the lower needs as deficiency needs (doing, "D" needs) that for children had to be met by parent-figures, and the higher needs (Being, "B" needs, growth needs) as developing later through 'inner states of being' to the ideal stage of selfactualization.

9.3.4 Consumer demands

There is a difference between life requirements and objects of consumer demand, that is, the deprivation of the latter might produce subjective feelings of harm in some people in "wealthy" societies, but these feelings are not objective harms (though the self-created psychological trauma can be). Here, life requirements are separate from market-based consumer demands. In early 21st century society, there are inputs that all human life requires to survive and develop, and then there are a separate set of demands that humans do not require for their life capacity and full development, but they still demand. Needs (life needs) exist in contrast to conditioned market desires, preferences and wants, which are the opposite in principle, because without them no life capacity is reduced.

NOTE: *Life requirements may be distinguished from the extraordinary range of contextual and cultural demands of people.*

In the market, where all (or, most) human needs are classified as wants, there is likely to be very little agreement on what needs are or could be (because, they are intermixed with wants).

9.3.4.1 Market demand creation

A.k.a., Market created wants, market demands.

It cannot be denied that individual humans can be (and have been) enculturated through advertising and marketing by commercial institutions to want objects and services that are verifiably detrimental to their well-being and to the ecology -- to want things that if the individual humans were better informed and with sufficient foresight, would immediately recoil from.

"You can sell anything to the masses if you just display it well." - Professional display designer

It is important to recognize that the hooks some people have been enculturating into accepting are connected to the way they see/perceive life today. How they were taught, and now experience yearning, and even desire itself, is a product of a pre-existing system that they were born and conditioned into (a governing reward system), and it is going to take quite a bit of information processing and time to undue this programming. Socioeconomic conditions determine a lot more than people in modern realize.

In the market, artificial "needs" are created through the logic of profit. The culture of profit and fundamental structural needs of the system tell individuals therein what to value. Through its acceptance we encode a value set into our lives and lifestyles that orient toward the achievement of these artificial needs and away from human need.

NOTE: *In a state of socio-economic competition, where everyone is out to meet their own needs at others expense, a predatory system emerges, and wants can easily become confused with needs.*

In the market, institutions and companies producing the goods and services, that people have from to choose among, are actually setting consumers' options, shaping wants. The available consumption bundles have been created by entities in the market, and not the individuals themselves. Thus, the goods and services may not be what the consumers' desire, dream of, or prefer under alternative institutional settings.

In the market, everything is called a "good", regardless of it is life affirming or not. Consumer "goods" subject to the forces of marketers and social differentiation are not always successful in contributing to human needs.

9.3.5 Consumer rights

When the [free] market is present, there are not [human] 'needs', only [consumer] 'preferences'. In the minds of some market theorists, there is the idea of "consumer rights", which establishes the following logic:

- 1. I the consumer has a right,
- 2. 2. whatever sentience of other life is degraded,
- 3. 3. because I have bought and paid for it,
- 4. this is my right and my freedom.

When there is ownership, then the idea of having "a just right" and "privilege" (i.e., hierarchical priority access), become active encodings over inter-dependent, mutual access (i.e., community access types). What if the desired capability for which people claim a right is for what stunts or violates life capacities at an ecological or organic level?

9.3.6 Societal-type input differences

APHORISM: There is no such thing as 'fairness' in 'bargaining' (in the 'market'); their is only 'fairness' through 'contributed protocols' designed for 'cooperative fulfillment'.

Different societal structures are responsive to different inputs:

- <u>Capitalist markets</u> respond only to price signals (i.e., consumer demands). Price signals are generated by peoples' purchases. The socially constructed system has needs for its continuation.
- <u>Community</u> responds to life requirements (i.e., humans have needs for their continuation).

Given the societal type, who has control over basic liferesources and life-services?

- Private control (in the market)
- State control (in the State)
- Commonly informed and openly engineered decision control (in <u>community</u>)

Socio-economies are complex evolving networks formed by individuals acting on the basis of inputs (and pre-existing structures):

- In the <u>market-State</u>, the primary input (signal) is some individual(s) psycho-sociologic position among competitors in a hierarchy of individuals. The primary structures are institutions, with multiple sub-institutions categorized under the labels "the market" and "the State".
- In <u>community</u>, the primary input (signal) is the internal experience and external condition of human fulfillment. The primary structure is adaptive, optimized, and unified for human fulfillment. At the information-level it is a unified societal system, and at the physical level it is a materialized habitat service system.

Individuals with needs require a "means" to meet their needs. Therein, different societal types may select different "means" to/of fulfillment:

- In the <u>market</u>, that "means" is money. The point of money is to make enough to do what you want to do -- fulfill your needs and add those market "luxuries" on top.
- In <u>community</u>, that "means" is collaborative development of a unified societal model at the macro scale and access to a materialized habitat service system (i.e., integrated city system) at the personal scale.

9.3.7 How conflict/anger may arise through dis-coherent wanting

TRUISM: All conflict arises from misplaced desire.

An "adult" does not get angry when s/he doesn't get what is wanted, because his/her wanting it was simply a preference, not a necessity. S/he therefore has no fear associated with the possibility of not getting it. Hence, no anger or conflict. S/he is not angry when s/he see others doing what s/he doesn't want them to do, because s/he doesn't need them to do or not do any particular thing. Hence, no anger.

INSIGHT: In socio-economic competition, competitors are incentivized to reduce humankind's ability to self-regulate [toward fulfillment] in order to bolster their own powers

and profits.

In most product markets around the world today, most of the products are supplied by a small number of suppliers. There is very little diversity in terms of the products themselves and the number of suppliers. For most products there is a relatively low demand for diversity. Individuals everywhere all want the access that science, technology, and available resources can best provide at the time. And in the market, individuals pay for what we can be afforded or perceived as affordable. Hence, in many real world cases of wants, variety is not valuable or desirable; what is desirable is optimization.

STATEMENT: Demands of human opinion will always be secondary to ecological demands if humans want to survive and thrive on this planet.

There are authors who have well-conceptualized the link between human needs deficiency and social conflict. John Burton provides reasoning for that when, generally, there is insufficiently individual fulfillment of needs, there is social likelihood of "Deviance, Terrorism, and War: The Process of Solving Unsolved Social and Political Problems". It is possible to imagine that much of the protracted social conflict that is expressed as 'deviance, terrorism, and war' are actually frustrated human needs of identity, security, recognition, participation (and others), and trauma. (Burton, 1997)

Assume that the social structures of a community, or any society, are to some degree functional or dysfunctional for the purpose of providing or supporting the fulfillment of needs for a population. And, when those needs go unfulfilled, there are lesser states of community, and under some societal structures and social dynamics, they may breakdown into conflict. It is sometimes one group of a whole population's efforts to satisfy their own needs, at the expense of others (or, another groups') needs (the satisfaction of) that actually fuels conflict, causing a difficulty to grasp in the consciousness of the individuals how need fulfillment becomes the obvious basis for conflict resolution.

QUESTION: In what societal categorical state does 'conflict' exist? How is violent conflict handled by individuals (in particular, the three core of: murder and rape and assault), as a 'medical' and 'restorative justice' issue by some organizational/structural intersystem team of contributors, or a 'criminal authority' issue of enforcing monopolizers, or other? Is there profit off of conflict?

If dysfunctional social structures and institutions are root causes of social conflict, then conflict resolution (justice and restoration to full freedom) should be a process for fundamental structural social coordination, so that social structures and institutions exist explicitly for the purpose of satisfying human needs as intentionally demanded and contributed. If the goal of conflict resolution is framed as a 'problem to be solved', then an analytical problem solving process can (i.e., requirements, *but not complete*):

- 1. Analyze the existing social structures and institutions, in order to determine in what ways they are dysfunctional;
- Determine just what the culturally, socially and environmentally appropriate needs satisfiers would be in the conflicted community or society;
- 3. Design a process for making the necessary operational changes or engineering the new structures that would suffice for fulfilling those unmet (gap-ping) needs that have been frustrated. This analytical problem solving process may be used in both a pro-active and re-active manner, when used pro-actively in planning, there might be the opportunity to prevent, some conflicts from becoming violent and protracted, ensuring risk reduction.
- Decide a resolution that denies power [over others] a place in the resolution of conflict. Outcomes based on coercion cannot be a basis for longlasting and self-reinforcing societal decisions or resolutions.

9.3.7.1 The world is neither free of resource nor free of work

To some people the term, "free", means that there is no resource consumption in a produced service or product. But, this isn't how "free" is defined in community. In community, "free" means that there are no artificial restrictions on access to materials required for human fulfillment. Here, access to material resources and products comes without the necessity of participating in an exchange - community is a moneyless form of socioeconomic organization. In community, the word "free" does not mean that a good or service is provided without using or otherwise being composed of resources. In the material world, every productive output utilizes resources, which are then reused or recycled following natural processes. In fact, resources aren't technically consumed, they are transformed. But, the total process of maintaining access to the productive result of material construction and re-configuration does have a technical component to it.

In truth, work as effort expenditure has been tied to our survival for a long time. Historically, we have had to do work to provide shelter, water, food, and fire for ourselves in order to survive. And, one of the consequences of this relationship between effort expenditure and survival has evolved our biological system to maintain an inherent desire to conserve energy.

In community, individuals are not actually giving a group or people anything. Instead, individuals are constructing via a contribution-based system that provides access for individuals to service systems that fulfill their needs, wants and preferences. Community is not a system where groups of individuals take from any other group, to give to any group, which is one of the characteristic roles of government.

Example: Given what is available now, "you" may want an "apple watch", but what do "you" really need? "You" need a communications and information processing interface, for which the current level of [un-/]common technological access may be a "apple watch". And, how many do you need? If it is an apple watch, then you want ("need") one, and maybe if it breaks you will want ("need") another.

Today, instead of becoming sensitive to that which is commonly needed and wanted, people are being conditioned to want certain things in certain ways, and to settle for certain things, certain ways.

9.3.8 Coordinated access by common [un] ownership

A.k.a., Coordinated access through a unified information system.

The earth's natural resources are essential to all forms of human life, and the earth's existence is not owed to any human accomplishments. Similarly, the earth is essential to all forms of life, and the earth's existence is not owed to any individual life accomplishment.

NOTE: In a society, we are either all fulfilled, or none of us fulfilled, because we all exist within the same society and the complete fulfillment of any one individual necessitates the fulfillment of all.

Common [un]ownership is logical, because the natural resources and spaces of the earth are nobody's achievement, and are required for human needs to be fulfilled. Individuals are only capable of creating complex accomplishments because of the efforts of past, as well as other current, individuals.

NOTE: Obviously, humans are not the only users of earth's resources. Collective [un]ownership is a relationship among humans stating that all of humans have the same "claim" (i.e., access) to resources and spaces. That relationship does not imply that other lifeforms should not also have an opportunity to access and consume resources, or that the preservation of ecosystems does not by itself at least have ecological value that demands preservation.

Different societal views on accomplishment:

 In community (a *co-operative* system), individual accomplishments are informed by other individual accomplishments (going back thousands of years), producing an interconnected matrix of knowledge, technologies, resources, and spaces for current individual accomplishment.

- In the market (a *competitive* system), individual accomplishments are the property of the final individual effort. Therein, when someone mixes their labor with something that is commonly owned, this object is thereby appropriated by the laborer as property.
- In the State (a *dictative/authoritative* system), a portion of every final individual accomplishment is appropriated by the State to use as the State decides.

Egalitarian ownership is the view that the earth originally "belongs" to humankind commonly, in the sense that all humans, no matter when and where they are born, have some sort of symmetrical use (or "claim") to it. Egalitarian ownership identifies a common relationship among human beings and allows for a social recognition of concern about the usage of nature, and to the extent that nature is accessible, no human being has a privileged claim.

Four types of ownership-status:

- No ownership (a.k.a., common access, shared access, common unownership) ± access directed by collective protocol.
- 2. **Private ownership** (*a.k.a., capitalism*) ± ownership directed by individual preferences.
- 3. Shared ownership
 - Joint ownership (*a.k.a., public ownership*) ± ownership directed by collective preferences. Joint ownership means that each use would be subject to a decision process to be concluded to the satisfaction of each co-owner. Each co-owner must be satisfied on each form of use.
 - **Common ownership** (a.k.a., ± in which the entity belongs to common population of individuals, each equally entitled to using it within explicit constraints. The first constraint being the inability to exclude other co-owners from also using it.

10 Preference

It is because needs are based upon a common, social life ground that they are morally significant in ways that preferences are not. Preferences change in light of the options we have available – the phenomenon of 'adaptive preferences'. The concept of need is objective, whereas that of preference is contextual, subjective and environmentally determined.

The privatization of consumption preference precludes questioning the nature and content of consumer preferences, except within narrow limits. It is subject to numerous challenges on the grounds of subjectivity, epistemic irrationality, endogenous and adaptive preferences, limitlessness of wants, the absence of moral evaluation, and the non-specificity of future preferences. In a society where human needs are prioritized, then the action taken to have preferences fulfilled is reliant upon on the prioritized fulfillment of human need.

10.1 Preference for suffering

The societal system should de-prioritize preferences for the suffering of others. If "you" feel better off because other people, or another person is worse off (all else being equal) is problematic, creating an unnecessary [competitive] trade-off between the happiness (fulfillment) of two people. Negative altruism (deriving pleasure from cruelty) is not necessary when there is contribution.

Negative altruism, as positional goods, Is "my" house bigger than yours, wherein I derive happiness if the others becomes smaller, even if "mine" remains the same size. This relativistic component is harmful to us and difficult for machines to cope with.

As humans can be self-interested and self-centered in the sense that they are trying to meet their needs and expressing their feelings ("honoring those feelings"), and by doing so they can understand another human being. Because, if "we" are not grounded in "ourselves", who are "we" grounded in then, and what are "we" grounded in?

10.2 The logic of preference

NOTE: *Preference can overlay (i.e., "colors the view) factual human need fulfillment, but it does not have to.*

The logic of preference

- The Logic of Preference: An Essay, von Wright (1963)
 - Deontological or normative (Read: dictatorial and authoritarian): right and duty, command, permission, and prohibition.
 - Axiological (Read: religion or human potential): good and evil, the comparative notion of

betterness.

- Anthropological (Read: evolved human requirements or market wants): need and want, decision and choice, motive, and action.
- In the essay, preference is related to the axiological notion of betterness and the anthropological notion of choice.
 - Extrinsic preference p is preferred extrinsically to q if it is preferred because it is better in some explicit respect. If there is no such reason, the preference is intrinsic. In other words, it is preferred because it can be explained to other individuals.
 - Intrinsic preference If there is no explicated reason for the preference.
- In a unified societal system with an efficiently organized economic system, only demands with reasoning exist actively in the societal decision:
 - Intrinsic "preference" (i.e., human needs) refers to evolved conscious-organismal requirements (e.g., human requirements), which are known or knowable. These are the categories of human requirement relevant to embodied consciousness, that when complete in some pattern to allow consciousness to feel, express, and respond optimally.
 - Extrinsic preference (i.e., environmentally bounded preference) states that, given what is known, an individual chooses to play one instrument over another. For example, there are an environmental set of physicalized and physicalizable instruments that a given person can play. Or, there are a set of physicalized and physicalizable wines (food>alcohol) that a given person can consume. There are a range of optimal human nutritional requirements, given nutrition is the intrinsic "preference" category.
 - Here, extrinsic and intrinsic preferences are interrelated and form a unifying system measurement system for human relationship fulfillment. There is an intrinsic category for which there exists a range of optimality, and a preference therein. For example, the decision and action to play an instrument, from a given set of instruments, may fulfill a need for selfactualization and/or health. There is a source for input (intrinsic preference, which isn't really a preference, but an absolute category), and then there is a range dependent (in part) on environmental availability and sociopsychological meaning. What are values, if not preferential orientations, given a direction (category of human requirement).
- · Notice the difference in perspective and complexity

between the two views of intrinsic and extrinsic preference. From a market-based perspective, there can be "no reason" a demand is created or met. Conversely, in an unified societal system, there is always a reason, a source (trace) and posted organized location, for the instantiation of a demand into the societal decision system for re-organization of a common informationmaterialized environment (a space that affects every-one). In either case, someone can revise their preferences for many legitimate (or explicated), and non-legitimate (in the market) reason. There are mechanics with knowable dynamics that influence the probable resolution of a preference (value) for need (human requirement). In the market for competition over fulfillment, money is an abstract method for denoting the "value" (preference) of goods and services (Read: market assets). Money adds an additional layer of abstraction. There are components of valuation calculation in the physical world:

- Energy and materials required to produce a biophysical baseline
- Utility value how useful is it in optimally fulfilling a human requirement (with a biophysical baseline), given what is known. How does the methodical re-orientation (i.e., value) of change relate to that which is optimally demanded.
- With the least risk (e.g., opportunity cast, sunk costs, disaster recovery, etc.)
- Here, energy is just another word for work (an operationally useful process). Useful (economic) work includes:
 - Designing and organizing [information in the information system].
 - Reshaping the material environment (e.g., cultivation, production, manufacturing, etc.)
 - Habitat services for users (e.g., housing, medical, transportation, etc.).
- In formal logical languages, states of a system (of "affairs") are typically represented as propositions, with the latter viewed as a set of possible system expressions (or "worlds"). All possible entity-access relations form all possible systems ("worlds") as 'betterness' relations, a model for a modal preference logic:
 - A betterness model is a tripe M = W <= V, where W is a set of system expressions ("worlds"), <=is a reflexive and transitive binary 'betterness' relation <= ('at least as good as'), and V is a valuation function for proposition letters.
 - Herein, all system expressions that are at least as sufficient at meeting current optimum access-fulfillment requirements are preferences (or

preference relations). For example, someone can choose and have visualized a particular material object, an instrument for instance, and have it not negatively impact the access-fulfillment of the remaining population. All system expressions where possible instruments are produced are at least as good at sustaining optimum access fulfillment as the other -- and, this logic enters the decision system as a preference set. The individually preferred (relatively) materializations that do not impact the optimal materializations (the actual materially expressed access fulfillment) of every-one individual (i.e., of everyone). Within the preference set there is an individual (relative) determination of preference. A preference is the relation between world expressions, quantifying over all world expressions.

- For instance, in the market, one prefers some house over another because the first is cheaper (market conception), and/or of better quality (quantitatively determinable) than the second.
- 10.1007/s11229-009-9530-z

INSIGHT: All motivation to take a decision and act, originates from somewhere. What really is "a random thought"? Is there really such a thing as a "random" thought? How can you be sure it wasn't derived from some sort of stimuli, either known or unknown, conscious or unconscious, internal to the body or environmental? How can consciousness pay attention to what arises spontaneously, noticing and recording what comes, eventually tracing the information to a source.

10.2.1 The conception of preference

The conception of preference can be broken down into the following characteristics:

- 1. Preference theory "preference and utility."
- 2. Can pleasure and pain (happiness and suffering) be numerically standardized and measured [in terms of utils or utility units, which are considered as real as units of length, mass, or temperature]?
- 3. Is there a natural 0 between pleasure and pain, or is pain (or death) 0, and a continuum extends therefrom, with the highest pleasure being that which is currently knowable, but not ultimately, statically defined? Can utility units have arithmetics applied to them. Biophysically, is a utility units index constructable from pulse, blood pressure, glandular activity data, rate of salivation, a degree of pupil dilation, or perspiration? Is there any way of comparing levels of satisfaction, human

fulfillment, and expressed life pleasure among different people? Is there an objective way of measuring life satisfaction at two different times for the same individual? I all of life is subjective preference disconnected from that which is common to all individuals, then there appears to be no way to objectively measure life satisfaction. However, if there is commonality, a common genetic expression, a common environment, a common societal system, a common network of influence, then there appears to a way of objectively (i.e., commonly) measuring satisfaction. Are there better alternatives to the current environment that are the "best" for everyone in that common, current environment?

- 4. A unit of length is scientifically real for several reasons: first, there is a standard object which everyone can observe (sense) as one unit. Second, there is a natural zero for length. Third, units of length can be mathematically manipulated in relation to that which is observed (i.e., added, subtracted, and multiplied by numbers according to the rules of arithmetics), and the results make cognitive-logical sense (e.g., 2 meters + 2 meters = 4 meters).
- 5. Ask and observe the person: If it is asked: "How many units of happiness (nutrition) would you now get if I gave you a banana (food)?" If the context was a starving person. If instead, the question was: "Would you prefer an apple of banana?" If the context was a starving person. The zero state is death due to lack of nutrition (food). In the case of the true preference, the apple is at least as good as (Read: logical equivalence) the banana in meeting the current nutritional needs of the individual. It would seem that the first question and follow through (i.e., providing the food) would save the person from death, whereas the second question and follow through would do similarly, but allows for a "true" preference beyond the states of life or death (if the food objects are logically, sufficiently equivalent in meeting the individuals nutrient need, such that either choice meets the need).

10.2.2 The notation of preference

Notationally, let x and y be two logically and sufficiently equivalent (at least as good as) alternatives.

- To symbolize the preference of the *ith* person.
 A. M*i* is the primitive "**mutual**".
 - xMiy is "I thinks (subjective) and/or measures (objective) x is at least as good as y and y is at least as good x"...at accomplishing some thing, at accomplishing something mutual. There

is a specific type of presence, a choice where it is possible to have a preference, because difference exists in presence.

- 2. [X] is at least as good as [Y] if and only if it is at least as good for the people who exist in both.
- B. Ri is the primitive "given".
 - xRiy is "I thinks (subjective) and/or measures (objective) x is at least as good as y"... given they are substantially equivalent at accomplishing the same thing. Note: the language "at least as good as" indicates the presence of a preference category. Given a concrete structure of the set of alternatives, R can be associated with a preference in the following way: x is at least as good as y if and only if (x, y) is an element of R. Given this type of connection, the binary relation can be regarded as a representation of a preference, and can describe a choice over alternatives. If (x, y) is an element of R and (y, x) is not, then x is chosen over y.
- C. Pi is the "preference".
 - 1. xPiy is "I prefers x to y"...preference for a sufficiently equivalent thing.
- D. li is the "indifference" (i.e., no preference).
 - xliy is "I has no preference between x to y" ...no preference when accomplishing a sufficiently equivalent thing.
- E. If there exists a world where different environment compositions can accomplish the same thing (the set xMiy), then the relationship between Pi and Ii can be derived from Ri (i.e., where Mi is also Ri):
 - If (xPiy, xRiy and not yRix) or (xliy), then xMiy is 001 - person i either has a preference or is indifferent between x and y, given a real mutual presence with the identifier 001 which x and y are similarly associated:
 - i. If, x is at least as good as y (xRiy), and not, Y is at least as good as x (yRix),
 - ii. Or, there is not a preference for the preference between x and y (xliy),
 - iii. Then, there exists a mutual preference set (xMiy).
 - iv. While, x and y are mutually equivalent at doing/accomplishing the same thing (with the identifier 001, or 1, or whatever).
- 2. Without xMiy there is no true preference, because there is no mutually substantial equivalence (i.e., no "preference" set), given a conscious receptor and the condition of an environmental context that connects with that receptor. In the context of humans, needs may be the receptor (i.e., human requirements), for which there are sub-receptors

(e.g., human nutrition), and there are different environmental conditions (base on different environmental configurations) that connect with that receptor (i.e., different types of food, like carbs, lipids, a banana, a piece of fish). There must be a given substantially equivalent set for a preference to exist, otherwise the logic 'preference' is incomplete. If there is no substantially equivalent set, then the preference is arbitrary and subjective, and thus, the social coordination of decisioning [within a common environment] becomes unpredictable (i.e., the market).

- 3. Where Mi is not also Ri, but Pi or li is Ri:
 - A. A. Not xMiy "I do not think (subjective) and/or do not measure when x is at least as good as y and y is at least as good x" ...at accomplishing some thing. Here, the common environment (the mutual existing) is unobservable and/or not thought about.
 - 1. If, not xMiy,
 - Then, no existence for presence to occur within.
 - B. xPiy if xRiy and not yRix (or yRix and not xRiy) person i prefers x to y if (for what reason, R):
 - 1. If, x is at least as good as y (xRiy),
 - 2. And not, y is at least as good as x (and not yRix),
 - 3. Then, x is preferred to y (xPiy).
 - C. xliy if xRiy and yRix person i is indifferent between (the preferences of) x and y; x is indifferent to y if x is at least as good as y and y is at least as good as x:
 - 1. If, x is at least as good as y (xRiy),
 - 2. And, y is at least as good as x (yRix),
 - 3. Then, there is indifference to the preference between x and y (xliy).
 - D. So what? In other words, so what if person i prefers x to y if there is relationship to an environment including a common population? Where is the meaning between a population where preference exists and a common environment where resources exist the population uses? It would appear that without a set, without xMiy, then there is no completeness.
 - E. The fundamental axioms for real preference are:
 - 1. **Completeness (given presence, thoughtobservation)** - For some presence that exists mutually among a population (of thinking observers) it is possible to have a set in which the population has differences in preference in the way in which some thing, a presence, occurs, xMiy and (x,y)Ri. In other words, for some "thing" that occurs commonly among

a population, it is possible for individuals of that population to have preferences (x,y)Ri about the outcome or method of that things occurrence.

i. x equals y

- 2. **Completeness (within the preference set)** -For any pair of alternatives (given substantial equivalence in "preference" set xMiy) x and y, either xRiy or yRix.
 - i. x does not equal y => x >_ y or y >_ x (connectedness)
- Transivity (of the preference set) For any three alternatives (given a preference set of xMiy,z) x, y, and z, if xRiy and yRiz, then xRiz.
 i. x >_ y, y >_ z ⇒ x >_ z
- F. Note that any model of preference that does not account for *presence* as part of its completeness is not complete. In other words, if a model for preference starts with, "preference within a set", while not acknowledging the presence of a "set", then that model is incomplete. A market-based social encoding of preference starts with the logic, xRiy or yRix, not with the acknowledgement that humans have common categories of requirement, xMiy. An poor analogy might be some individual who expresses the logic: "this is the way the world works (i.e., makes a truth claim), but simultaneously states that there are no truths that can be known about the way the world works." And so, there is no xMiy; the preference logic starts with (x,y)Ri.

11 The human needs list(s)

A.k.a., Human needs list, human needs inventory, human needs database, human needs spreadsheet, human needs organization, human needs table, human needs index, human needs hierarchy, human needs pyramid, human requirements table, human requirements list, human requirements index, human life index, human life standards list, human needs taxonomy.

Although the list of basic human needs does not vary and is universal, the ways in which these are met are context specific and may potentially vary over time. New human socio-technical advances may provide different means to meeting a basic need. Other changes in a socio-ecological context, such as, new environmental pressures or changes in the demography may also affect how needs are met or unmet. General improvements in human understanding may also lead to re-evaluations as to what constitutes meeting a basic need, thus shifting thresholds of harm over time. Despite the potential for thresholds to be context and time specific.

QUESTION: What motivates healthy individuals?

11.1 The primary [human] life processes

The four primary [human] life processes (or needs) are:

- 1. Sleep (restoration)
- 2. Move (locomotion)
- 3. Eat (nutrition)
- 4. Waste (material cycling)

11.2 Real-world hierarchy of material lifecycling need

In a real-world, there is a hierarchy of material requirements for humanity:

- 1. **Universe** Universal services allow for conscious existence in the universe (note: this could be considered an environmental need or condition).
- 2. **Planetary** Biospheric and ecological services allow for life, and particularly, human life on planet earth (note: this could be considered an environmental need).
- 3. **Habitat** Habitat services allow for meeting the requirements of human well-being at the habitat service levels of life support, technological support, and exploratory support (note: this could be considered an environmental/social need).
- 4. **Individual** Individuals have physical and social capabilities and needs that must be met for humans to be well and flourish. The individual's

body is a life ecosystem service itself.

11.3 Former formal human needs lists (simplified)

A.k.a., Prior human needs lists, models, schema and organizations.

In past literature, there have been many different versions of a list of human needs. The following are the most common and well-known models, lists and schema of human needs (by different individuals and organizations):

Note that some of these lists have variations.

11.3.1 Henry Murray (1938)

Henry Murray (1938) listed 24 needs in 2 categories:

- 1. Biological demands (primary needs) such as the need for oxygen, food, and water. These are fundamental needs for basic survival.
- 2. Psychological needs (secondary needs) such as the need for nurturing, independence, and achievement. While these needs might not be fundamental for basic survival, they are essential for psychological well-being.

11.3.2 Abraham Maslow (1943-1971)

Abraham Maslow (1943, 1954, 1968, 1971) listed 7 needs in 3 categories (originally depicted in the shape of a pyramid or triangle as drivers of human action):

- 1. The categories are:
 - A. Existence needs physical physiological existence requirements, safety.
 - B. Relatedness needs self and social connection (contribution, love & belonging, external esteem).
 - C. Growth needs internal esteem and selfactualization.
- 2. The needs are:
 - A. Physiological needs (physical) food, shelter, air, water, homeostasis, sex, warmth, sleep.
 Physiological needs are the requirements of all biological creatures.
 - Physiological is at the base of the "hierarchy" and represents survival kinds of human needs.
 - Physiological needs are the only needs which can be completely or even over satisfied.
 - Physiological needs are continually recurring, so we must seek satisfaction of this basic need on a daily basis.

- B. Safety needs (physical) protection from harm, shelter, clothes, routine, familiarity, certainty, order, stability, limits/boundaries.
 - Safety refers to securing oneself and ensuring safeness in one's environment.
 - In peaceful societies, safety needs are relatively easy to satisfy.
 - Safety needs become highly important during natural disasters, fires, accidents, and other life threatening situation.
- C. Belonging and love needs (social) affection, connection, family & friends, shared interest.
 - Love/Belonging refers to being able to have a sense of human belonging with others and an ability to embrace love.
 - A person who has never experienced love and closeness will eventually devalue love and not be particularly worried over their inability to find it.
 - A person who has received love and closeness during childhood will be able to love others, and not be devastated by the occasional rejection.
 - A person who has experienced just a little love and affection will be strongly motivated to meet these needs, and might go about satisfying the need for love and belongingness in a pathological way.
 - Children need love in order to grow psychologically, and also, physiologically.
- D. Cognitive needs (social and self) understanding and creation, knowledge, meaning and self-awareness.
 - Cognitive refers to intellectual understanding and the ability to create through knowledge
 -- the desire to know, to solve life's problems, and to be curious.
- E. Aesthetic needs (environmental sight) beautiful and uplifting, appropriate surrounding natural environment, harmony and setting.
- F. Esteem needs (social) self-respect and respect from others, high evaluation of oneself, achievement, confidence, competence, and the respect of others.
 - Esteem refers to having a sense of respect for oneself and others.
 - Maslow distinguished between two levels of esteem needs : Reputation and Self-Esteem.
- G. Self-actualization needs (self) self-growth, actualizing one's innate potential, selfdevelopment, personal growth.
 - Self-Actualization refers to a higher order of human fulfillment, the desire for self-fulfillment and to realize one's potential.

H. Transcendence (self-transcendence, connection, added by Maslow in 1963) - helping others to self-actualize (may not exist for everyone); helping others to realize their potential.

All of the needs below self-actualization are basic needs. Maslow also called these basic needs neurotic needs, deficiency needs, and deprivation needs, because if these needs are not sufficiently fulfilled there is likely to be fear and psycho- or socio-instability (i.e., "you" don't feel yourself. "You" can't operate from a calm, quiet center). Any unmet basic need causes problems and tensions that a human will seek (be motivated) to resolve. Maslow (1971) posited that the two layers, deficiency and actualization, are interrelated; however, the lower level needs must be satisfied before higherorder needs can influence one's behavior.

NOTE: *If both physiological needs and safety needs are satisfied, then individuals can turn their energies toward our "Higher" needs.*

The top four layers represent actualization needs, in other words, the quest for knowledge leading to character development. When these needs are met, the person experiences a greater sense of wholeness and fullness (wellness) as a human being. People learn to connect to something beyond themselves, gaining wisdom and enlightenment. Per actualization needs, behaviour, in this case, is not driven or motivated by deficiencies but rather one's desire for personal growth and the need to become all the things that a person is capable of becoming.

NOTE: Maslow did not originally use the triangular (pyramidal) shape that has now become synonymous with his hierarchy. Instead, his initial description was narrative in style. Further, in his original article, Maslow proposed two separate hierarchies, the Hierarchy of Basic Needs and the Hierarchy of Cognitive Needs.

Maslow expanded his thoughts on motivation in the book, Motivation and Personality (1970). Maslow (1943, 1954) tendered five levels of needs: physiological, safety and security, belongingness and love, esteem, and selfactualization. In 1971, he added a sixth level beyond self-actualization, that of self-transcendence, the need to connect with something beyond ones self. Maslow and Lowery (1998) added two more levels: cognitive (the need to know and understand) and aesthetic (the need for beauty, symmetry and order). The original five-level hierarchy of needs model remains a definitive classical representation of human motivation; and the later adaptations serve best to illustrate aspects of selfactualization, his original, fifth, highest order need.

If people are fortunate enough to meet their esteem needs, then they are ready to try to satisfy the highest level of needs in Maslow's hierarchy. A major difference between people who don't progress farther than the esteem needs stage is due to the adoption of core B-Values. B-values (Being-values) are what distinguishes the truly enlightened person (one who is self-actualized) from an individual who has satisfied all basic needs, yet still lives a life without purpose. People who embrace B-values will live a life of meaning and fulfillment.

 The B-Values are: truth, goodness, beauty, wholeness, aliveness, uniqueness, perfection, completion, justice, simplicity, totality, effortlessness, humor, & autonomy.

Maslow had indicated that each level when reaching a threshold of satisfaction would no longer become dominant as a human need. For example, if someone were starving to death, that individual would likely putting their physiological need for food high up on his/her set of priorities, and drawing a picture would be low in his/her priorities (unless it led to getting fed). Until some semblance of physiological needs are met, it is hard to move upward to safety, and likewise until some semblance of safety needs are met it is hard to move upward to love/belonging, etc. Human needs arrange themselves in hierarchies of pre-potency. Here, "prepotent" means that lower needs had to be satisfied before higher needs came into play.

Maslow acknowledged, however, that the natural ordering of needs may not apply in all circumstances, such as say a martyr that has chosen to give up food to make a statement of a political or social nature.

Maslow also indicated that indicated that humans can become complacent at a given level and not necessarily seek to rise higher. If someone is satisfied at the first four layers, under certain environmental conditions, that individual might not necessarily seek to achieve the fifth and highest layer of self-actualization, or to try and make the world into a predictable and orderly structure (cognitively and/or externally).

There are many variants of Maslow's "hierarchy", some of which try to remove the hierarchical nature, for instance, by:

- Placing the needs side by side as continuum extending from physiological on the right of the continuum to self-actualization on the left of the continuum
- Placing self-actualization in the center and then evenly spacing the other needs in a circular manner around that center.

11.3.3 lan Gough and Doyal (2014)

Doyal and Gough needs (depicted as a three dimensional list):

- 1. Universal goals avoidance of serious harm; contribution, social participation, exploration.
- 2. Basic needs survival, physical health, cognitive

and emotional capacity, opportunity to participate, opportunity to contribute, critical autonomy.

3. Universal satisfier characteristics - nutrition, water, shelter, non-hazardous environment, safety (birth and childbearing), appropriate health care.

A conceptual bridge be built to link basic needs and specific satisfiers using the idea of 'universal satisfier characteristics'. If we define 'satisfier characteristics' as that set of all characteristics that have the property of contributing to the satisfaction of our basic needs in one or any context, then we can in principle identify a subset of universal satisfier characteristics (USCs): those characteristics of satisfiers which apply to all human contexts. USCs are thus those properties of goods, services, activities and relationships which enhance physical health and human autonomy in all societies. For example, calories a day for a specified group of people constitutes a characteristic of (most) foodstuffs which has transcultural relevance.

NOTE: The concept of human need, and thus demand, must open to continual improvements in understanding; for example, advances in the biomedical understanding of health and disease.

The universal goal for all individual humans together in society is:

1. Minimally impaired social participation

The basic human needs (core universalizable goals of human action) are:

- 1. Physical health/survival (health of body; organismal conscious)
- 2. Autonomy (critical autonomy, critical participation, integration, and contribution states)

The universal satisfier characteristics (a.k.a., intermediate needs) include:

- 1. Nutritional food and clean water
- 2. Protective housing
- 3. Non-hazardous living and work environments
- 4. Safe birth control and child-bearing
- 5. Appropriate health care
- 6. Significant primary relationships
- 7. Security in childhood
- 8. Physical and economic security
- 9. Appropriate education

*Note here that the first six contribute, in part, to physical health, and the last five contribute, in part, to autonomy.

Societal pre-conditions for need satisfaction are:

1. Universal pre-conditions

- A. Reproduction
- B. Production
- C. Cultural transmission (information sharing)
- D. Political authority (State only)
- 2. Pre-conditions for optimization
 - A. Freedom from civil and political rights (in market-State, this precondition means having rights; versus, in community, this precondition means freedom from coercion and authority where rights are given, taken away, and enforced by the authority).
 - B. Freedom to access to need satisfiers (in market-State, this precondition means having rights to access need satisfiers).
 - C. Contribution (in market-State, this precondition political participation).

11.3.4 Martha Nussbaum ("capability approach", 2000)

Nussbaum (2000) identifies needs as central human functionings and human capabilities (a.k.a., central capabilities (depicted as a list of capabilities, the "capability approach" (a.k.a., capability model, a functional -capability model).

The central human capabilities are:

- Life being able to live to the end of human life; not dying prematurely or before life is not worth living.
- Bodily health Being able to have good health, including reproductive health; being adequately nourished; being able to have adequate shelter; being able to function well psycho- and physiologically to the end of life; having the ability to restore health after incidents occur.
- **Bodily integrity** (similar to Gough's need for bodily health) - being able to move freely from place to place; being in safe social environmental conditions, high confidence that assault is unlikely.
- Senses, imagination, thought Being able to use the senses; being able to imagine, to think, and to reason - and to do these things in a way informed and cultivated by an adequate education; being able to use one's mind in ways protected by guarantees of freedom of expression with respect to both political and artistic speech and freedom of religious exercise; being able to have pleasurable experiences and to avoid non-beneficial pain.
- Emotions Being able to have attachments to things and persons outside ourselves; being able to love those who love and care for us; being able to grieve at their absence; to experience longing, gratitude, and justified anger; not having one's emotions developing blighted by fear or anxiety.

- **Practical reason** Being able to form a conception of the good and to engage in critical reflection about the planning of one's own life.
- Affiliation (similar to Gough's need for autonomy)

 Being able to live for and in relation to others, to recognize and show concern for other human beings, to engage in various forms of social interaction; being able to imagine the situation of another and to have compassion for that situation; having the capability for both justice and friendship. Being able to be treated as a dignified being whose worth is equal to that of others.
- Other species Being able to live with concern for and in relation to animals, plants, and the world of nature.
- **Play** Being able to laugh, to play, to enjoy recreational activities.
- Control over one's environment Political: being able to participate effectively in political choices that govern one's life; having the rights of political participation, free speech and freedom of association; (b) Material: being able to hold property (both land and movable goods); having the right to seek employment on an equal basis with others.

These central capabilities provide a basis to define universal material requirements for human flourishing, if it can be established that these requirements are instrumental and essential. (Nussbaum, 2000)

The "capability approach" purports that freedom to achieve well-being is a matter of what people are able to do and to be, and thus the kind of life they are effectively able to lead. The capability approach focuses directly on the quality of life that individuals are actually able to achieve.

This quality of life is analyzed in terms of the core concepts of functionings and capability:

- Functionings (comparative quality of life) states of 'being and doing'.
 - Being well-nourished (or not)
 - Having shelter (or not)
 - Having access (or not)
 - Having opportunities (or not)
 - Feeling positively (or not)

Note: Functionings should be distinguished from the processes (methods and/or technologies) employed to achieve them (as 'bicycling' is distinguishable from 'possessing a bike', or 'cultivating' is distinguishable from 'having nutritious food').

• **Capability** (theorizing about "justice") - the set of valua[-able] functionings that a person

has [effective] access to. A person's capability represents the [effective] freedom of an individual to choose between different functioning combinations of a given environment – between different kinds of life [experience] – that the individual has reason, or not, to value. Having data on, and an awareness of, one's abilities is likely to optimize functionings related to particular aspects of [high-]life [value]; for example, the capabilities of literacy, health, or social coordination at the macro-scale; and, at the micro-scale, such activities as tennis, typing, meditation, and tool use.

Note: Self-direction in an environment of high ability necessitates self-response-ability, and self-response-ability necessitates an environment of autonomy to sense, integrate, and express the response-ability.

Capabilities are:

- 1. What people are doing. These are currently active capabilities.
 - Current doings.
 - For example, the market-State socio-economic system is what people are doing in the early 21st century.
- 2. What people can do. These are currently unused capabilities.
 - Could do currently, but are not doing currently.
 - For example, modern 21st century humans have the capability, but unused, to significantly reduce and remove pollutants in their environment.
- 3. What people are capable of (have the potential to) do. These are potential capabilities given activities that move people from current to some desired future state.
 - Have potential to currently do.
 - For example, modern 21st century humans have the potential to live and operate a community-type socio-economic system (representing a higher potential for human capabilities than the market-State).

There exist important relationships that the "capability approach" identifies [adapted herein and significantly changed] (Sen, 1999:70-71):

 Individual physiology: such as the variations associated with illnesses, disability, age, and gender. In order to achieve the same functionings, people may have particular needs for non-standard services/objects – such as prosthetics for a disability – or they may need more of the standard services/objects – such as supplementary food in the case of intestinal parasites. Note that some of these disadvantages, such as blindness, may not be fully 'correctable' even with tailored assistance.

- 2. Local environment: a complex such as biospheric elements as climate, epidemiology, and pollution. These can impose additional material output connection; such as, more or less resource usage for heating or clothing requirements.
- 3. Variations in social conditions: such as the provision of public/community services; including, but to limited to: education and security, and the nature of community life, technological, and exploration activities.
- 4. **Integration modeling:** The social, integrated understanding of how working together toward a unified and mutually beneficial operationalization of society. For example, a cooperative societal InterSystem team. An information system working group. An operational Habitat InterSystem team.
- 5. Decision support operationalization (differences in relational perspectives): accounting for differences in regional sub-community decisioning ("perspectives"). Local environments, constructions and customs are highly likely to determine each individual habitat's (i.e., individual city, or region of cities) social requirements of expected standards of behaviour and consumption, given the optimization of mutually planned fulfillment, flourishing, and well-being. For example, local requirements of 'the ability to appear in public without 'shaming' (by the social) or prison (by the State); or, to a lesser extent, in terms of acceptable clothing, which may vary widely between cities, both upon personal as members of the Habitat InterSystem teams, and at the socio-personal explorational level of society.

A capability approach [model] that accounts for wellbeing has to be assessed in terms of the freedoms and opportunities "to be" and "to do" what people have reason to value. Thus, human development is defined as the process of extending the real freedoms that people enjoy (i.e. enhancing people's capabilities) to all humans globally, through planning, coordination, and sociotechnically contributed support.

Capabilities are the collection of functioning available to people. Functioning are beings, doings, etc. There are sets of functionings. Importantly, capabilities correspond to the various options (within a given environment) that a person can choose (their 'decision space'), according to his or her values, in order to achieve expected life-styles (as described by the lifestyle system specifications). Capabilities are composed of a group of achievable functionings. Functionings can be basic/elementary (i.e. related to life, such as nutrition) or more complex, such as contribution to a habitat InterSystem Team and having high self-esteem and high self-direction. **INSIGHT:** There are a set of values that all humans value together, and all humans together have reasons to value. What there is to value, there is reason (rationale) to value.

Functionings (information and conditions) and satisfiers (materials and services) are the basis of human well-being. In part, capabilities are experienced as freedom of choice in a given environment (potential functionings/satisfiers) and needs account for well-being satisfaction (achieved functionings/satisfiers).

One view of sustainable human development is: the improvement of people's capabilities to adequately satisfy/fulfill their fundamental needs via self-capability, while simultaneously integrating the equitable distribution of socio-technical capabilities among the population, ensuring transmission of freedom of choice of and in materiality, and condition, across generations.

11.3.5 Manfred Max-Neef (1989-1991)

Max-Neef (1989) proposed a matrix of interrelated needs, in which, human (axiological) needs (a.k.a., axiological categories) encounter four existential categories that define humans as a whole.

The existential needs (of consciousness; typology of satisfiers is based on an existential categorization by Max Neef) of:

- Having (things)
- Being (qualities)
- Doing (actions)
- Interacting (settings)

The axiological needs (axiomatic-logic of needs; typology of needs is based on nine values by Max Neef, 1991) -Human needs (i.e., aspects of human needs) include:

- 1. Subsistence: intactness, arrangement, intake, waste, movement, temperature, receptivity, adaptability, growth, will to live.
- 2. Protection: maintain physical subsistence, maintain mental & emotional well-being.
- 3. Affection: pleasure, trust, loyalty, respect, beauty, meaning.
- 4. Participation: receiving, giving.
- 5. Understanding: perception, cognition, emotion, reflex.
- 6. Creation: transform matter, transform symbols, procreate.
- 7. Leisure (idleness): catharsis, revitalization. Identity: physical disposition and appearance, personality, past experience, aspiration.
- 8. Freedom: choice, value.
- 9. Transcendence: affirmation of life, overcome meaninglessness

Note: Because development is about the qualitative growth of people, and not the quantitative growth of real objects (or abstract concepts reified), Max-Neef does not focus on objects per se. Objects and artefacts facilitate ways of being, doing having and interacting and increase or decrease the efficiency thereof.

Manfred Max-Neef needs (usually depicted in the shape of a wheel; 1990s): (Max-Neef, 1992)

- 1. Water
- 2. Food
- 3. Fuel
- 4. Shelter
- 5. Protection
- 6. Affection
- 7. Participation
- 8. Understanding
- 9. Creativity
- 10. Identity
- 11. Transcendence

All exist within family, wider community, region, nation, biosphere.

Manfred Max-Neef (1990) needs and satisfiers (usually, depicted as a table, a matrix of needs and satisfiers):

- 1. Needs according to:
 - A. Axiological categories (value categories)
 - 1. Subsistence
 - 2. Protection
 - 3. Understanding
 - 4. Participation
 - 5. Leisure
 - 6. Creation
 - 7. Identity
 - 8. Freedom
 - B. Existential categorises (modalities of being categories):
 - 1. Having (things)
 - 2. Being (qualities)
 - 3. Doing (actions)
 - 4. Interacting (set and setting)

Max-Neef makes a further extremely useful contribution by classifying satisfiers with regard to their utility. Satisfiers have different characteristics; they can be positive or negative. Destroyer satisfiers address one need but end up destroying others. Pseudo-satisfiers only promise to fulfil needs. Inhibitors satisfy one need while inhibiting others. Singular satisfiers meet one need while ignoring others. And, synergistic approaches not only satisfy one need but lead to the satisfaction of others. Manfred Max-Neef's (1990) five classes of satisfier (usually, depicted as a list, a tabular row of characteristics; needs according to satisfier type):

- Violators and destructors of need satisfaction these are claimed-supposed satisfiers, but are actually, violators and destructive structures, mostly connected with 'protection'[-oriented behaviors], and a feeling of fear and of lack of belonging. When 'protection' becomes the need to be satisfied without human context (e.g., through exile, censorship, bureaucracy, authoritarianism, profit maximization, arms racing, etc.), then any number of other (real-world, human) needs (e.g., subsistence, understanding, affection, participation, leisure, freedom, etc.) become impaired in their satisfaction. Here there are 'protection' enforced satisfiers.
- 2. Pseudo-satisfiers these are claimed-true satisfiers, but are actually, elements [in the real-world] that stimulate [in "me"] a false sensation of satisfying a given real-world need.
- 3. Singular satisfiers these are singular satisfiers and are those which aim at the satisfaction of a single need and are, therefore, neutral as regards the satisfaction of other needs. They are very characteristic of development and co-operation schemes and programmes.
- 4. Synergistic (synergic) satisfiers are those singular to complex of satisfiers that by the way they satisfy a given need, stimulate and contribute the to simultaneous satisfaction of other needs. Here, there is a tabular [row] matrix of the categories of:
 - A. Satisfier (e.g., breastfeeding, education, air, buildings, etc.).
 - B. Need (e.g., subsistence, understanding, participation, leisure, etc.).
 - C. Needs whose satisfaction the prior need stimulates (e.g., any of the other needs not in category 2, etc.).

In working with the classifications in the field it has sometimes been effective to simplify the concept to three classes:

- Positive satisfiers
- Negative satisfiers
- False satisfiers

Max-Neef (1991) developed a 36-cell matrix, filling each cell with satisfiers (the Basic Human Needs Satisfier Matrix; McGregor, 2010). Max-Neef proposed a process (called "satisfiers" or "strategies") that people can use meet these nine needs. Strategies are cultural, contextual, specific, and negotiable.

What determines people's quality of life?

• Quality of life depends on the possibilities people have to adequately satisfy their fundamental

human needs.

What are those fundamental needs and /or who decides what they are?

• Satisfaction of fundamental human needs is for Max-Neef the definition of quality of life.

Max-Neef does not model needs by recognizing basic needs and a hierarchy of needs. Max-Neef does differentiates between needs and satisfiers.

- 1. Needs are interrelated and interactive. In the same way there is no one-to-one correspondence between needs and satisfiers.
 - A. Need refers not only to deprivation but also to potential. Because of his view of needs as deprivation and potential Max-Neef uses the term actualize instead of satisfy.
- 2. A satisfier may satisfy various needs at once while one need may require more than one satisfier in order to be met.
 - A. A satisfier is a way of being, doing, having (in the sense of social institutions) or being situated (in time and space) that people use to actualize their needs. Satisfiers are ways of being, doing, having and interacting that contribute to the actualization of needs.
 - B. A satisfier is the way in which a need is expressed, and goods are the means by which individuals apply the satisfiers to meet their needs.

In community, [habitat] services are the means by which individuals coordinate the production, distribution, and cycling of satisfiers to meet their needs.

11.3.6 Integration between Maslow and Max-Neef

Maslow and Max-Neef are two well known contributors that added context to human [re-]understanding of life's needs. Maslow [1943] proposed that the closer to a basic need an act or desire is, the more important it is. However, the hierarchy and the grouping are not rigid:

- Elements on the pyramid can be swapped depending on culture, religion, etc.
- Full satisfaction of a level is not necessary so that a human seeks and gets satisfaction of higher level needs. In the same article Maslow also identifies the preconditions that are needed for the basic need satisfaction, for example, freedom to speak, justice, or fairness.

In studying accounts of peak experiences, Maslow (1998) identified a manner of thought he called "Being-

cognition" (or "B-cognition", which is holistic and accepting, as opposed to the evaluative "Deficiencycognition" or "D-cognition") and values (not specifically virtues) he called "Being-values" (B-values). Maslow listed the B-values, which were present in manners of thought that led to peak experiences, as (14 total, including the following most relevant):

- Wholeness: unity, integration, tendency to oneness, interconnectedness, simplicity, organization, structure, dichotomy-transcendence, order.
- Perfection: necessity, just-rightness, just-so-ness, inevitability, suitability, justice, completeness, oughtness.
- Completion: ending, finality, justice, fulfillment, finis, and telos, destiny, fate.
- Self-sufficiency: autonomy, independence, self-determining.

Alderfer (1969) grouped the five categories of Maslow's eight needs into three:

- Existence, which combines Physiological and Safety needs.
- Relatedness, which combines Interpersonal Love and Esteem needs.
- Growth, which combines Actualization and Self-Esteem needs.

Huitt (2007) reorganized Maslow's eight needs into three levels:

- Self existence
- Relatedness to others (personal identification with groups and significant others)
- Growth (of self-knowledge, competencies, character and relationships to the unknown and unknowable)

Burns (1989) distinguished higher order human needs from survival needs, identifying the higher order needs of:

- Survival needs
 - Food, shelter, water, etc.
- Higher order needs*
 - Sensation The biologically-based need for sensation.
 - Uniqueness The acculturation-based need for uniqueness.

*Neither of two higher-order needs are crucial to survival (like food, shelter and water), yet they do influence people's behaviour directed towards experiencing variety, novelty and complexity (sensation) and being different from others (uniqueness).

To continue existing in society, a person shall have all

possible services available to fulfill their life, technology, and exploratory needs. Max-Neef and Doyal&Gough justify a material basis for a 'basic minimum', through the notion of satisfiers of (or intermediate) needs, which are essential preconditions to meet basic needs. Both Max-Neef and Doyal&Gough delineate universal satisfiers from context-specific satisfiers in principle, but they give limited attention to concretely defining universal satisfiers. D&G define all intermediate needs as having to fulfill the requirement that their lack can lead to a sustained degradation of people's basic human needs, which they define as physical health and critical autonomy.

Sound physical heath is interpreted as freedom from chronic disability, disease, and impairment of cognitive function. Autonomy reflects the ability to learn, work, engage in and reflect on culture, and enjoy leisure. Wiggins (1998) also describes absolute needs as having to meet the test of being necessary and sufficient to avoid serious harm. Doyal&Gough's categories of physical health and autonomy as directly parallel to the physical and social well-being related capabilities described above. Furthermore, the notion of harm avoidance is helpful to identify risks to well-being and the material conditions that can mitigate them.

Max Neef envisioned a matrix in which human (axiological) needs mesh with the four existential categories that define humans as a whole. Human needs satisfaction is then facilitated by the achievement or provision of a combination of satisfiers that are related to each existential category. In Max-Neef's proposition axiological categories are not hierarchical. By describing needs satisfaction in systems theory terms, Max-Neef deals with the problem of Maslow's hierarchy. He goes on to address the issue of whether needs are universal, or culturally relative and states something like, "Fundamental human needs are finite, few and classifiable. Human needs (such as those contained in the system proposed) are the same in all cultures and in all historical periods. What changes, both over time and through cultures, is the way or the means by which needs are satisfied."

Max-Neef further claimed that:

- All human needs are necessary, and all are equal. Any need that is not satisfied reveals a human poverty, a compromise to a desirable human condition.
- All needs can be satisfied at different levels, and with different intensities, and that needs can be satisfied at the level of the individual, the social group, or the environment (Alkire, 2002).

Human needs satisfaction is then facilitated by the achievement or provision of a combination of satisfiers that are related to each existential category. In Max-Neef's proposition axiological categories are not hierarchical and their relative priorities depend on culture and groups.

It may be possible to map a Max-Neef's type of classification of human needs to a classification of requirements. Requirements in artificial and man-made systems have strong mapping to human needs, and therefore a model inspired by human needs can be of immense use in categorizing requirements in man-made systems. It may be possible to organize requirements following Max-Neef's proposition of existential categories and grouped according to their value to stakeholders.

Axiological needs ensure user needs (and consequently requirements) do not have uniform value. Under these terms, human needs are reflected by user values or need levels, existential categories are reflected by the types of requirements that completely define a system, and satisfiers are reflected by system requirements placed upon it by the user.

Max-Neef proposed a framework, designed for utility (to put 'needs' into operation) rather than continue the study of prove human-ability. Max-Neef proposed a framework (a schema) that offers two types of needs: 'existential', and 'axiological', which can be arranged in a matrix, allowing for a visualization of the relationship of complex of need-satisfiers. The axiological needs are (the modalities of life: being, having, doing, interacting. In the matrix, the existent[ial] needs are: subsistence, protection, affection, understanding, participation, idleness (leisure, sleep, relaxation), creation, identity, and freedom. Note that one of the meanings of idleness is "the quality or state of being lazy", which is not the intended meaning herein. This matrix allows for the formulation of fundamental analytical frameworks (such as, statistical mathematics) upon the results of a series of questions (decision inquiries) to compute various commands (operations/decisions); the most significant being the decision system's 'effectiveness inquiry' threshold supra-inquiry, which could include, What habitat- and social-structures will provide for, or support the satisfied degree of fulfillment of:

- Being-identified (recognition)
- Having-subsistence (food, water, shelter, etc.)
- Having-technicians (technical system access justice, fairness through coordinated planned of global access collaboration and distribution)
- Doing-participative things (whole InterSystem Team contribution network)
- Interacting-affectionately (global and local social group activity)

If one were to propose the application of Max-Neef's need framework to incoming orienteers (or potential orienteers), then it could be proposed in full an used for purposes of diagnosis, planning, assessment and evaluation. The matrix of needs and satisfiers may serve, at a preliminary stage for each individual (often in childhood), as a participative exercise of selfdiagnosis. In community, the young through a process of what amounts to regular dialogue gradually begin to characterize themselves by identifying their personal interests and identifying the contribution points [on the InterSystem Team] where they feel the most passionate [or not]. The outcome of the experience of being on or being mentored on an InterSystem Team will enable the individual to become aware of both its deprivations and potentialities. Which, for the individual orienteer (of the sub-type other societal mentee), may relax the market-State abstraction filter (so well visualized in the film), and, 'authority' in general, can be seen for what it is; in order to visualize that which is Community more clearly in the now.

NOTE: Today, information systems, including space agency information systems and sporting information systems, and medical information processing centers, hold significant data, from a significantly wide array of scientific studies and observations, into what humans require to be, live, and perform optimally.

Max-Neef sets out "to make a theory of human needs understandable and operational for development". Every need, with its different aspects, has dimensions - like the temperature range that constitutes thermal comfort, or hormetic challenge. Designs features are best oriented toward these constituents. The dimensions of needs and the current satisfiers determine a set of requirements for their satisfaction. A non-hierarchical view of human needs means that one does not think of a house as a mere physical shelter but as a synergic satisfier that influences the satisfaction of all human needs. Here, 'being' is a description of the abstract value of a need. For example, within the Max-Neef matrix, the cell corresponding to 'doing-participation ' might contain 'learning or discovering' as a satisfier, whereas 'doingcontribution' might contain 'InterSystem Team work'. The cell 'having-protection' might contain a dwelling. The axiological need of 'interacting' refers to the places and ways in which humans come together in society in order to have needs satisfied. Therefore, the cell for interacting-understanding might have an information system with a learning sub-application. In the market-State, the being-identity cell could contain membership in a gang or cult, which anticipates (or recognizes) the criticism that some satisfiers of needs are associated with creating conflict rather than resolving it.

Max-Neef doesn't propose it, and I wouldn't know how to draw it, but a multidimensional matrix might incorporate his assertion that needs can be satisfied in (at least) three contexts:

- 1. With regard to oneself (being)
- 2. With regard to the social group (doing with others)
- 3. With regard to the environment (having an interactive environment)

11.3.7 Simon Hertnon (2010)

Simon Hertnon's (2010) Nautilus of needs (usually, depicted in the shape of a spiral):

- 1. Existence
 - A. Physical well-being
- 2. Survival
 - A. Mental well-being
 - B. A safe and healthy environment
 - C. Reproduction or limiting reproduction
- 3. Happiness
 - A. More respect from others
 - B. More self-esteem
- 4. Betterment
 - A. Appreciation of 'life' and all that you have
- 5. Contentment (and ongoing survival of species)
 - A. Doing good deeds (helping others to satisfy their unmet needs)
 - B. To understand the nature and purpose of human life

11.3.8 Qizilbash (1996)

The idea of prudential values include:

- 1. Certain, at least, minimal levels of health, nutrition, sanitation, shelter, and security.
- Certain, at least minimal, capacities, including

 (a) literacy and (b) certain basic intellectual and
 physical capabilities.
- 3. Self-respect and aspiration
- 4. Positive freedom or autonomy [of choice]
- 5. Negative freedom or liberty [from coercion]
- 6. Enjoyment
- 7. Understanding or knowledge
- 8. Significant relations with others and some participation in social life
- 9. Accomplishment (the sort of achievement that gives life point and weight)

11.3.9 Narayan (1999)

The idea of 'social capital', in a market-State, is sometimes substituted for 'need'. The dimensions of social capital (Narayan, 1999):

- Structural dimension explains how people can obtain certain advantages through the use of personal contacts within the structure of social interactions.
 - Bonding
 - Bridging
 - Linking
 - Corporate
- Relational relationships built by people through a continuous series of interactions.

- Knowledge-based trust
- Trust political institutions
- Trust public services
- Safety
- Tolerance and social sanction
- Generalized reciprocity
- Cognitive resources that have a common code or a shared paradigm that facilitate a common understanding of collective goals and appropriate ways of acting in a social system.
 - Community cohesiveness
 - Civicness (volunteering, helping others)

A second view on the dimensions of social capital (Yilmaz, 2012):

- Group characteristics:
 - Number of members
 - Frequency of participants
 - Membership heterogeneity of purpose
- Generalized norms
 - Helpfulness of people
 - Trustworthiness of people
 - Fairness of people
- Togetherness
 - How well people get along
 - Togetherness of people
- · Everyday sociability
 - Everyday sociability
- Neighborhood connections
 - Asking for help
- Volunteerism
 - Help others for their work
- Trust
 - Trust people in neighbourhood
 - Trust people in your team
 - Trust the management

11.3.10 Robeyns (2003)

The top-level capabilities include:

- 1. Life and physical health
- 2. Mental well-being
- 3. Bodily integrity and safety
- 4. Social relations
- 5. Political empowerment
- 6. Education and knowledge
- 7. Domestic work and other projects
- 8. Shelter and environment
- 9. Mobility
- 10. Leisure activities
- 11. Time-autonomy
- 12. Respect

11.3.11 Biggeri et al. (2006)

The top-level capabilities include:

- 1. Life
- 2. Health
- 3. Physical security
- 4. Legal security
- 5. Education and learning
- 6. Standard of living
- 7. Productive and valued activities
- 8. Individual family and social life
- 9. Identity, expression and self-respect
- 10. Participation, influence and voice

11.3.12 Goldin (2013)

The top-level dimension and components of human need include:

- 1. Health and basic goods health, sanitation, water, shelter, sleep and rest, nutrition.
- 2. Education and literacy basic minimum level of literacy and education, indigenous knowledge, a priori learning.
- 3. Certain basic mental and physical capabilities - innate capabilities that can be enhanced or undermined by the state.
- 4. Self-respect and aspiration feeling good, feeling valued, having hope.
- 5. Autonomy and self-determination control an individual has over his or her life.
- 6. Awareness Knowing about external environment.
- 7. Understanding Comprehension, knowledge.
- 8. Significant relations with others Connectedness, belonging, meaning.

11.3.13 U.S. National Aeronautics and Space Administration (NASA)

NASA has a list human research, factors and integration reports and standards:

- 1. NASA Human Research Program there are multiple guidelines and requirements documents to design a human spacecraft and settlement.
 - A. NASA-STD3001, NASA Space Flight Human System Standards (SFHSS) consists of twovolumes that provide overarching principles applicable to all human space flight programs:
 - 1. Volume 1 Crew Health. Standards needed to support astronaut health (medical care, nutrition, sleep, exercise, etc.).
 - 2. Volume 2 Habitability and Environmental Health. Standards for system design that will maintain astronaut performance (environmental factors, design of facilities, layout of workstations, and lighting

requirements, for example). It includes classic human factors requirements; the chapters closely parallel those in the previous version, NASA-STD-3000.

- B. NASA-STD3001 HIDH, NASA Human Integration Design Handbook - Each individual human space flight program will develop programspecific, verifiable requirements that meet NASA-STD-3001, using a companion document, the Human Integration Design Handbook (HIDH). For example, Volume 2 states that all programs shall define the user population and their size ranges, and that the design of systems shall then accommodate the full size range of those users. The anthropometric data to be used to define the potential crew size ranges will be in the HIDH. Together then, NASA STD-3001 and the HIDH provide a set of human factors engineering (HFE) principles that programs must follow as well as the information needed to derive verifiable requirements from these principles. The HIDH is divided into topic areas, which address the range of human operations in space:
 - 1. Anthropometry and Biomechanics
 - 2. Human Performance Capabilities
 - 3. Natural and Induced Environments
 - 4. Architecture and Facilities
 - 5. User Interfaces
 - 6. Hardware and Equipment
 - 7. Facility Management
 - 8. Extra Vehicular Activities (EVA)

Each of the above topic areas are to be subdivided into sections:

- 9. Introduction
- 10. Design Considerations
- 11. Critical Design Elements
- 12. Example Solutions and Lessons Learned
- 13. References and Background Research
- 14. Research Needs

Two primary uses for the handbook will be to:

- C. Provide data and guidance for contractual program-specific human interface requirements
 Users will include program managers and system requirement writers.
- D. Provide data and guidance for human vehicle and system designs - Users will include human factors practitioners, engineers and designers, crews and mission / flight controllers, and training and operations developers.

- NASA/SP-2010-3407 Human Integration Design Handbook
- NASA/NRP 8705.2B Human-Rating Requirements for Space Systems
- NASA/JSC-64367 Exploration Life Support Baseline Values and Assumptions document
- NASA/HRP-47052 Human Research Program (with multiple revisions)
- NASA/HRP-47065 Human Research Program Integrated Research Plan (with multiple revisions)
- NASA/HRP-4705 Human Research Program Requirements Document (with multiple revisions)
- NASA/TP-2014-218556 Human Integration Design Process (HIDP) - Health and Performance Directorate

The goal of the HRP is to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. The specific objectives of the HRP are:

- Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to crew health and performance. Enable the definition and improvement of human spaceflight medical, environmental and human factors standards.
- 2. Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.), and to ensure effective human-system integration across exploration mission systems.
- 3. Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: space medicine; physiological and behavioral effects of long-duration spaceflight on the human body; space environmental effects (including radiation) on human health and performance; and space human factors.

Working group outputs (including but not limited to):

• NASA/TM-2014-217394 - 2014 International Workshop on Research and Operational Considerations for Artificial Gravity Countermeasures

11.3.14 Other significant contributors to the literature on human needs

Other well cited names in the literature on human needs include, but are not limited to:

economic, professional identity)

- Paul Sites, 1973 (sociologist)
- Johan Galtung, 1988 (sociologist and international relations)
- John Burton, 1990 (international relations and conflict resolution)
- Dennis Sandole, 1990 (political scientist and conflict resolution)
- Ronald Fisher, 1988 (psychologist)
- James C. Davies, 1988 (psychologist and political scientist)
- Christian Bay, 1988 (economist)
- Chris Mitchel, 1990 conflict resolution)
- Ed Azar, 2005 (international relations and conflict resolution)

11.4 The habitation service-view human needs list (simplified)

Useful design is an expression of an underlying anthropology. Architectural (Read: building design) is intimately linked to human needs (shelter/clothing in particular), and the designers understanding of human nature will largely determine the way in which s/he designs. Pauw (2004) has demonstrated that the work of an architect can be analysed in terms of its underlying anthropology and evaluated against a needs model.

A simplified view of the habitation service system is viewable from several perspectives.

- Biological and Physiological needs basic life needs - air, food, water, shelter, warmth, sex, sleep, etc.
 - Considered a deficiency need
- Safety needs safe designs and operations (safe standards), stability to society, certainty to fulfillment, limits to decisions, etc.
 - Considered a deficiency need
- Belonging and Love needs affection, relationships, work group, etc.
 - Considered a deficiency need
- Esteem needs achievement, responsibility, reputation.
 - Considered a deficiency and growth need
- Cognitive needs knowledge, order to existence, self-awareness.
 - Considered a growth need
- Aesthetic needs beauty, nature (in all senses), form and harmony, etc.
 - Considered a growth need
- Self-actualization personal growth and fulfillment.
 - Considered a growth need

Habitat service support view (simplified)

First and last name, publication date (market,

- 1. Life support needs
- 2. Technology support needs
- 3. Exploratory support needs
- 4. Human (social) connection needs

Habitat service support view (simple detail)

- 1. Habitat [ecosystem life]
- 2. Hydration [life]
- 3. Nutrition [life]
- 4. Shelter [life]
 - A. Sleep
- 5. Medical [life]
- 6. Power [life]

Habitat defense support view (simple detail)

- 1. Security
- 2. Food
- 3. Shelter
- 4. Personal safety
- 5. Air and water
- 6. Emotional needs (connectedness)
- All required for existence in defence, as in life (as in life, where 'security' becomes dormant projects 'monitoring' and energy is applied toward exploration, growth and self-expression.

11.4.1 Water (hydration service)

A.k.a., Hydro service, hydrological service.

Hydration is any source of water input for organic embodied restoration. Organisms need a source of water to live. Organisms use water, in part, as their energy source. Organisms differ in the way they obtain water.

Hydration > Water source [resource satisfier] - the need for accessing water of some appropriate composition at some frequency, which are not optional:

- Required by (1st level): Absolutely required by.
 - Life forms
 - Habitat service system operations)
- Service layer (2nd level): Absolutely required for.
 - Drinking
 - Hygiene
 - Life-cycling materials (HSS operations)
- Resource layer (3rd level): Options for.
 - Water elements (e.g., dissolved and undissolved solids)
- Environmental layer (4th level): Options for.
 - Production elements (e.g., rain encatchment, well)

Humans need water for biological functioning, organisms need water to obtain chemicals from their surroundings,

break down food, grow, move substances through their bodies, and reproduce.

11.4.1.2 Basic human water requirements

Humans have requirements for water with a specific composition and at a specific frequency (which will fluctuate within a range). In order for a habitat service system to fulfill individual humans' relationships with water, the following availability data must be present:

- Water resource availability
 - Is there water available?
- · Water service availability -
 - Is there an engineered water distribution network?
 - Is there an engineered water processing system for changing composition?
- Water type availability
 - What is the composition type of the water?

A water scarcity (fulfillment) index is a measurement of the ability to meet all water requirements for human requirements. There are multiple sub-requirements to the need for water at the population scale in a controlled habitat, and they include, but are not limited to:

- Drinking with water for organism existence.
 - Survival Non-optimal composition and frequency of water.
 - Flourishing Non-optimal composition and frequency of water.
- <u>Cleaning</u> with water for hygiene and sanitation
 - Survival Non-optimal composition and frequency of water.
 - Flourishing Non-optimal composition and frequency of water.
- <u>Cooking</u> with water for food preparation (nutrition).
 - Survival Non-optimal composition and frequency of water.
 - Flourishing Non-optimal composition and frequency of water.
- <u>Materializing</u> with water for material production lifecycle (manufacturing, recycle, energy, etc.).
 - Survival Non-optimal composition and frequency of water.
 - Flourishing Non-optimal composition and frequency of water.

Water requirements for each water process must be defined, and may or may not include the following examples:

• <u>Drinking water parameter requirements</u>: Data on the drinking water requirement for human survival (min, max, etc.) under a temperate climate with some activity is about *x* liters per person per day.

- <u>Cleaning water parameter requirements (a.k.a.,</u> <u>requirements for sanitation)</u>: For example, taking into account various technologies for sanitation, the effective disposal of human wastes can be accomplished with little to no water, if necessary. Or, given conditions and decisions, data on the water requirements for cleaning.
- <u>Bathing water parameter requirements</u>: Data on the amount of water needed for complete fulfillment of the water-type need for bathing, per person per day.
- <u>Basic Requirement for Food Preparation:</u> Data on the water needed for food preparation to fulfill human nutritional needs is *x* liters per person per day.

NOTE: Data must account for water composition and usage.

11.4.2 Atmospherics and geospherics

CLARIFICATION: Atmospherics (Read: air/space around a sphere to <u>move through</u>) refers to that which is in the atmosphere above [walking] surface-ground. Geospherics (Read: surface of sphere to walk/<u>move on</u>) refers to land or some other walkable surface.

The atmosphere provides breathable and liveable air. There is a global, biospheric atmospheric and geospheric service. Then, there are atmospheric and land (geo) changes to where a city exists. Then, there are atmospheric and land (geo) changes to where buildings exist.

- 1. GeoInformatics (land analytics; "geospherics") -Surface composition; land, ship.
- Atmolnformatics (atmosphere analytics; "atmospherics") - Quality of composition; understanding and planning.
 - A. Open space?
 - Somatic (hearing, sight, olfactory, dermal, electromagnetic)
 - B. Natural light?
 - C. Close and far sight observation throughout some natural cycle?

11.4.3 Food (nutritional service)

A.k.a., Cultivation service.

Food is any source of nutrient input for organic embodied restoration. Organisms need a source of energy to live. Organisms use food, in part, as their energy source. Organisms differ in the way they obtain energy.

NOTE: Autotrophs use the food they make to carry out their own life functions. Organisms that cannot make their own food are

called heterotrophs. Hetero- means "other." Humans are heterotrophs, given what is known. Heterotrophs obtain their energy by feeding on others (other organic and in-organic). Some heterotrophs eat autotrophs and use their energy. Other heterotrophs consume other heterotrophs that eat autotrophs. Humans are "omnivorous", in that require both (given what is known).

Food > Nutrient source [resource satisfier] - the need for accessing food of some appropriate composition at some frequency, which are not optional.

- Required by (1st level): Absolutely required by. • Life forms
- Service layer (2nd level): Absolutely required for.
 Eating
- Resource layer (3rd level): Options for.
 - Food elements (e.g., need for one carrot; many genetics + growing conditions will produce a carrot with different micro-nutrient, macro-nutrient, and energy density measurements. Measured in nutrient and vitamin yield.
- Environmental layer (4th level): Options for.
 - Production elements (e.g., need for land and technology to cultivate carrots).

11.4.4 Shelter (architectural service)

A.k.a., Accommodations service, building service, structural service, erectors service.

Shelter is any source of architectural input for organic embodied protection. Organisms need a source of architecture to live. Organisms use architecture, in part, as their energy source. Organisms differ in the way they use shelter. Shelter from the elements and noxious animals and insects with means to freely function, and improved by conveniences.

Shelter > Architecture source [resource satisfier]

- the need for accessing shelter of some appropriate composition at some frequency, which are not optional.

- Required by (1st level): Absolutely required by.
 - Life forms
 - Habitat service system operations).
- Service layer (2nd level): Absolutely required for.
 Inhabiting (buildings)
- Resource layer (3rd level): Options for.
 - Inhabiting elements (e.g., buildings involve materials and construction)
- Environmental layer (4th level): Options for.
 - Production elements (e.g., land or other buildings).

11.4.4.1 Sleep (dwelling service)

Sleep environment > Habitation source [resource satisfier] - Need for safe sleep cycle environment.

- Required by (1st level): Absolutely required by.
 Life forms
- Service layer (2nd level): Absolutely required for.
 Rebuilding body for another cycle.
- Resource layer (3rd level): Options for.
 - Bedding (including bed and cloth, and room, ambiance).
- Environmental layer (4th level): Options for.
 - Complete darkness (the absence of artificial lights bleeding into the sleeping environment).

11.4.5 Medical (medical service)

A.k.a., Lifeform restoration service, life-form restoration service, hospital service, safety service, life emergency service.

Hygiene is to some relative degree an action that reduces the incidence of medical disease.

11.4.6 Energy (power service)

Energy is any source of power input for architecture and embodied restoration. Organisms need a source of energy to live. Organisms use energy, in part, as their energy source. Organisms differ in the way they use energy.

Energy > Power source [resource satisfier] - Need for accessing local electromagnetic energy of some appropriate composition at some frequency, which are not optional.

- Required by (1st level): Absolutely required by.
 - Life forms
 - Habitat service system operations)
- Service layer (2nd level): Absolutely required for.
 - Energizing
- Resource layer (3rd level): Options for.
 Energizing elements (e.g., fire, electricity)
- Environmental layer (4th level): Options for.
 - Production elements (e.g., wood and twine, solar power).

11.5 The sub-views of human need

Fulfillment opportunities in the domains of:

- 1. Personal growth
- 2. Socially exploratory participation
- 3. InterSystem team contribution

11.5.1 Universal goals in the context of human need fulfillment

The universal goals of human need fulfillment include:

- Minimally impaired social participation (cooperation of information and sharing of common resources)
 - A. Maximum technical efficiency (mathematics and pattern optimization)
 - 1. Critical participation (contribution actualization)
- Human need fulfillment list (of an objectively, openly, adequately fulfilled threshold of [information or resource to form some construction]):
 - A. Food and water
 - B. Protective housing
 - C. Protective clothing
 - D. Non-hazardous life-space
 - E. Medical/health service
 - F. Social relationships
 - G. Critical autonomy
 - H. What if we were "free" to contribute to the whole global, local access-fulfillment system simultaneously, globally (i.e., "true" opensource [to the commons; public; social; globalpopulation of extensional users and creators].

11.5.2 Individual needs

The following is a simplified needs list for an individual, in a household, in society:

- 1. Basic necessities
 - A. Water
 - B. Food
 - C. Waste removal
 - D. Clothes (elements protection/architecture)
- 2. Localization
 - A. Land
 - B. Air (atmosphere for breath, movement, and vision)
 - C. House/dwelling
 - D. Light (illumination includes "shadow" as deprivation of light, and vision)
 - E. Sound
- 3. Basic activities
 - A. Care (self-bodily and other-bodily care)
 - B. Work (contribution and participation)
 - C. Rest (sleep)
- 4. Relationships
 - A. Self
 - B. Intimate individual (partner)
 - C. Close social individuals (family)
 - D. Household members
 - E. Non-household members
- 5. Consciousness (thought/motivation)

- A. Meanings/understandings
- B. Values and objectives
- C. Learning
- D. Communication
- E. Beauty (natural and harmonious/uplifting surroundings)
- 6. Body structure
 - A. Gender
 - B. Development phase (proximal to birth is highly age dependent, but distal to birth is highly disorder/disability dependent)
 - C. Health (state of structure and function of body from optimal to dis-ease)

The ten needs and 25 elements of the household form the outline of a database that describes need satisfaction within the household. Each element of the household is analysed for its possible links to all the aspects of all the needs.

11.5.3 Organic life-requirement needs

A.k.a., Categorical needs, absolute needs. electrobiological needs, innate needs, physical needs, bio-physical needs, electro-biological needs, organic requirements, organic-life requirements, physical-organic life-requirements, organismal requirements, biological needs, biological requirements, basic life requirements, basic needs, universal needs, human basic needs (HBN), etc.

Organic based needs are innate to a physical body, and consciousness is enmeshed with the fulfillment of these needs, as they arise (to be fulfilled by their active pursuit and conscious integration) for continued biological (and conscious) existence.

For instance, food as a [category of] resource, and eating as the act of fulfilling that [category of] need. In the case of food, it is an absolute or categorical need, because it is determined by our biological requirements, which exerts particular demands on embodied consciousness if it chooses to remain alive and happy. As an absolute need, it is neither substitutable, negotiable, nor optional. In that sense, an essential principle is applicable to absolute human needs: nobody's nonsubstitutable need may be sacrificed to the desires or lesser needs of any group of other people.

Biologically-based needs are the sensed experience that organisms require environmental inputs for optimal biological functioning, such as water, air, sleep, food, EM, etc. Organisms experience and can be visibly seen to diminish in well-being, when they go for too long without the fulfillment (as, connection>integration>release) of a particular environmental relationship. The deterioration that ensues from relatively less immediate needs, such as sleep, is also clear (Colten & Altevogt, 2006).

The degree to which physical-organic liferequirements are satisfied is the most basic foundation (i.e., the physiological source) of well-being. Humanity's highest potential (e.g., free conscious activity) requires the fulfillment of needs that develop out of the physicalorganic foundations of life.

Need' is an intrinsically socially and species relative measurement; is it relevant only in relationship to the highest potential expression observed by another, or how often and sustainably does someone experience the states of well-being and flow.

Needs can be satisfied in (at least) three contexts (i.e., with regard to):

- 1. Oneself.
- 2. The social group.
- 3. The [ecological] environment.

Satisfiers can be classified with regard to their utility. Max Neef original suggested suggests five classes of satisfiers in concern to their utility:

- 1. Violators or destroyers destroy future utility.
- 2. Pseudo-satisfiers appear to provide utility, but are neutral or negative.
- 3. Inhibiting satisfiers inhibit current satisfiers and current utility.
- 4. Singular satisfiers a satisfier .
- 5. Synergistic satisfiers mutual satisfaction.

More simplistically, satisfiers can be axiomatically divided into:

- 1. Positive satisfiers factually, a satisfier.
- 2. Negative satisfiers reduce current or future satisfaction.
- 3. False satisfiers appear to satisfy, but do not, and are some degree of neutral.

There is one sub-characterizable meaning to the word 'organic' in the context of human 'need':

- 1. Organic, in terms of composition (and conscious understanding).
 - A. Organic, in terms of, the genetics that have material satisfaction [requirements] of a specific composition.
 - B. Organic, in terms of, the organism that has requirements [demands] to sustain and develop its own composition.
 - C. Organic, in terms of, the consciousness that has feelings (from wellness to suffering) that sustain and develop its own composition.

Needs can be sub-classified as to whether they are one of three modalities to consciousness:

• Informational [to consciousness, mental state] - does the information available sufficiently fulfill conscious collect-ability, understand-ability, controll-ability/direct-ability, and use-ability needs?

- **Spatial** [to consciousness, body/physiological state] does the material surroundings available, inputs and outputs, and cycling, sufficiently fulfill conscious-material needs?
- **Consciousness relational** [to consciousness, psychological state] - does the social surroundings available, the other conscious beings, sufficiently fulfill conscious-socio needs?

Needs can be sub-classified as to whether they are one of two spatial modalities to consciousness: (material and non-material):

- *Individual* MATERIAL NEEDS [for services and objects]
 - Organic satisfiers (objects) Organic compounds are generally any chemical compounds that contain carbon.
 - **InOrganic satisfiers (objects)** An inorganic compound is typically a chemical compound that lacks C-H bonds.
- Social MATERIAL NEEDS [for services and objects]
 - Ecological satisfiers (services) Life-form cycles (within a biosphere) are generally any living organism that contains consciousness.
 - Habitat satisfiers (services) A controlled and localized environmental cycle is typically a sociotechnical organization that contains a population of an organism (for instance, human).
- NON-MATERIAL NEEDS [for conscious 'information interconnection' and environmental 'quality of state']
 - Social connection satisfiers (A.k.a., Belonging, self-esteem, etc.). This is 'needed'. Note, that in this context, the material needs could be said to be 'required'.
 - **Conscious self-development** (A.k.a., Growth, self-expression, self-learning, education, etc.). This is 'demanded'.
 - Environmental order sufficient (threshold) for desired level of contribution (in the context of need and demand). This is 'essential', otherwise required work doesn't get done; or there is 'coercion', the violation of freedom, but work gets done via extrinsic motivation.

11.5.4 Societal-level sub-conceptions of human need

The notion of human need can be viewed, at the societal level, from multiple perspectives, including but not limited to:

• Basic human needs - Equate to physiological and

safety; subsistence and security.

- Market [economic] needs Equate to those safety needs described by employment that meets basic economic needs (not being destitute), cost of education, earning power, personal wealth, household infrastructure, and non-paid work - as well as some socially based needs community/national wealth and productivity, public infrastructure, economic diversity, economic growth, economic sustainability, and trade. Note that "market" needs do not exist in 'Community'; they have been specifically understood and engineered out of the system's design. In a market, products and services are provided through trade/ object/currency-exchanged re-distribution. In community, access is globally coordinated to fulfill needs, demands, and there is no need for services or objects to be traded, priced, or otherwise, marketed or commercialized.
- Ecological needs Environmental needs for natural ecological services. For example, the Earth's water cycle, atmospheric cycle(s), and other biospheric and sub-biospheric-organic systems with overall dynamic requirements and living needs.
- Environmental needs Environmental needs also equate to safety needs and include the availability of clean air, the availability of clean water, low health risks due to toxic contamination, biophilia (equates to belongingness/love needs) and acceptable distances from critical ecological thresholds. Real environmental needs span human and ecological life's inherent requirements, to reproduce, bio-diversify, and live well. Environmental needs would fall into Maslow's hierarchy at multiple levels:
- **Optimization needs** Where well-being equates to the remaining hierarchical needs from belongingness/love through aesthetic needs.
- Service (operations) needs The operation of a habitat service system, which has a set of specified needs for its operation and adaptation.
- Subjective happiness (subjective satisfaction)

 Subjective happiness equates to the remaining hierarchical needs from belongingness/love through aesthetic needs. Here, happiness is subjective satisfaction, but not totally subjective, but also, common, because of embodiment. These include life satisfaction and freedom, sense of place, identity, community vitality and cohesion, access to nature, access to diversity of nature, affection/respect toward nature, value/ importance of leisure time, mutual respect, cultural and spiritual beliefs, and aesthetics. Subjective happiness impacts several of Maslow's hierarchies,

but particularly the psychological need to know and understand, aesthetics needs, and esteem needs. Life satisfaction or quality-of-life (QOL) is a focal point for subjective happiness, with satisfaction being gauged at the individual and social levels. Quality-of-life (its composition) is an measurement of the opportunities that are provided to meet human needs in the forms of built, human, social, and natural conditions (in addition to time). Ones ability to **express one's own values**[system] and socialize with others of a similar value system significantly influences subjective happiness. Of course, a given value/belief system can orient its user toward a wide-variety of different experiential destinations.

11.5.5 A "goods" view of human needs

A "goods" view of human needs:

- 1. Atmospheric "goods" (or, satisfiers)
 - A. The atmosphere as a satisfier may be subcomposed of the natural atmospheric "goods" (elements and characteristics) of breathable air, open space and light.
 - B. Systemically depredated insofar as:
 - 1. The air is polluted by its commodities' production and uses (e.g., ever more motor vehicles for profit with no limit on their numbers or ration of their use on land, air or water).
 - 2. Open space is cumulatively occupied by these corporate-person uses and commodities disabling people's lives (e.g., by pervading fumes and motor-spike decibels and subsonic propagations).
 - 3. The light of the sun has been made toxic by corporate-commodity effluents having cumulatively destroyed the ozone layer for protecting the earth from infra-red solar radiations.
- 2. Bodily "goods"
 - A. The bodily goods of clean water, nourishing food and waste disposal.
 - B. Systematically depredated insofar as:
 - The fresh waters of aquifers, lakes and rivers are polluted and drawn down by corporate-person activities of manifold kinds from factory farming, toxic discharges across industries and commodity extraction, with untreated sewage itself led by these open-waste methods (and taxes required to financially resolve the problem)
 - 2. The world's foods and beverages are increasingly palatable, chemically adulterated,

and genetically altered to serve moneysequence functions of mass sale, masking of age and quality, and care-cost reduction, thereby leading multi-disease causation and depleting loss of seed stocks, vitamin yield, forest covers, and organic immune resistance, etc.

- 3. Massive non-cyclical waste methods throwaway products and packaging and nonrecycling of waste products.
- 3. Home and habitat "goods"
 - A. The home and habitat goods of shelter from the elements and noxious animals and insects with means to freely function, and are improved in countless expendable conveniences.
 - B. Systematically depredated insofar as:
 - 1. A home is the fundamental property of the State (requiring tax to sustain access to).
 - 2. A home is a purchasable asset that must be maintained through additional purchase.
 - 3. Protection from noxious animals and insects is by profitable commodities of instant poisons, solvents and other kill-mechanisms that are hazardous to life-forms in general and blinker out life-coherent methods of common/public resolution.
- 4. Home and habitat "goods"
 - A. The built and natural environmental goods of surrounding elements and contours contributing to the whole are what form all pleasant human surroundings across cultures.
 - B. Systematically depredated insofar as:
 - 1. Urban sprawl 'development' extending from one town and city and beauty space to the next.
 - 2. Buildings determined only by corporateperson profit for unit sold and not for their contributing place in the whole unless regulated by such public coercion standards.
- 5. Security and healthcare "goods"
 - A. Social life security (a.k.a., civil life security).
 - B. Systematically depredated insofar as:
 - 1. The manufacturing, sale, and jurisdictional equipping of armaments.
 - 2. The mass sale of addictive and life-reducing usables (e.g., cleaners) and consumables (e.g., junk drinks and foods, personal care products) that afflict countless people with diseases, whose cause by these products is unresearched or undisclosed.
 - 3. The privatization for profit of health-restoring goods so that what does not serve corporate money sequences is ruled out, including human health plans and their extensions.

- 6. Cultural "goods"
 - A. Language, music, art, and play which constitute culture in all its diverse human forms.
 - 1. Systematically depredated insofar as:
 - 2. Corporate money-sequence growth selects for funding and reproduction of only those forms which directly or indirectly produce and mass-market commodities for corporate profit. Whatever does not serve this ulterior goal is not funded or, if integral to people's lives, distorted into a form that does (e.g., public education tailored to the demands of corporate rule). Thus, culture becomes commodified to sell corporate brands, communication is reduced to what promotes sales by instant images and sound bites, and public cultural policies are determined by corporate policy. The cultural form is decided as "good" or "bad", in turn, by private money-value returns - that is, how much is paid for product or reproduction (high art), or how well it sells corporate commodities (commercial art). In general, culture becomes funded or defunded as it returns higher or lower money value to private parties.
- 7. Human vocation as a "good"
 - A. The good of human vocation is the ultimate life good for human beings in community insofar as it enables and obliges people to contribute to the provision of universal life goods consistent with each persons enjoyment of them. This is the innermost moral logic of real economy and social justice ruled out by the opposite demands of pecuniary self-maximization with other human beings as mere resources for more money for ever fewer at the top. At the highest level of abstraction, the vocation of each individual is to do what s/he can that is of lifevalue to others and of life-interest to self. The value of work for others, in turn, is defined by its contribution to the provision of the universal goods each and all require to live as human.
 - B. Systematically depredated insofar as:
 - 1. Work exists not as contribution, but an extrinsically motivated necessity.

11.5.6 Socially embodied need types

The needs common to all humans are:

- 1. **Basic [Physical] needs** are survival factors without which life existence is disrupted.
 - Without the fulfillment of basic needs, living system is unlikely to exist or is highly disrupted.
 - Required for persistent survival (existence) of

the organism (intergenerational) or species (intragenerational).

- 2. **Complimentary [Social] needs** comprise of needs that may cause difficulties in life if they are not met. Without it living is disrupted. Access to services.
 - Without the fulfillment of complementary needs, living systems are [physiologically and cognitively] disrupted, but not at direct risk of non-existence.
 - Required for persistent physical and mental life sustainment (or, life satisfaction) of an organism.
- 3. **Desired [habitat] opportunities** represent human needs that fulfil human potential, although without their fulfillment, lives would not be impossible. Opportunities [to access] growth and contribution enabling environments. Without available habitat opportunities for self-development and contribution (social development), living is still possible, not as joyous.
 - Without the fulfillment of desired opportunities, living system are [cognitively] disrupted, but not at direct risk of non-existence.
 - Without the fulfillment of desired opportunities, life experience is not full [of potential growth and exploration].
 - Required for optimizing for realization/ actualization of a higher potential of selfexpression and available opportunities.

11.5.7 Individual human needs for access

Needs are satisfied (fulfilled, completed) by access to adequate food and water, protective housing and clothing, medical care, significant belonging, etc., and in turn, optimized by freedom from coercion, freedom to satisfaction, justice to restoration, justice to access, and efficiency.

NOTE: In materiality, all is access.

Humans have a set of needs representing requirements that must be fulfilled for individual humans to live, and live well:

- 1. **Human needs for existence** what needs accessing in order to exist.
 - Subsistence (sustenance) access to food, shelter and clothing, social and physical habitability, freedom to reproduce. Determined by the amount and characteristics of the geographical space, natural resources, life support factors, infrastructural conditions, total resources throughput (internal and external); eternal conditioners of society reproduction.
 - **Protection (safety)** access to health services, safety systems, and protection against disaster.

Warning, prevention, protection and assistance systems against internal and external natural and social disasters.

- Affection (love) access to family-type relationships and the means to keep a family. Recognition of one another.
- 2. Human needs for persistence what needs accessing in order to persist.
 - Comprehension (understanding) access to knowledge and the societal information system; access to communication; freedom to share information. Access to externally generated information, ideas, and scientific and technological understandings; global information services.
 - **Contribution (teaming)** possibility for participation in decisions; lack of manipulation, marginalization or repression; expression of values.
- 3. Human needs for development what needs accessing in order to develop fully.
 - **Recreation** access to recreational opportunities and services, and to beautiful and restful landscapes. Access to activities and freedoms without reprisal or repression.
 - Creation access to creative works, and to individual and collective creative activities.
 - **Discovery** access to resources and tools for pursuing creative interests and inquiries.

11.5.8 Emotively embodied human need categories

Humans have two sets of physically-emotive (embodied) need:

- 1. The need as an animal to **avoid pain** (<u>hedonic</u>, the experience of *pleasure* is the drive).
- 2. The need as a human to **grow** psychologically (<u>eudonic</u>, the experience of *purpose* is the drive).

11.5.9 Functionally embodied human need categories

Humans have two sets of functional need, which may also be viewed as goals affecting human behavior:

- 1. **Physiological needs** (physical functioning, including eletro-bio-mechanical)
 - These needs could be viewed as <u>physiological</u> <u>goals</u>.
- 2. Psycho-sociological needs (intentional drive)
 - These needs could be viewed as <u>psycho-</u> <u>sociological goals</u>.

*Overlaid on top of physiological goals are the

psycho-sociological goals (e.g., purposes, plans, and intentions).

11.5.10 Species embodied human need categories

The specie's directive is to generate and enable human life and life conditions to survive and flourish:

- 1. **Survive (survival directive)** do not die before reproduction and sustenance (as in, raising healthy offspring).
- 2. Flourish (flourish directive) reproduce healthy organisms with ever greater potential capability (as in, healthy adaptation to a more thought responsive environment).

11.5.11 Human life-need goal categories

Humans have two related sets of life-need goals. They have a need to survive given requirement from which physical inputs are required to maintain (to be in well health) a body, and the need to become more (to be a better, more wise and developed person).

- 1. **Survival goals (self-survival, existence)** the goal(s) of surviving in a physically embodied existence:
 - Physical well-being (existence).
 - Mental well-being (existence).
 - A safe and healthy environment (survival).
 - Reproduction or limiting reproduction (survival).
- Betterment goals (self and social development)

 the goal(s) of thriving by actualizing the potential (of that which is given, and available).

11.5.12 In concern to human life need

Life encompasses all human real-world life compositions. To an embodied consciousness, there are a set of material life compositions, including but not limited to:

11.5.13 The "basic" human need list

This list of needs assumes that if these "basic" needs are met on a daily (natural) basis, that a person will have enough motivation, well-being, and physical stamina to seek out challenge, hormetic growth, emotional stimulation, contribution, and creative expression, as needed throughout their lives:

- **Food** The body needs calories and a variety of nutrients including protein, fat, and carbohydrates everyday to grow, function, and repair. Without food, the body begins to atrophy.
- **Water** Ample hydration allows for the processes of the body to occur. Without water the body

cannot process food or remove wastes.

- **Shelter** The body requires protection from the sun, freezing temperatures, wind, rain, and other organisms (e.g., insects and predators). Without shelter, human skin and organs are damaged from extreme elements.
- **Sleep** 6–9 hours of sleep every 24 hours allows the brain to process new knowledge and deal with emotional information. Without ample sleep humans cannot learn new things or get past emotional pain.
- **Connection with others** Humans require connection (physical or emotional) with other humans to release certain hormones like oxytocin. Human touch is so important that when humans are young, their brains don't develop correctly without it. Regular connection to others allows us to maintain a sense of well-being that allows for self-care.
- **Information novelty** New information (information novelty) creates the opportunity to learn and the potential to fail (stimulating the state of flow). Without regular novelty and uncertainty, motivation wanes and a healthy sense of well-being is reduced/lost.

11.5.14 Absolute needs

A.k.a., Absolute life necessities, biological needs, biological influences.

Biology influences and pervades behavior. The biological dimension of human behavior - what might be called, the "biological imperative" - is not often subjected to analysis. Basic human needs are the necessary conditions to basic survival and further physical and psychological development. Biological imperatives are the needs of living organisms required to perpetuate their existence: to survive. Include the following imperatives for a living organism: food, water, shelter, energy, reproduction, social connection, self-development, etc. This idea of a set of biological imperatives may also be characterized by sociological imperatives, because the environment includes multiple biological individuals.

An **absolute [biological] need**, because it is determined by the biological requirements of human life forms, which exert particular demands on conscious (moral) agents.

• Social affection - There is still a human life necessity of supportive care or "love" which some say the greatest need of all. Certainly without it people variously lose life capacity including the will to live itself, and infants and children variously shrivel up and die to the world without it, as research has shown across the primates.

- **Personal nutrition (nourishment)** Eating is the number one instinct. Without it, our physical vessel will die; we need to take the action of food seeking and eating to continue living (by the body in some degree of adaptation to an environment).
 - Nutrition is an absolute biological need; it is neither substitutable nor negotiable, and it cannot be considered a social construct.
 - The nourishment requirement is multi-factorial and relates calories with macro- and micronutrient intake, and with research establishing required range quantities for size and age parameters, otherwise corresponding physical degeneration by significant deprivations.
 Generally, this category is measured in the units micro-nutrients (mg) and macro-nutrients (g).
- **Personal medical health** The maintenance of life can require periodic health care relative to the objective disease problems that arise in the course of life.
- Self-actualization (access to 'flow', from potential) - how to use your consciousness and abilities to do the most good for society before you die. Happiness is living a purposeful life. If we figure out our purpose through self-actualization while on a journey to it, that should facilitate happiness because we know where we are going.
- **Aesthetic** sensation of surrounding material environmental system; most significantly, the visual appearance and experience of the surrounding space, which can have a significant effect on the psychological state of inhabitant.
- Access to justice There is the requirement to live in reciprocity with others.
- Access to information ("education", psycho-social) is a socio-cultural life-requirement without which cognitive and imaginative capacities cannot develop fully. The higher-level capacities of human thought and expression require eduction. Education
- **Contribution** (psycho-social) Freedom to contribute for the sake of its intrinsic value (without regard to the demands of the a money-value system (e.g., funding or employment), political pressures, and coercion.
 - Take what you have learned and make it beneficial in your own life (i.e., beneficial to oneself):
 - Take what you have learned and make it beneficial to others.

11.5.15 Socio-psychological human need[ed conditional satisfiers]

These human needs can be measured on an individual and social level/scale (NOTE: this scale includes all

absolute needs, but at the same time may be considered a higher-categorical level).

- Subsistence inputs required to remain alive.
 - Individual: Calculation of effort for access to [clean] food, air, water, land, and shielding.
 - Social: Aggregation of data on access to [clean] food, air, water, land, and shielding.
- **Safety** inputs required to remain physically and psychologically whole.
 - Individual: Calculation of presence of accidents, disasters, and interpersonal violence.
 - Social: Aggregation of data on presence of interpersonal violence experiences, accidents and violence.
- Affection inputs required to remain connected.
 - Individual: Calculation of connections with significant others.
 - Social: Aggregation of data on levels of rape, suicide, and homicide, and observation of connections between people.
- **Understanding** inputs required to remain cognitive.
 - Individual: The [capability to] re-visualize, and inquire into, the unified information model for the community-type society [in which the individual resides, a goal of orientation].
 - Social: The expression of a unified information model for the community-type society
- **Participation** inputs required to remain socially active.
 - Individual: Calculation of contributions to the operation and adaptation of the unified societal system as part of the InterSystem Team.
 - Social: Aggregate data on contributions by InterSystem Team participants.

11.5.15.1 Complexity in understanding the need for safety

What is the level of access [to all that humanity has to offer] for someone to feel 'safe' [among the common population]?

If all were open, there would be a usability calculation restriction based, potentially, on some level of harm restriction:

- 1. Level-of-harm restricted (effectiveness inquiry within the decision system)
 - A. Level of harm is what leads to the inability of the population to commonly, and thus, personally, access certain items via nominal InterSystems habitat services, both common and personal (personal as a sub-level of common).

- For instance, the InterSystem Habitat Service team will not support the production or access of biological weapons for common or personal access; though such items may be experimented with (or not), transparently, at the InterSystem Team level, as decided upon via some pre-programmed design contribution algorithm.
- B. For some materializations, the access is restricted to InterSystem team members with certification and accountability. (notice the model is recursive in access level with the first level.)
- C. It is important here to realize that some procedural knowledge can be used to great harm, and therefore, must be restricted from common, everyone, access; though, the fact that there is knowledge of such knowledge should not (per transparency, openness values and objectives).
- D. Personal, common, and InterSystem Team access to:
 - 1. Material systems and machined objects (e.g., plutonium, molecularly reactive centrifugal technology, and gravity technology), or the setting of fire to common plastics represent high level of harm and are decidedly prioritized, appropriately transparent, in InterSystem access.
 - 2. Information systems to reproduce certain objects (e.g., child porn; procedures for producing 'weapons' that are objects that produce a sufficient level-of-harm of possible social harm that they are restricted from common and personal access (as restricted access to the procedure or restricted access to the materials, or restricted access to the materials in that composition).
 - 3. For some materializations there are decided restrictions on the use of fabrication machines to produce certain objects.
 - 4. For some material re-cycling there are decided restrictions on the use of systems to reduce certain material.
 - 5. For example, do you want to use common access snowboarding equipment that has been checked out from a local recreational equipment library at a ski slope? Do you want to use the checked out snowboarding equipment to run the highest class level peaks? In this final case, the risk of harm to life and damage to the checked out item (or personal item) is great.
 - 6. In community when said snowboarding action

occurs,

- Whether the objects are lost or damaged and the individual(s) human(s) are harmed or not is of likely emotion consequence to the social environment,
- 8. Said action/execution could/would likely lead to loss of access to life and object,
- However, in community, there is no subsequent abstracting of trade, debt, price, punishment, possible further non-life harm. There is no further social abstract harm necessary to induce on those already suffering.
- 10. There is further life harm in not necessarily understanding that which in the real-world induces the conditions of addiction and bullying of others.
- 11. Abstracting is another supra-process that integrates other motives (and hence, consequences) on top of life.
- 12. The question is, what [level of harm] is being abstracted and integrated as part of the core decision resolution inquiry process that restricts access to a given society system (procedure, object, or condition).

Note: In other societal configurations, this societal requirement was held by governments and their internal and external militaries down to the level of police and denouncers. In the snowboarding example, in the market, the police and judging human or machine procedural justices would have taken care of disputes arising from self-selected risky behavior (i.e., renting an item from a store and damaging it while taking great risk, possibly putting others' lives at risk, with or without insurance).

Wherein,

- Personal sub-level type access do "you" or small, non-intersystem, recreational group of "youse" want to put yourselves at risk by some activity using personal and/or common access items.
- InterSystem access do "you" want to be put to death via some painless medium?
- Need an appropriate informational and spatial "place" to 'feel' consciously safe and challenged. Here, challenge is 90* - hormetic, appropriate autonomy on individual's levels of personal safety risk, though not individual autonomy on the selection of social risk (which, is achieved through open societal algorithmic decisioning).

11.5.16 Psycho-social needs

A.k.a., Intellectual needs, psychological needs, psycho-social experiences and conditions.

Needs involve <u>action by the organism (organismal</u> <u>action)</u> to seek out certain basic types of psycho-social experiences, to a somewhat varying extent across individuals, and to feel good and thrive when those basic experiences are obtained, to the same extent across individuals. These needs will change given the information and technology available to the population, and the population itself over time, and that population itself can compare itself to others. Wherein, the organism seeks a certainty understandable experience of the social world.

Examples of psycho-social need models include,

- Anthony Robbins socio-self-empowerment model
- Self-determination theory; intrinsic motivation model

11.5.17 Human needs for existence and flourishing

The common human needs could be viewed as a universal set of means of life (needs), which all humans require to flourish:

- 1. Atmospheric means of life: Breathable air, sense open space, daily light.
- 2. Bodily means of life: Clean water, nourishing foods and self-waste disposal.
- 3. Architectural means of life: Shelter space from the elements with ample provision to retire, sleep and function.
- 4. Environmental means of life: Environmental surroundings whose elements contribute to the whole and do not chronically degrade (e.g., land and the cosmos).
- 5. **Caring means of life**: Intimate love, social inclusion, safety and healthcare when ill or infirm.
- 6. Educational and recreational means of life: Activities of language-logos/art-play to choose and learn from.
- 7. **Contributory ("vocational") means of life**: Meaningful work or service to perform.

11.5.18 Human life-finding functions

NOTE: Behavioural motives, to some degree, arise due to the innate desires placed on consciousness from its embodiment in a physical human organism.

As an organism, humans have [at least] two innate [life] finding functions, which may also be viewed as goals affecting human behavior:

- 1. **Food-finding function** the need to remake the individual body with minerals and dead organisms.
- 2. Mate-finding function the need to/remake the

genetic body through another generation.

- 3. **Social-finding function** the need to remake the psychological (mental) body through another connection. That connection can be (or can not be):
 - **Bond-finding function (***show* **trust)** Bonding is when animals begin to trust and appreciate one another.
 - **Respect-finding function** (*show* significance)
 - Help-finding function (show support) and contribution-finding function (show contribution - contributing to support others to satisfy their unmet needs (contributed optimization).
 - Growth-finding function (show sharing)
- 4. Information-finding function (show growth)
- Evolution-finding function (<u>show</u> adaptation)

 hormesis is betterment adaptation to a given environment.

11.5.19 Self-organizing system needs (accessservice needs)

The needs of self-organizing systems (e.g., human and ecological systems) can be characterized as follows (note: the habitat service support system facilitates the fulfillment of each need)

- 1. **Needs for existence or identity** Needs whose non-satisfaction results in the destruction of the system.
 - Basic needs/requirements fulfilled by Life Support Service.
- 2. **Needs for completeness or integration** Needs whose non-satisfaction results in the systems inability to perform some of the functions.
 - Engineering needs/requirements fulfilled by Technical Support Service.
- 3. **Needs for stable functioning** Needs whose nonsatisfaction results in disturbances in the system's performance of some of its functions.
 - Want and request needs/requirements fulfilled by Facility Support Service.
- Needs for adaptation, improvement or optimization - Needs whose non-satisfaction inhibits the adaptive modification of the system's structure and functioning.
 - Improvement and adaptation needs/ requirements fulfilled by Project/InterSystem Support Service.

The attributes of a self-organizing human system are:

- 1. **Completeness or integration (Source)** All information is integrated into a complete design decision.
- 2. Cooperation (Social) The design is shared and

coordinated.

- 3. **Allocation (Resource)** The design is constructed and operated.
- 4. **Regeneration (Service)** The design provides services to the community.

Given an environmental dynamic where there is probability, entropy and uncertainty, then there are also the orientational system needs of:

- 1. Optimization
- 2. Adaptation
- 3. Resiliency

11.5.20 Contributor autonomy needs

InterSystem team contributions are acts of involvement in the well-being of the interrelated whole to which the contributors belong. Therein, contributors (intersystem team members) have a variety of autonomy-related needs, which include:

- **Time**: Contributors set contribution time, unless it becomes set by the work-task and decided upon by a decisioning protocol.
- Location: Contributors set contribution location, unless it becomes set by the work-task and decided upon by a decisioning protocol.
- **Independence**: Contributors choose among the activities available to their [InterSystem Team] service development level (i.e., dependent task selections are dependent upon the skill, knowledge, and ability of the contributor, and availability of the task).
- **Social connectivity**: Contributors choose among activities, those with a low necessity for social connectivity, and those with a high necessity for social connectivity.
- Work quality (positive fulfillment): Contributors choose worthwhile tasks and activities of personal interest.
- Crowding (negative fulfillment): Contributors do not choose to be crowded by information, space, or other contributors, unless such crowding is brief and worthwhile.

11.5.21 Physiological flow needs list

Flow is a cycle, and therein, state, of high performance. Flow generation (the experience of flow) requires:

- **Autonomy (control)** Able control over "your" own actions. The desire to be in control of oneself.
 - When internally regulated, this is self-control ('will' is the highest internal control).
 - When externally regulated, this is social-control ('protocol' is the highest external control).

- Adaptation (mastery; adapt to the environment with mastery) - Able improvement toward mastery (competence) of high performance. The desire challenge and advance, to be good at something.
 - When internally regulated, this is hormesis (flow is the highest internal adaptation).
 - When externally regulated, this is evolution (equanimity is the highest external adaptation).
- Connection (purpose; connect with purpose)

 Able to connect action with purpose (feeling) through logical reasoning and pattern recognition. The desire to make sense of oneself and the world through a sense of purpose or relatedness.
 - When internally regulated, this is though (selfintegration is the highest internal purpose).
 - When externally regulated, this is behavior (contribution is the highest external purpose).

11.5.21.1 Autonomy

Three elements are used to operationalize and measure autonomy and its absence. The potential key variables that affect levels of individual autonomy of agency include (i.e., are required for autonomy):

- Cognitive and emotional capacity is a necessary pre-requisite for a person to initiate an action. Since all actions have to embody a modicum of reason to be classed as actions at all, it is difficult to give a precise definition of the minimum levels of rationality and responsibility present in the autonomous individual.
- 2. The level of societal (or cultural) understanding a person has about oneself, one's society (or culture), and what is expected of one as an individual within it. These understandings will include both universal competences, such as the acquisition of language in early childhood, and a host of socially specific skills (which, though variable can objectively appraised). To deny a person such basic cognitive capacities is to threaten the person's autonomy within society (or culture).
- 3. A range of opportunities to undertake socially significant activities. By 'significant' we mean activities which are central in all societies. Again, there is a problem in determining minimum opportunity sets, given that even the most oppressed of people can and will exercise choices. Nevertheless, some minimum freedom of agency is an essential component of autonomy of agency in all societies.
- 4. The capacity to compare societal (or cultural) rules, to reflect upon the rules of one's own society (or culture), to work with others to change them, and in extremis (i.e., in "extreme" cases where societal

change is not possible), to move to another society.

NOTE: *People build a self-conception of their own capabilities through interacting with and learning from others. Autonomy presupposes interdependence.*

11.6 Life-quality indicator categories

Life-quality indicator categories include, but may not be limited to:

- 1. Health need (survival) To complete a range of practical tasks in daily life requires conscious abilities (manual, mental and emotional abilities), with which poor health usually interferes. Illness results in suffering one or more dimensions of disability, regardless of different individuals label, name, and explain their illnesses and dis-eases. In order for health and longevity to occur in the human condition an entire lifestyle approach is required. Having health means we can take part (i.e., are sufficiently mentally and physically healthy enough to) in intrinsically valuable life activities. When individuals are healthy, then they can do the activities they desire to do in life. When humans are healthy in body and mind, and participate in life in ways that are intrinsically meaningful, then they are highly likely to be observed flourishing. Effectively, this is survival (as physical bodily health)
 - Whatever a person's goals, whatever the societal nuances, practices and values within which someone lives, someone will require certain prerequisites in order to strive towards those goals. In this way it is possible to identify physical survival (as the base threshold of physical, bodily health) and personal autonomy as the most basic human needs – those which must be satisfied to some degree before actors can effectively participate in their form of life to achieve any other valued goal.
- 2. **Autonomy need** 'Autonomy' can be defined as 'the ability to take and act on informed decisions what should be done and how to go about doing it'. In a social context, autonomy refers to the ability to integrate and express experiences of flourishing individually, and intergenerationally. The idea of autonomy comes bundled with awareness, choice, opportunity, and intrinsic motivation. Autonomy is the ability to make informed choices about what should be done and how to go about doing it). Autonomy implies that people value and feel interested in their own actions, that they are self-endorsed and not forced by external agents. Competence is related to being able to achieve

results to function effectively in ones' society. Relatedness is linked to feeling part of the society, accepted and respected beyond the close family ties. The key variables affect levels of individual autonomy of agency, and to be excluded from participation in any of these domains is to have one's autonomy impaired:

- A. <u>Some level of cognitive and emotional</u> <u>capacity</u> is a necessary prerequisite for a person to pursue a goal. This can be blocked by serious mental ill-health: the levels of rationality and responsibility present in the autonomous individual are undermined when a person suffers from severe mental illness.
- B. <u>An individual's autonomy is impaired</u> if lacking adequate human understanding of oneself, and what is expected by others of oneself. That which is moral is to coordinate the fulfillment of human flourishing, thus building moral capacity in the social organism. To control the needs of another is to control their autonomy. Learning is a universal process of human development, information must be shared to develop socially, thus building social capacity.
- C. <u>A range of physicalized</u> (i.e., material) opportunities to contribute by taking an active role in socially significant activities. By 'significant' this means informational and materialized activities, systems, that are central in all societies, but expressed differently: life support, technology support, and facility support. By contribution, the individual in relationship with the society build physical capacity.
 - 1. The market classifies this physicalized experience as employee, employer, consumer.
 - 2. Braybrooke (1987) classifies these as the roles of parent, householder, worker and citizen.
 - 3. Ian Gough (2017) classifies these four basic social activities as production, reproduction, cultural transmission and the exercise of political authority.
- 3. Self-actualization needs (self-actualization measure) - experienced as a desire (with environmental access-ability) to actualize one's personal, full potential. Self-actualization has both a subjective and objective measurement input. Self-actualization subjective measure [of well-being] -- quality of life (subjective well-being) at time of survey data collection:
 - Market job satisfaction (and market indirectly: "hobby" satisfaction). Statements of job satisfaction include as an indicator of well-being

include: a perception of time, outdoors, earnings, and independence. Other possible perception factors include: independence, work quality, earnings, time/trip length, adventure, offshore, time/family, and crowding.

- Community life "satisfaction", which is divided into by the four types of information of which the information system is composed and with which individual's interface: social qualia (a.k.a., social "satisfaction"), decision qualia, lifestyle qualia, material qualia. *Self-actualization objective measure [of well-being]*:
- Market measured by identifying the number of material objects found in each in each respondent household; earnings/income (e.g., gross or net earnings from a business, taxable income, income per capita, household, or family). Other measures include: "job safety," "predictability of earnings," and "your earnings".
- Community measured by identifying the degree of access (absolute number-value) to material objects (that meet human needs and facilitate the desire and access-ability to actualization of one's full potential.
- 4. **Physiological needs** experienced as a desire (with environmental access-ability) to move into and through different physical mediums and states. Physiological inputs have only objective measurement inputs:
 - Food, water, shelter, energy, etc.
 - Market measured by an interested organization expensing (i.e., paying for) its collection. Individuals use and make purchases, while entities in the market produce and exchange.
 - Community determined and measured by human requirements engineering.
- 5. Safety (and security, defense) no physical violence and no environmental or service serious complication. Experienced as a lack of incidents, and a desire to resolve, recover, and prevent incidents. There is the desire for safety on the part of the individual, and there is the design of a safe environment. Safety inputs have objective and subjective measurement inputs: Violence in the system:
 - Market measured by those organizations funded by charitable organizations, and by State entities. Systems are designed to be as reliable as is profitable.
 - Community the presence of violence is analyzed, its correlative and causative factors are determined, the system synthesis this new information with pre-existing information

(i.e., integration) to generate an updated understanding; a new set of system requirements is developed, the design specification is modified, and then engineering changes the next experiential iteration of the habitat service system that provides for our common fulfillment. Systems are designed to be precisely reliable.

12 Well-being

A.k.a., Wellbeing, human well-being (HWB), wellness, flourishing, fulfillment, happiness, human development, human welfare, quality-oflife, the human life conception, good life, positive psychology, quality-of-life, life-satisfaction, etc.

Well-being', as the term visibly denotes, refers to the state of consciousness being (feeling) well (i.e., feeling in its best state, and without pain). The concept of 'wellbeing' indicates an evaluation of a person's situation, or more fittingly, an evaluation which is focussed on the quality of the persons 'being". Generally speaking, to be in a state of well-being, a person must be capable of making sense of the world and acting in ways that are healthy, adaptive, and functional for life, and not unhealthy for society as a whole. However, well-being is not just a matter of subjective experience; it is a common matter (issue) of what anyone can do, or be, in a shared reality. As a human being, well-being is how [well or fully] someone is fulfilled in their the experience as a common individuated unit of human embodied consciousness.

Well-being is a positive physical, social, and mental state; it is not just the absence of pain, discomfort, and incapacity. Well-being requires that basic needs are met, that individuals have a sense of purpose, and that they feel [cap]able to achieve important personal goals, relationships, needs, and participate in society. Wellbeing is enhanced by conditions that include supportive personal relationships, integration between social relations (low coercion and conflict), strong and inclusive environments, good health, personal security, rewarding contribution, and a healthy attractive environment. Wellbeing must be approached holistically if a society is to scale well.

CLARIFICATION: *In part, this project may be defined in relation to a set of inquiries about what all humans require to live well, which define its boundary conditions.*

What does it mean to be a 'well' social primate? Probably, it means not just that an individual is capable of getting around and functioning, but also functioning [socially] with other humans in a way that allows the other humans to function well.

Humanity requires a societal environmental that facilitate swell-being, instead of different degrees and expressions of suffering and being unwell. Well-being is about feeling good and functioning well, while having access to those services that facilitate survival and flourishing.

The following are concepts that are highly correlated with well-being:

• Well-being is a state - a whole systematic framework for well-being that is needs-based in its approach, allowing humans to freely develop meaningful relationships and express purpose in life, and therein, actualize their potential.

- Material fulfillment generates well-being by meeting material needs.
- Social fulfillment generates well-being by meeting social needs.
- Wellness is a process a holistic dynamic of life fulfilling processes that starts with ecosystem services that function well.
- Wellness in relation to suffering/harm Over time, well-being could be considered a decrease in unnecessary suffering.
- Wellness is the optimal state of health of individuals (and "organizations" of humans). Here, there are two focal concerns:
 - The realization of the fullest potential of an individual physically, psychologically, socially, spiritually and economically, and the fulfilment of one's participatory passions throughout all aspects of life.

There are three emotions that humans experience to varrying degrees that can dramatically affect the quality (condition), quantity (access), and length of life and contribution. These emotions are:

- 1. Fear
- 2. Joy
- 3. Sadness/depression

Obvious to everyone is the truth that fear is the lowest limit of potential. However, fear in and of itself is not bad. Fear warns away from overly risky activities. The memory of pain and resulting fear is what stops people from touching a hot stove again. However, when operating together as a society, fear is the detractor. To initiate and sustain a community-type society, fear is the limiting factor.

12.1 Hedonic and eudaimonic integration of well-being

That which is applicable to society, and individuals in particular, encompasses components from multiples approaches to well-being:

- 1. **The eudaimonic approach** is concerned with functioning and the realization of self-potential (Ryff et al., 2004; Kahneman et al., 1999).
 - Happiness from meaning to potentials and selfrealization. Social and psychological well-being (socio-psychological well-being). Happiness is determined to a large extent by one's success in achieving self-set goals.
 - Eudaimonia implies prior hedonism and pleasure to move.

- The objective of eudaimonia is that there is no conflict in life between "you" and "others" when meeting needs.
- 2. The hedonic approach happiness comes from pleasure and not pain (in context). The hedonic approach is linked to subjective experiences of personal pleasure or satisfaction. The hedonic approach is concerned with pleasure, enjoyment and satisfaction.
 - Hedonic well-being happiness from pleasure and not pain. Well-being as pleasure or satisfaction.
 - Mental and subjective well-being.
- 3. The commons approach happiness comprises shared experience; those of shared interest and/ or characteristics work and share mutual [optimal] well-being. Common well-being is influenced by society, human relationships and socio-technical networks.
- 4. **The objective approach** happiness dependent on a set of identifiable relationships that are common to all people, and fulfilling these mutually imparts well-being.
- 5. The critical approach Happiness may not be greatly affected by adding positives to one's life, particularly in an enriched world, but instead, it is accomplished mostly by removing things that are a strong negative every day.

12.1.1 Mood

INSIGHT: When our diet is in alignment with our species evolved requirements, then we don't suffer from tooth decay. Evolutionary mismatches are behind most modern health problems.

Human individuals appear to have, given what is known, a functioning "mood-like" system involving self in relation to other, that induces feelings in the self. Even happy people experience unpleasant emotions. To have strong well-being and long-term happiness does not equate with uninterrupted joy; the restoration phase of the flow cycle is a visible indicator of this. Adaptive emotions involve being able to respond appropriately to events.

12.1.2 Well-being as 'eudaimonia'

A.k.a., Happiness as eudaimonia.

As a conception, 'eudaimonia' understands human wellbeing as achieving a full and meaningful life [within society]. Eudaimonia is contentment from a state of being healthy, happy and prosperous. Eudaimonia (Note that eudaimonia is also sometimes called flourishing or thriving).

Someone's sense of purpose is called eudaimonia. Eudaimonia measurements provide data on whether someone is flourishing, whether life has purpose, and whether someone is fulfilling their highest potential. That which is 'eudaimonic' is that which produces happiness, or is otherwise, conducive to happiness (i.e., facilitates happiness). Etymologically, eudaimonia is Ancient Greek from *eu* "good" + *daimon* "genius, guardian deity". In moral philosophy, eudaimonia is used to refer to the right actions as those that result in the well-being of an individual.

The Ancient Greeks resolutely did not believe that the purpose of life was to be happy; they proposed that it was to achieve eudaimonia, a word which has been best translated as 'fulfillment'. Here, eudaimonia is a state (or condition of the world) that is achievable by fulfilling certain necessarily required conditions.

NOTE: There are some definitions of eudaimonia as happiness through possession of the greatest "goods" available. How does the society under observation view and define, "goods"? Are goods highly market-State contextualized. Are goods highly defined by human fulfillment (material and informational) and realizing one's fullest potential.

Eudaimonic psychology (as opposed to hedonic) conceives of three universal psychological needs:

- Autonomy (self-direction, no social coercion) the propensity to self-regulate one's actions and to endorse one's own behaviour.
- Competence (performance, mastery) feeling able to attain outcomes and operate effectively within one's environment.
- Relatedness (connection, sharing) feeling cared for, and significant for, others, and a sense of being integral to one's social organization.

These needs are cross-cultural; all humans require that they be met in order to experience wellbeing (Ryan and Sapp, 2007). Their conclusion is that basic needs are universal and it is possible (in principle and practice) to compare levels of basic need-satisfaction across societies (or cultures).

Another view of the needs of organismal development may be:

- Existence desire for physiological and psychological well-being (e.g., flavor).
- Growth desire for continued personal growth and self-development (e.g., exploration and technology support).
- Relatedness desire to satisfy interpersonal relationships and common flourishing (e.g., lifesupport).

Fulfilment of these needs is necessary for psychological 'wellness', and observable (and felt) consequences follow from their lack of fulfilment.

12.1.2.1 Self-direction (Autonomy)

The characteristics (constituent elements) of well-being for a self-directing system are:

- **Resilience** the ability to rapidly recover from adversity.
 - "We" can understand survival.
- **Coordination** the ability to be in mutual relationship.
 - "We" can cooperate.
- **Sharing** the ability to observe all available information.
 - "We" can access a unified information space.
- **Attention** the ability to focus (on a problem, a solution, and an evaluation).
 - "We" can shift our attention within the information space to resolve solutions to problems.

There are method, which may be applied, that facilitate the optimal expression of resilience, coordination, sharing, and attention within and amongst systems. Further, Each of these four characteristics is "plastic" (i.e., can be regulated through training).

12.1.2.1 Actualization (Competence)

Human beings have capabilities which can be developed [in their potential] and expressed [as an actualization]. It is possible, in a shared life-space, to functionally grow and express oneself. The condition of self-growth and selfexpression is otherwise known as functional freedom and economic opportunity (i.e., functional access):

- *To* the design and development of the habitat service system through the InterSystem Team.
- *From* the habitat service system as an individual human in the Community.

Human capabilities (human potential) conceives of well-being as the ability and opportunity to express desired function (e.g., to achieve goals). A person's capability represents all the combinations of functioning that are feasible to that person - that could be chosen.

12.1.2.2 Wellness (Relatedness)

A.k.a., Holistic; integration of 'wellness' into 'being', well-being.

In the literature, wellness and well-being have slightly different meanings. Wellness is more about a personal choice (Read: dimensions of personal choice) that affects someone's well-being. However, in practice, 'well' is essentially synonymous with 'well-being'. There are two sub-views on wellness: wellness may be seen as a precursor (pre-condition) for well-being, based on mental, physical, and emotional health; wherein, health is a state of being while wellness is a process of being. Wellness is sometimes associated with health and freedom from disease, while well-being is more often associated with a state of being happy, healthy and prosperous. Wellness and well-being are highly associated with the practice of health-promoting lifestyle behaviours.

Integration as the linkage of differentiated parts of a system is a good predictor of well-being. In many studies, integration is the number one differentiator of well-being in every measure of well-being. When there is too much differentiation, then chaos and rigidity are the likely result of impaired integration. Integrations (linkage of differentiated parts of a system) seems to be the root basis of well-being, and as a mathematical perspective, this way of defining integration is the base of optimal self-organization for complex systems.

Here, relatedness means that the individual is related in wellness to all domains of life. Wellness may be contingent upon people going through the process of questioning their current state of being.

Humanity has a common core, integration, that can now be traced as a measure throughout society. Humanity can now look at [very sophisticated] measures of integration identify whether a [societal] intervention creating more integration, or less. And, if it is creating more, then most likely it will be associated with measures of well-being (no matter what sub-measure), and if it is creating less, then most likely it will be associated with less well-being.

Whether we are looking at individual health or planetary health, we have a common, scientifically grounded proposal that integration is well-being. Is this decision going to promoted more integration (and hence, we'll-being), or less integration (and hence, less well-being).

If there is integration, then there is harmony and a sense of well-being. If there is not well-being, then likely there is chaos and rigidity.

If Integration in the brain is the best predictor of wellbeing, then (in the context of human health):

- 1. Bi-lateral integration (laterality integration of body)
- 2. Vertical integration (up and down aspects of body)
- 3. Memory integration (impaired memory integration, trauma integration)
- 4. Narrative integration (make sense and find meaning life, in memories of life, in coherence with own life)
- 5. State integration (mental states, role integration)
- 6. Relational integration (looking at relationships with others as integration and linkage).
- 7. Temporal integration (awareness of change integrated across past, present, and future).

Wellness is a highly encompassing concept around the idea of core need life systems:

• Well fed (Nutrition; cultivation regeneration)

- Well sheltered (Architecture; shield regeneration)
- Well healed (Medial; life-form restoration)
- Well watered (Water; atmospherics & liquids regeneration)
- Well sunned (Energy; power regeneration)
- Well materialized (Cycling; materials cyclingregeneration)
- Well moved (built-in; recreational)

Wholeness and core felt life experience:

- The self is happy; in felt life experience.
- The self is confident; in knowing the defined operation of the life system that contributes to their happy life (i.e., is well-defined).
- The self is a whole being; not going to go destitute, and has processed trauma (i.e., much flow).

Flourishing:

• Healthy, happy, fit (well moving).

Most conceptualizations of wellness include the four conventional dimensions of well-being:

- 1. Economic Access and positive experiences with goods and services, and contribution. Well service systems and their products.
- 2. Social Access and positive experiences with social opportunities and social participation. Well social relationships.
- 3. Psychological Access and positive experiences with one's cognition and mental state. A well mind.
- 4. Physical Access and positive experiences with one's physiology. A well body.

The common sub-factors of wellness often include (which, are also components of well-being):

- 1. Contribution (team, occupation, vocation)
- Intellectual (curiosity and growth, lifelong learning, creative and information stimulation, and lively interaction with the world)
- 3. Health
- 4. Freedom from disease

Wellness can be viewed as an active conscious process by which someone:

- 1. Becomes aware of a choice,
- 2. makes (takes or arrives at) a choices toward,
- 3. a more successful, positive and well existence.

The characteristics of wellness:

 Wellness is a choice constrained by an environment: a decision you arrive at to move toward optimal health within a given environment.

- 2. Wellness is a way of life: a lifestyle you have designed to achieve your highest potential for well-being.
- 3. Wellness is a process: an understanding that there is no end point, but health and happiness are possible in each and every moment.
- 4. Wellness is an integration of body, mind, and environment: an awareness that the choices we taken in one area affect all others.

12.1.3 Well-being as 'hedonia'

A.k.a., Happiness as hedonia.

Hedonia refers to pleasure, enjoyment, and satisfaction; and the absence of distress. Hedonia is associated with sensory experience, and eudaimonia is associated with the total state of consciousness, which includes cognition (cognitive attention and intention).

CLARIFICATION: Hedonic adaptation is the tendency of us mere humans to quickly return to a relatively stable level of happiness despite major recent positive or negative events or life changes. Hedonic adaptation is otherwise known as synthetic happiness.

Both eudaimonia and hedonia are required elements of well-being; for instance, meaningful experiences can bring about pleasure, and taking care of oneself can add meaning to life. Here, it is important not to equate the pursuit of hedonia with shallowness. However, under aberrant societal conditions, hedonia is likely to become the sole, shallow pursuit (at the expense of fulfillment).

There are societies with an essentially negative view of sensual pleasures. Yet, it's not the sensual pleasures themselves, but the way people are caught up in those pursuits. Tied to, bound to, greedy for, infatuated with, and do not have independent control over their cravings (sense pleasure, physical sensual pleasure).

NOTE: Happiness and subjective well-being theory (hedonic psychology) may claim to be measuring 'happiness', when only (in fact) measuring 'contentedness' (synthetic happiness).

12.1.3.1 Well-being as happiness

INSIGHT: What distinguishes happiness from suffering is pain.

Well-being incorporates several separate, but related concepts. This raises concerns regarding the tendency of well-being to be conflated with happiness, which is only one element of well-being. Today, when most people try to articulate the purpose of their life, it is often the term 'happiness' that is used. Importantly, a happy life is enjoyable, not [only] because of what the happy person possesses, but because of the way the happy person reacts to his/her life circumstances. Incorporated in this subject's view/definition of happiness are the conceptions of disposition, pleasure, satisfaction, and subjectivity. Although happiness is desirable, people want to feel happy for the right, appropriate, and actually fulfilling reasons.

NOTE: The human organism innately synthesizes happiness (even in experiences of deprivation); hence, people's positive evaluations of their lives (subjective feelings of happiness) can be corrupted by this innate function to return to a stable moving psychological baseline, even during times of suffering.

As a state, it could be said that happiness and peace of mind refer to mental patterns and environmental dynamics that uplift embodied consciousness.

It is easy to experience the aim of human life as growth and happiness, which consists of pleasure defined as satisfaction of the needs (and wants/preferences) "we" feel. From this perspective, self-determinism is seen as leading naturally to harmony. Each person pursuing their own interests within recognized appropriate limits.

QUESTION: *Why do we all smile against gravity when happy and not frown?*

If the aim of human [system] life is happiness and exploration, which consists in pleasure defined as satisfaction of needs (life cycles) and opportunities (potentials). From this perspective, a sense of selfpurpose, self-interest, and self-integration are seen as leading naturally to harmony. Each person pursuing their own interests within recognized appropriate limits in a coordinated habitat service system of satisfiers (goods and services).

People are happiest (given what is known), when they are (at least):

- Healthy
- Well fed
- Comfortable
- Safe
- Prosperous
- Knowledgeable
- Respected
- Non-celibate
- Loved

12.1.3.2 Well-being as life-satisfaction

Life satisfaction is (generally) a self-report measure. Self-reports of subjective well-being vary considerably in their complexity. One of the most common that asks on a 1-10 scale, "How satisfied are you with life, from 1 (terrible) to 10 (ideal)?" How much life satisfaction is reported is highly determined by how someone feels when (at the very moment) they are asked the question. In this sense, life satisfaction is a synonym of mood the present moment psychological state. Satisfaction, then, is the label for a "cheery", "inquisitive", "joyful", "happy", "uplifting", etc., mood (i.e., an excellent, or highly ideal, mood state). Other terms for cheerful states of psychology include, but are not limited to: hedonic, cheerful, happy, positive psychology, etc.

Life circumstances, physiological and psychological health do highly influence life satisfaction scores, as we would expect. Satisfaction with life is a reflective question. Satisfaction with life measurements are evaluative measures. "You" are asked to think about how things are going in your life. Because individual life experiences influence individual decisions, and are useful in understanding and predicting behavior.

There are subjective and objective views to 'life satisfaction'.

- 1. Subjectively, there are 'affect' evaluations, because 'affect' correlates to a person's ongoing evaluations of the conditions in his or her life.
 - Individuals can examine the conditions (resources, access, opportunity, etc.) in their lives, weigh the importance of these conditions, and then evaluate their lives on a scale ranging from 'dissatisfied' to 'satisfied'.
- Objectively, 'self' assessments (prompted or not) may be contrasted with evaluation based upon global objective 'life' [flourishing/wellness] thresholds concerning the quality of a person's life.
 - Together, individuals can organize a unified information system that computes [algorithmically] the conditions in their lives, weigh the importance of these conditions, and then evaluate their lives on a scale ranging from dissatisfied to satisfied, as well as from a service quality perspective, to provide a decision service to support the intentions of everyone for the next designed iteration of the societal service system.

INSIGHT: Cognitive evaluation is assumed to require cognitive processing. Computation is the direction (and automation) of data processing; cognition is the direction (and automation) of meaning processing.

12.1.3.3 Well-being as health

The health of a person is understood as positive physical, mental and social well-being, and it may be evaluated objectively and/or inter-subjectively (in reference to the optimal performance observed by other human beings). Health can be conceived as resulting from the fulfillment of the human needs, and from the persons internal structure and processing, including factors such as age, genetic structure, and psychological composition. and optimize themselves in a dynamic and adaptable environment. Everybody wants and needs their brain to work better, and certainly when coordinating together as a society, everyone needs their brains to work at its best. The brain exists among an adaptive physiology, and thus, the overall health is equally relevant.

12.2 Well-being in the market

Market economists (marketists) typically indicate well-being by income and material asset acquisition ("wealth"). Market economists generally track (i.e., focus on) opulence (acquisition, growth, use without regard to need) and subjective control over objects (ownership). Market economists generally pre-suppose (inaccurately) that choices fully reflect preferences, and therein, that preferences are equivalent to needs. The presumption that choices fully reflect preferences is empirically mistaken, the implied or sometimes explicit stance is that well-being lies in making choices, whether or not these prove to fulfill predicted preferences or have other results. Preference fulfillment is often central to market economists. In practice, however, this is reduced to well-being as simply having the presence of a choice or activity.

From the market viewpoint, well-being (if it exists) consists of the fulfilling of [predicted, ex ante] preferences without accounting for outcomes.

NOTE: Well-being is not simply a subjective experience of affect positivity, but is also an organismal function in which the individual detects the presence or absence of vitality and wellness.

In the market, well-being is often defined as the satisfaction of consumer preferences (a market conception), where individuals are the best judges of their own preferences (or wants), and what is produced and consumed should be determined by the private consumption and work preferences of individuals. This argument for the satisfaction of consumer preferences appeals to intuitions of personal autonomy and freedom.

Preference satisfaction theory (the satisfaction of consumer preferences in the market) is biased because markets and other capitalist institutions themselves influence and shape values, tastes, preferences and even personalities, generating a "circularity of evaluation" (open system without feedback). Individuals are not necessarily the best judges of their wants if their knowledge or rationality is short of sufficient data.

In the market, objective indicators of well-being have traditionally been measured by indices such as the Gross Domestic Product (GDP) and the Human Development Index. Under market conditions, income has been one of the factors most extensively researched (by market economists), and together with age, sex, race, health education and marital status is reported to account for

INSIGHT: Brains love to learn; to prepare for

8%-20% of the variance in subjective well-being.

NOTE: In the market-State, often abstract indicators rather than human indicators are used to track and measure well-being. Outcomes are highly dependent on what is measured, because what is measured affects, and often controls for, outcomes.

Humans should not be looked at as markets. Instead, society should look at what humans need, and then, there is no need to market, because humans would contribute to have access.

12.2.1 Life wellness and the "Blue Zones"

There are places on the planet where people live happily and healthily for a very long time. A long-lived population is defined as a cohort of individuals who share genetic, environmental, or socioeconomic characteristics that facilitate aging for over a century. These locations and their common lifestyle habits were popularized by Dan Buettner in his 2008 book, "The Blue Zones: Lessons for Living Longer from People Who've Lived the Longest". Therein, Buettner identified five places in the world where there is a high concentration of humans over age 100 who also express disability-free and disease-free life expectancy. Note that the word "blue" in the term 'blue zones' has no relevance – blue was simply the color ink initial researchers used to identify these locations on their map.

NOTE: Recent research has found significant issues with the longevity attribute of so-called "blue zone" populations. In fact, blue zones have the highest levels of life expectancy, in large part, because they also have the highest levels of tax documentation fraud and poor record keeping, which why so many people "live" so long there. These recent findings call into question Buettners original longevity-associated hypothesis. However, there is still evidence for Buettner's claim that long lived and healthy groups of people live in cultures that make all the right choices without them noticing (i.e., the people don't have to have super self-discipline, organized exercise routines or purist diets, but instead, their cultures and environments facilitate right choice). "None of these people try to live to be 100", says Buettner; "They are just" products of their environment."

The term 'blue zone' has come to mean a demographic and/or geographic area of the world where people live measurably longer lives in excellent health and happiness. "Blue zone" populations consist of individuals living in a defined geographical region who achieve extreme longevity in comparison to the average human lifespan. Identifying long-lived populations, such as "blue zones", can assist in highlighting factors that promote longevity. The people inhabiting 'blue zones' share common lifestyle characteristics that contribute to their longevity. The geographic locations themselves, besides being outside of industrialized regions, are relatively unimportant. However, it is the case that genetic, socioeconomic, geographical, climatic, dietary, sociopolitical, and other general lifestyle factors all have been identified through observation as being associated with longevity.

INSIGHT: Putting the responsibility of curating a healthy environment on an individual amongst an antagonistic environment is highly unlikely to create long lived wellness for the individual. It is the determinant environment of community that increases wellness, and consequently, life expectancy.

Longevity, health, and happiness are phenomena related to individuals, as well as to populations as a whole. By identifying areas where people live the longest, Buettner and other researchers identified a set of common lifestyle-oriented longevity determinants/ factors.

INSIGHT: As humans, we are not biologically programmed for longevity. We are programmed for procreative success.

Those with health and longevity in these locations had some of the following factors in common during their lifetimes. Not all locations had all of the factors in common, but all locations had some of the factors/ determinants in common:

- 1. Natural movement Throughout the course of your day, do you exert yourself physically without having to plan for exercise? In general, movement is a natural part of their day. The world's longest lived people create an environment that guides them into moving without having to think about it. They do not have to seek out other sources of regular daily exercise; rather, in order to live their lives, they have to do physical work. In other words, most of them enjoy physical activity incorporated naturally into their daily lives (like gardening or walking). None of them were found to exercise. They setup their lives so that they are constantly nudged into physical activity. Significantly, they walk through the majority of their life space. When they do intentional physical activity, it is things they enjoy. Presently, walking is the only scientifically proven way to stave off cognitive decline.
- Life purpose Why do you wake up in the morning? Do you engage in meaningful work and find purpose in what you spend your time doing? In general, those with long and healthy lives wake with a purpose (larger than themselves) every day, such as caring for grandchildren, volunteering, or other forms of social contribution. They know

how to setup their lives so that they have the right outlook; they have a purpose in life. Further, they have vocabulary (a linguistic orientation) for a sense of purpose. They know their sense of purpose, and it is active in their life. The whole idea of getting up and living each day in a meaningful way is driven by this sense of purpose.

- 3. De-stress and relax (down shift) Do you spend time every day relaxing and de-stressing? Stress leads to chronic inflammation, associated with every major age-related disease. In general, the world's longest lived people have routines (or, strategies) to shed that stress (a.k.a., "down shifting"). There is a very clear moment or time when they "down shift" in their mental and physical exertion, which happens daily. Longer lived individuals utilize different ways to "shed stress" (to relax, rest, and rejuvenate), and each society has had its own traditions that translated into community embraced habits. These have varied from the religious who pray, to the Ikarians napping, or the Costa Ricans staying in synch with their natural peninsula habitat, the Sardinians enjoying their alcoholic "happy hour", or the Okinawans intentionally remembering (i.e., meditating on) their ancestors during specially set aside time each day. Typical de-stressing activities include: alcoholic happy hour; a daily nap; daily meditation/prayer/contemplation; and spending time in nature (e.g., forest bathing).
- 4. Mindful eating and the 80% feeding rule With each meal, do you eat mindfully and stop when 80% full? In general, the longest lived people eat mindfully/wisely, and stop when 80% full. They engage different strategies to keep from overeating. In other words, they stop eating when stomachs are 80 percent full (primarily, due to the way in which they interact and/or arrange their environment). Different societies use different strategies to keep from overeating. The Okinawans say the "hara hachi bu" mantra before meals as a reminder to stop eating when their stomachs are 80% full. Other societies serve themselves on reasonable sized plates (not large plates), and then put the food away for storage so as not to return for another serving. Those who live long lives enjoy their meals and do not rush the feeding process. They eat with a sense of appreciation and enjoyment. As a result of this mindfulness, they realize while eating when their hunger has been addressed, and they stop themselves from pushing the limits of eating. It is estimated that they stop when~80% full. They are comfortable disposing of food that remains on their plate after they are

sufficiently fed (this food is composted). In addition, these groups eat their smallest meal in the late afternoon or early evening, largest meal midday and they don't eat after the evening meal. They fast for the rest of the day and overnight, until they break their fast in the morning (with break-fast). While it may not be necessary to follow this exact pattern, it speaks to the importance of fueling oneself well during the day and honoring hunger and fullness levels. Avoid skipping meals, which can lead to getting overly hungry and possible overeating.

- 5. Whole, nutrient dense foods Do your meals consist primarily of a diversity of whole, nutritionally sufficient foods? It's estimated that about 75% of the food of these people comes from the ground. They eat high fiber meals that are rich in antioxidants, phytochemicals, vitamins and minerals. They consume a whole foods diet with sufficient diversity to ensure sufficient nutrition. They follow a flavorful and healthy dietary pattern. Virtually all food is grown in the locale, or harvested/cultivated nearby. The diet is characterized by moderate caloric intake. They consume a lot of plants and fish, and the meat most often consumed is pork. Of note, they do not take any supplements or track their food/calories in any way. They aren't overly preoccupied with what or how much food they consume. Also, meals are a time to rest and connect with food and loved ones; they aren't rushed through or multi-tasked. These dietary patterns tend to be high in anti-oxidant and anti-inflammatory substances. The Sardinians and Ikarians have embraced some version of a (valid) Mediterranean style diet.
- 6. Moderate alcohol intake with friends (especially wine) If you enjoy alcohol, do you enjoy it moderately and regularly with friends? In general, they drink 1-2 glasses of unadulterated alcohol (generally wine) per day, with friends and/or with food. Scientific research has found that moderate, regular drinkers outlive non-drinkers, especially if they share those drinks with friends. They didn't binge on food or drink they simply lived each day for its own merits.
- Social/familial engagement including belonging and social integration – Do you spend a significant amount of your time nurturing and supporting those who you love? Spend time and expend energy with those who you consider love. Put your family ahead of your egoic/subjective concerns. Strong family and community connections. Ultimately, feeling a part of something bigger than yourself can increase quality and length of years.

They "invest" time and energy in supporting and nurturing those they love.

- 8. Healthy behaviors and support Do you surround yourself with people who are also oriented toward their highest potential selves? In general, those with the greatest longevity engage in healthy behaviors while surrounding oneself with people who support, and also engage in, healthy behaviors.
- 9. Aesthetic environment Maintain a beautiful environment that includes a garden.

The data we have on "blue zones" shows us that we can create our own "blue zone". It shows us that health and vitality is multi-factorial and encourages a holistic approach.

12.3 Well-being through societal engineering

I.e., The engineering of a state of well-being for humanity.

It is possible to structure and cultivate well-being into society at the system's level through a coordinated habitat service system (HSS) that functions through the contribution of individuals in community to InterSystem teams. It is possible to design a society where well-being is available to everyone; where well-being has been designed to be highly accessible to every individual.

A controlled engineering approach to well-being interprets and critically analyzes the data on the state of people's lives that affect their daily existence, causing their current state of well-being and to determine if a reorientation is necessary. In community, it is easy to assess the degree of specific need fulfillment across individuals (and HSS', cities) due to having a transparently unified resource-based (access-based) information system.

Together, human needs and well-being explicitly introduce moral criteria into the conception and appraisal of society. Genetic and biological constraints distinguish a category of needs. The recognition of genetic and biological constraints distinguishes human need from alternative approaches to wellbeing. But 'constraint' must not be confused with 'determination'.

Human mammalian constitution shapes its population's needs for such things as food and warmth in order to survive and maintain health. Human cognitive aptitudes and the bases of the organisms emotionality in childhood shape many other needs - for supportive and close relationships with others, for example. It is a non-controversial observation that all living things need nourishment, and greater states of harm and lower states of well-being result when this is not available.

Because human needs are conceived to be universal to all peoples, a operational definition of need enables inter-personal (and inter-societal) comparisons of wellbeing, including comparisons between significantly different cultures/societies and time periods. The universality of human need strongly underpins obligations to ameliorate serious harm across the globe. In the inherently interconnected real-world, such a commitment to meet the global needs of humanity facilitates a perception of the world that sees the entire population of humanity, and its ecology, as a potential moral and social community.

12.4 Well-being and harm

In part, harm is prevented from coming to well-being, at the societal level, through the decision system's effectiveness inquiry. The decision system's effectiveness inquiry is examines harm.

In order to examine the applicability of effective decisions in the design of societal system, it is essential to identify several core functional human questions (Katina, 2019):

Note the term service system can be replaced with robot within some of these questions.

- 1. Can a human designer codify conditions under which a specified action will benefit a human?
- 2. Can a human designer codify relevant issues which a representative person would perceive as harmful (physical harm, privacy, humiliation, and embarrassment), and quantify/categorize these to a degree that could allow decisioning?
- 3. Can a human designer codify relevant environmental conditions that will modify perceived levels of harm?
- 4. Can a human designer quantify relevant situations where a service system action will cause differing types and degrees of harm to more than one person?
- 5. Can the service system identify/quantify all relevant human harms and harm-levels? Does the service have, within its construction and computational abilities, the capacity to identify all relevant types of harm?
- 6. Can the target service system predict, from alternative actions, the levels and types of harmful effects that those actions will cause for each potentially affected person?
- 7. Does the human designer who constructs/ programs the service system have the capability to imbue these recognition capabilities?
- 8. Is the service system capable of autonomously choosing to carry out actions that could potentially cause various "harms" to one or more persons?
- Is the service system capable of examining choices available to it, including choices to terminate its own existence? And to determine levels of identifiable harms likely to arise for each of the full range of potentially affected persons, from each

alternative robotic choice?

- 10. If a service system is able to select from a range of actions (including a selection of inaction that could potentially cause varying levels of types of harm to one or more persons), are the definitions of harm and the numbers of persons and the environmental modifying issues sufficiently quantifiable to allow decisions that would be acceptable to society?
- 11. Can the service system apply these principles statistically, i.e., taking the view that it will make "correct" decisions 90% of the time, and for 10% of the time its decisions will prove to be incorrect and harmful?"

An effectiveness harm sub-inquiry may identify a service, service object, or positive condition ("good") as belonging in a human access standard (the standard priority) if and only if it satisfies conditions (1) AND (2) AND (EITHER 3a OR 3b):

- It satisfies at least one basic need or capability (that is, it either helps fulfill a dimension, or prevents harm to people's own fulfillment);
- 2. It doesn't harm the fulfillment of anybody's needs or capabilities;
- 3. It is the only satisfier of at least one basic need/ capability; It is one of many competing satisfiers, but it is overwhelmingly preferred at a global scale for at least one dimension. The bar must be set high for such support—goods must be desired by an overwhelming majority of the population. If a need/capability can be met by a number of satisfiers that don't meet condition (3a) or (3b), then the human access standard constituent has to be decided at an implementation phase, through participatory approaches.

For example, for adequate nutrition, if many different diets (e.g., meat-based or vegetarian) can provide the required nutrition and none is universally desired [(a) and (2) met, but not (3a) nor (3b)], then the specification of a DLS should remain at the level of nutrients, allowing for different diets to be determined at the local level through participatory methods. if alcohol were universally desired [(3b) satisfied) and consumed, but known to cause harm to human health (violating (2)], it should not be included. If alcohol were universally desired [(3b) satisfied) and consumed, but known to cause harm (by degree) to human health (violating (2)], it should not be included (by degree).

A human access standard limits the risk of harm to achieving basic human wellbeing to an acceptable threshold. The standard constituents may be included because they prevent harm to meeting basic needs, such as good health. However, the assessment of potential harm is not straightforward. The ambiguity lies in at least two aspects: what is the risk of an effect (which in turn is the product of the severity of an effect and its likelihood); and one's vulnerability to it.

The assessment of potential harm includes two elements:

- 1. What is the risk of an effect (which in turn is the product of the severity of an effect and its likelihood).
- 2. What is someone's likelihood of not being resilient to the harm of the risk's actualization (i.e., what is someone's vulnerability to the harm caused by the actualization of the risk).

It is the combination of these that together define the risk of harm. Different resources would be required to mitigate risk depending on the extent of risk aversion one chooses, as is well known in risk analysis. Because of this dependence, a standard eventually would need to define such risk thresholds, notably for different types of people, who have different levels of risk tolerance. For instance, the average person may tolerate a few days of extreme heat or muggy weather, particularly with adequate access to fluids and shade, but the elderly may have a much lower tolerance for the same conditions. A standard in practice would be contingent on the establishment of such risk thresholds.

It is possible to actualize qualitative boundary conditions for setting human life access thresholds. Therein, there exist, for example, safety thresholds for protecting humans from unrequired potentially fatal conditions. Furthermore, harm should also include prolonged exposure to extreme discomfort. Freedom from 'extreme discomfort' in a city, for example, can be defined as freedom from prolonged exposure to air pollution, inappropriate lighting at night (dis-abling - not having white when necessary; or en-abling (healthy) having red/amber when necessary.

Human existence gives rise to informational and material requirements at the:

- 1. Individual (self)
- 2. Technical (contribution, the habitat systems)
- 3. Social (global social participation)

A global human access standard for any individual in a community-type society is typically organized such that people share material resources, information, and embodied socio-conscious connection, at different levels of habitation. It is possible to identify three scales of global access:

- 1. Personal household, family (e.g., dwelling, personal computer).
- Common families share homes and neighbours (others in the local habitat) share services and local access; commonly accessibly objects (e.g., tennis court).

3. System - utility access (e.g., electricity connections, hospital service, transport services)

NOTE: The complexity of interaction in relationship to object possession and social engagement. For example, in the context psychological well-being (e.g., self-esteem), once humans have other elements life and technology, such as good health and education, are likely to depend far less on material possessions, than on how people treat each other. In other words, people will consider how one another are treated as of greater interest than object possession, which in the sense of ownership may become increasingly disdained. Infrastructural and contribution coordination do not require political institutions to provide "decent" political/ social rights.

A hierarchy of questions concerning the hierarchical inclusion of requirements includes:

- Individuals Do the individuals have the tools of well-being in their own hands?
- Habitats Do the city systems fulfill the demands of their populations.
- Network Does the network fulfill the needs of the global population.
- Society Does the information standard, data standard, and computation standard orient the next iteration of society toward greater flourishing (and well-being).
- Material Do the material city systems, their conditions and infrastructure at the city level, share their mechanisms of function as a unified (~informational)/integrated (~material) system?
- Survey Do materially carried out surveys (objective and subjective) provide a whole picture of what is, what is required, and what is available?

12.5 Well-being and ecosystems

The interwoven relationship of ecosystems and human well-being is insufficiently acknowledged in the wider philosophical, social, human, innovation, and economic well-being literature. Material and energy transfer flows and cycles occur between humans and their biosphere that affect human well-being.

12.6 Well-being and the city

The essence of living in a city lies the fulfillment of human need at population scale. In the fifth century BCE, Socrates stated that the main purpose of constructing a city is to provide the people living their with vitality and prosperity (i.e., quality of life). Such statement demonstrates the firm, long-standing relationship between the two concepts of "city" and "liveliness". From this viewpoint, every city (or habitation) is essentially a means or medium of achieving happiness and vitality. One constructive component, therefore, is the overall quality of the environment. For vitality, there are various concepts developed in the West, including vitality, viability, livability and liveliness to mention a few. Except for "vitality", however, the rest of the terms are rather closely tied to the concept of livability and living together.

12.7 The evaluation of well-being

As a deliverable, the evaluation of well-being is an ("intelligence") assessment of overall human fulfillment. There are two main approaches to the evaluation of one person's life well-being:

- The subjective (subjective well-being, SWB) the person states as part of a scientific sample. The individual (as the subjective) communicates their experience - someone internal assessment of their current state-dynamic of well being. Subjective expression primarily involves feeling features of a persons life. Feelings can, and can not, be based on systematic and deep reflection of self and the environment. Satisfaction questions, because they are reflective, cause people to think and feel about their own life.
- The objective (objective well-being, OWB) the calculated data shows. Others observe that which is self-evident from the situation given an objective information space - commonly, external assessment of someone or some group of individuals state-dynamic of well being. Primarily involves non-feeling features of a persons life (like food cycle and morbidity, health, longevity, autonomy and access to desired opportunities).

More simply, indicators can be of two types:

- 1. Objective Observable, and thus, directly measurable (quantifiable).
 - Observed criteria alignment (e.g., life expectancy, food intake, etc.)
- 2. Subjective Self-reporting, and thus, subjectively measurable (qualifiable).
 - Survey (e.g., flourishing survey, happiness questionnaire, etc.)

Note that a whole understanding of the situation requires both types.

Here, there are four criteria for constructing measures of overall well-being:

- 1. Can the measure be constructed from available data?
- 2. Does the measure enable spatial and temporal

comparison?

- 3. Is the measure applicable to multiple scales, thereby addressing idiosyncratic, group-up, and regional dimensions of well-being?
- 4. Does the measure possess both objective (independently observable) and subjective (participant views) elements.

The Organization for Economic Cooperation and Development (OECD) Guidelines on Measuring Wellbeing include three types of indicators:

- 1. Subjective-based or survey-based indicators of wellbeing (SWB).
- 2. Objective indicators of well-being (OWB).
- 3. Composite indicators (indices that aggregate multiple metrics) of well-being. Aggregate metrics combine subjective and/ or objective metrics to produce one measure.

12.7.1 Assessing the presence of well-being

Etymological note: *Welfare' can be traced back* to the fourteenth century, when it meant 'to journey well' and could indicate both happiness and prosperity. Isn't this what it should mean, that we are traveling the our planetary and cosmic existence well, that we are flourishing? But, in early 21st century society, the term has been adopted by the State to mean giving service to those without through force and coercion.

To have a state of well-being is to have a loosely bounded assessment of positive physical, social, and mental states; it is not just the absence of pain, discomfort, and incapacity. The objective presence of well-being requires that:

- 1. Basic needs are met.
- 2. That individuals have a sense of purpose.
- 3. That individuals feel able to achieve important personal goals and contribute to (participate in) society.

In other words, people feel fulfilled when they experience certain conditional states of the world, when there is:

- Fulfillment of human needs.
- Development and expression of human capability.
- Growth toward the achievement of meaningful goals.

The multiple dimensions of well-being include, but are not limited to:

- · Economic access human material needs met.
- Physical vitality no dis-ease or dis-abilities.
- Emotional purpose direction and goals in life.

- Social cooperation coordinated and contributed HSS (habitat service system) opportunities.
- Personal autonomy freedom to actualize potential.
- Environmental stability ecosystem material needs met.
- Aesthetic appearance harmonious sensory environment.

The assessment of the presence of well-being is enhanced by conditions that include supportive personal relationships, healthy and inclusive organizations, actions having effects upon the environment, good health, physical safety, enjoyable (rewarding) work, and a healthy attractive environment and diet. In this sense, well-being is not a perspective (personal or otherwise), but an approach to life whose optimization includes the fulfillment (satiation) of these different states of a person's life system.

Well-being is an abstract concept that refers to the [positive] states of a person's life. When someone is said to have well-being, then that person's life is highly satisfactory to themselves. Well-being answers (positively) the question, "What is the state of your life?" Well-being is the communication of personal experience that captures a mixture of their life circumstances, including: how they feel and how they function. Wellbeing involves peoples' positive evaluations of their lives include positive emotion, desirable engagements, overall satisfaction, and meaning/purpose. From a branded perspective one could match people's common expressions of well-being with the quality-of-life variables present in "Blue Zone" locations (where wellbeing is highly common).

12.8 Quality of life indicators of wellbeing

A.k.a., Quality-of-life, quality of service, quality of habitat service system, quality of life experience, vitality, livability, etc.

In general, quality of life is the extent to which objective human needs are fulfilled in relation to personal and/ or group perceptions of subjective well-being. Quality of life is an integrator of the access that is provided to meet human needs in the forms of built, social, and natural services. A high quality of life may exists when there is fulfillment (or satisfaction) of needs, desires and aspirations. Human needs are objective (universally selfevident) and desires are intentional and through action upon create resonance patterns in the environment (orientational).

INSIGHT: As a procedural problem, knowledge is central to the solution of an optimal quality of life.

Quality-of-life and well-being are concepts that express the degree of [cyclically completed] need fulfillment,

and determine which are the most critical requirements for a given situation. Quality of life, a concept referring to persons, can be considered at the same time the ultimate goal of human development, and the central criterion that helps to characterize the intentional design of human living environments.

Note here that "human development" indices (such as, UN Human Development Index, HDI-UNDP, 1998) are a collation of objective market-State indicators and measures. Here, "objective" indicators of quality of life include, for example, indices of economic growth rate, profit rates, life expectancy, and other data, some of which would be relevant in community, and others of which would not be relevant. For example, objective measures (as metrics that matter in community) include indices of economic production, dis-ease rates, literacy rates, life expectancy, and other "Blue Zone"-type data.

Quality of life (QOL) is a general term meant to represent the two domains of well-being:

1. Objective well-being

- [Materialization] Need fulfillment How objectively well human needs are met? How are needs prioritized? The degree to which each identified human need is objectively met, known as 'fulfillment'.
 - Objective is something observed.

2. Subjective well-being (happiness)

- [Self and social perception] Life satisfaction

 The extent to which individuals or groups
 perceive satisfaction or dissatisfaction in various
 life domains. Perceived satisfaction with material
 and social life, given what is possible and what is
 current.
 - Subjective is a question that is asked.

These are Indicators of fulfillment quality (i.e., indicators of well-being, quality-of-life). For example, the current temperature of a human body (a.k.a., body temperature) is an indicator of objective well-being of that human body. More simply, body temperature is an indicator of well being, measured in some unit(s). For example, a rise in the population of mites is an indicator of decreasing health.

Well-being can be viewed from several perspectives:

- 1. **Objective [quality] measures** human needs, wants and preferences fulfillment.
- 2. **Subjective [objective] measures** question formulation through to response delivery.
 - Perception is the self report by an individual about their situation. The question here is the request for a self report.
- 3. **Market measures** job satisfaction (subjective) and income (objective).

Or, viewed another way:

- Objective indicators are usually based on the counting of occurrences, events or activities, while subjective indicators are based on reports or descriptions from individuals on their feelings and perceptions about themselves and the world around them. Objective indicators measure include, but are not limited to: access and participation opportunity, contribution opportunity, [habitat] service quality; autonomy (and presence of coercion), bodily health, etc.
 - The objective approach makes comparison possible, but at the potential risk of denying the inherently subjective nature of quality of life.
- 2. **Subjective indicators** (a.k.a., the subjective approach) are measurements of life satisfaction and happiness.
 - The subjective approach takes personal and preference ("cultural"/environmental) differences seriously, but under complex aberrant conditions subjective indicators have proven difficult to determine the statistical correlation between subjective feelings and objective indicators (the correlation between health and life satisfaction, as well as flow and happiness, are notable exceptions).

A holistic view requires an integration of the objective and the subjective to form an integrated understanding, and therefrom, a mutually beneficial and optimized decisions.

12.8.1 Subjective [indicators of] well-being

A.k.a., Feeling well-being, well-being as the data from an expressed feeling, quality of life survey, life quality assurance inquiry.

Subjective well-being (SWB, subjective satisfaction, now) is data based on individuals' reports of what makes their lives good (Read: well, happy, optimal). Subjective well-being sciences in which people's evaluations of their lives are studied. SWB includes diverse concepts ranging from momentary moods to global judgments of life satisfaction, and from depression to euphoria. The overall subjective well-being of individuals includes the multiple dimensions of well-being that impact an individual's evaluation of his or her current [felt] state. These dimensions include, but are not limited to: economic, social, psychological, physical, and personal autonomy (Ryff, 1995).

More fundamentally,

- From the awareness threshold of [conscious] pain:
 - **Suffering** (lowest happiness, and degrees thereof, <u>pain states</u>),

- To the awareness threshold of [conscious] flow:
 - **Flowing** (highest happiness, and degrees thereof, flow states).

Here, there is a subjective reports of perceptions, and then, an informed assessment of that report (as it is integrated into the unified information space). The assessment is one of people's experiences and feelings. The subjective well-being literature relies on how to optimally collect and track people's perceptions of their life circumstances and mental states. There are different techniques to measure subjective well-being. Subjective well-being is a multidimensional evaluation of life, including cognitive determinations of life satisfaction as well as affective evaluations of moods and emotions.

NOTE: Under aberrant conditions it is likely some people might be unable (or unwilling) to adequately articulate their level of well-being. The inclusion of a human evidence-based objective criteria (as the tool in the approach) can "give a voice" to those who are unable to adequately articulate their level of well-being.

Of note, inequality in [socio-economic] access is one of the greatest determinants of poor subjective well-being.

Subjective well-being simply refers to subjective life satisfaction. In other words, satisfaction with life domains, which may be different depending upon the specific societal configuration in which a subject expresses their state of well-being (e.g., social, decision, lifestyle, material, marriage, work, income, housing and leisure, etc). In order to capture SWB, researchers usually rely on questions about happiness or life satisfaction, self-reported adequacy of life domains and/ or frequency of good and bad feelings. All those aspects are usually taken as independent constructs, but show to be significantly correlated.

- 1. Are there feelings of positive affect (pleasant emotions and moods) most of the time?
- 2. Are there experiences of conflict, aggression toward others, or negative affect?
- 3. Are there feeling of happiness, or its absence. Are there feelings of depression, or its absence.
- 4. Are there feelings of living a meaningful, purposeful life?
- 5. What is a "good" life experience to you, and what would a "better" life experience than yours now look like?

Subjective well-being (or personal well-being) asks people directly how they think and feel about their own well-being, and includes aspects such as life satisfaction (evaluation), positive emotions (hedonic), and whether their life is meaningful (eudaimonic).

Here, a personal-subjective assessment captures a personal analysis and assessment (as best as can be communicated) of one's own circumstances, as what one thinks and feels (a self-assessment), and why (selfanalysis). How happy you are?

In the subjective, quality of life is a multidimensional term that expresses how a person evaluates his/her own situation in society, and how that expression is communicated to the rest of the population and input (as feedback) into our unified information system. After a person evaluates his/her situation, this information must be translated by the information system (scientist or other data collector-computer), given what is known about the human linguistic system, and input into an overall Quality of Life assessment.

The subjective quality of life category depends upon factors such as:

- The psychosomatic state of the individual
- Age
- Access [economic] situation)
- Social situation
- Felt need fulfillment
- Felt fulfillment of personal desires and preferences
- History (background and trauma)

Subject well-being (SWB) is assessed by individuals' or groups' responses to questions (prompted self-report) about happiness, pleasure, fulfillment, life satisfaction, contribution, and welfare or financial success (market only). The relation between specific human needs and perceived satisfaction with each need can be affected by mental capacity, social context, ecological context, cultural context, information context, education context, temperament context, health context, and the like, often in quite complex ways.

An individual's current quality of life could be assessed on the following basis:

- Personal fulfillment the need to reach one's potential in all desired areas in life.
- Identity goes beyond psychological "Sense of self". Identity as a sense of self in relation to the outside world. Identity becomes a problem when one's identity is not recognized as legitimate, or when it is considered inferior or is threatened by others with conflicting identifications. Hence, for some psychological sets (belief sets) cultural security as the need to maintain past conceptions.
- Freedom is the condition of having no physical, political, or civil restraints; having the capacity to exercise choice in all aspects of one's life.
- Distributive justice is the need for the fair allocation of resources among all members of a community; the global mutual access [via open standards] as a matter of justice (Read: distributive justice).
- Participation is the need to be able to actively partake and participate in and influence society (psychically and informationally).

The following questions are survey data on, and facilitate a greater understanding of, [personal] states of subjective well-being:

- Overall, how satisfied are you with your life nowadays? (answer on a 7 point scale from 'completely satisfied to completely dissatisfied, Andrews and Withey, 1976)
- Overall, to what extent do you feel the things you do in your life are worthwhile?
- Overall, how happy do you feel? Taking all things together, would you say you are: very happy, quite happy, not very happy, not at all happy? (Inglehart, 1997)
- Overall, are you very satisfied, fairly satisfied, not very satisfied, or not at all satisfied with the life you lead? (Eurobarometer survey)
- Overall, how anxious do you feel?
- Overall, how much aggression or depression do you feel?
- Overall, if you had more money, would you be doing something different with your life (in terms of work, activities, contribution)?
- Overall, do you feel like you belong and are deeply connected to those around you, and those with whom you spend the most time?
- Overall, are you able to maintain strong social bonds throughout life?
- Overall, are you able to benefit from environmental opportunities?
- Overall, are you able to access necessary resources, services and products?
- Overall, are you able to contribute to the fulfillment of others.
- Overall, are you able to participate societal decisioning that affects yourself?
- Overall, are you having adverse life experiences?

Subjective well-being inquiry techniques include, but are not limited to (questions and evaluation criteria):

 Positive and negative affect scale (PANAS) - a questionnaire that asks someone to identify the extent to which any of ten mood types (10 positive and 10 negative) has been felt through a five point scale within a period of time, and how frequently. During the interview, the same day of the interview, during the past few days, the week before the interview, the past few weeks, the past year and in general. The twenty items describing the mood types are (there are variations): interested, distressed, excited, upset, strong, guilty, scared, hostile, enthusiastic, proud, irritable, alert, ashamed, inspired, nervous, determined, attentive, jittery, active and afraid. Satisfaction with life scale (SWLS) - a questionnaire that asks someone to compare one's life to the ideal, analyse the conditions of one's life and achievements and one's satisfaction with them, along a scale. The five items are: 'In most ways my life is close to my ideal', 'the conditions of my life are excellent', 'I am satisfied with my life', ' so far I have gotten the important things I want in life', 'if I could live my life over, I would change almost nothing'. From 'strongly disagree' to 'strongly agree' representing the level of agreement of the respondent with the statements defining each of the five items.

In assessment of subjective quality of life (or, SWB) reports, one possible goal is to create a tool that will capture the weighting (i.e., value system) that is being used by a particular person (or group of persons) at a particular time and place. The value system may be explicit, as is the case with Community (because it is openly designed), or it may need to be determined (because it is not explicit or it is secret) through the following process, which community does naturally as it iterates:

- 1. Determine relationships among needs, their importance, and their fulfillment. Determine possible between fulfillment and importance.
- 2. Determine and group types of requirements, deliverables, tasks, and resources (and amount of capital, market only) required to fulfill each need.
- 3. Determine variation in weights (between #2) by population characteristics.
- 4. Determine variation in overall from one city/zone system to another.
- 5. Determine variation in overall behavior (subjective) and biometrics (objective).

12.8.1.1 Happiness (subjective happiness; indicator of well-being)

APHORISM: We hunger for happiness that sustains us.

'Happiness' can mean pleasure, life satisfaction, positive emotions, a meaningful life, or a feeling of belonging, feeling of contentment, actualizing one's fullest potential, among other concepts. Levels of "happiness" is often established through life satisfaction surveys and scales where people rate the extent of their feelings of 'happiness' on a numbered scale. In surveys of early 21st century society, what is generally called "happiness" (as measured through these tools) is 'contentedness' with life situation (and not 'happiness').

Happiness could be viewed as positive affect, with unhappiness seen as negative affect. Pleasant and unpleasant affect reflect basic experiences of the ongoing events in people's lives. The affective components of well-being described above reflect people's ongoing evaluations of the conditions in their lives.

The experiencing of more positive emotions in relation to negative emotions has been shown to predict subjective well-being (Diener, 2000; Kahneman et al., 1999). Question: Are there positive relationships and challenges in life? If all emotions were placed on a spectrum ranging from pleasant to unpleasant, positive emotions (also referred to as positive affect or positivity) include emotions on the pleasant end (e.g., feeling grateful, upbeat; expressing appreciation, liking), while negative emotions (negative affect or negativity) represent the unpleasant end (e.g., feeling contemptuous, irritable; expressing disdain, disgust, disliking) (Fredickson & Losada, 2005). Emotions have been explained as arising from an evolutionary perspective because they tend to lead to specific action probabilities.

NOTE: As with many of these terms, there are a multiplicity of meanings that 'happiness' (or any of these terms) can mean to just anyone in early 21st century society, where the aberrant is often normal and the actual is often obfuscated on purpose.

Happiness is an emotional response to an outcome, which is emergent and interrelated through space and time. Joy is a high-level felt experience of happiness that comes from doing what "we" are designed to do, no matter the outcome.

NOTE: *The opposite of depression is not happiness, it is vitality.*

Happiness may be considered a subjective outcome metric; it results from pursuing various goals other than happiness, and isn't directly tied to success or failure of achieving those goals. It can be a response to external inputs and conditions, and it can be synthesized in a neuro-chemical manner involving a conscious shift in intention to be happy (given the circumstances). All humans direct toward (i.e., want or need) happiness, even if the conscious experience is subjective (i.e., means different things to different people).

Fundamentally, all humans *want*, though at a more fundamental level, *need*, to experience happiness frequently in their lives; even, if it is experienced differently by different people. Happiness [at least] involves the fulfillment of human needs. A concrete set of needs exist, and their fulfillment at a global level, which may differ from person to person with electrobio-chem-psycho individuality, is likely to generate a frequent fulfillment of happiness in the population's personal lives. Here, human needs could be considered the common social environment.

Happiness is always, in part, synthesized through neurochemistry, but it may also be the result of the intention given an otherwise unhappy environment (e.g., given a prison who is serving life imprisonment and experiences happiness).

In practical social application, happiness is a state of [human] being brought about by a set of predictable intrinsic and extrinsic processes that fulfill needs and/ or synthesize happiness (electro-biochemical and conscious). In this sense, it could be said that happiness comes from the process of fulfilling need, which involves principles related to human need fulfillment. A happy quality of life does not necessarily come from seeking happiness directly, but instead, striving to live a purposeful and meaningful life is how happiness, as a frequently experienced quality of life, is sustained. In part, the application of strategies to increase [the experience of] happiness is a measure of leading a fulfilled life.

In other words, the experiential state is happiness is likely to be generated through the sufficient fulfillment of human needs, and it can also be synthesized by coming to appreciate one's life experience and the other conscious entities therein. In other words, the experiential state is happiness is likely to be generated through the sufficient fulfillment of human needs, and it can also be synthesized by coming to appreciate one's life experience and the other conscious entities therein.

Happiness index:

- What is the person's perception of their own happiness?
- How do they think they are viewed by others in different social environments?
- How do they think they compare with others' happiness and unhappiness?

Mathematically, happiness could be expressed as:

 happiness = thresholdNeeds * (1 + otherNeed1 + otherNeed2 +...+otherNeedN), where thresholdNeeds is either 0 or 1.

In the market, there is an additional abstraction, equating money as the "means" of fulfillment (Note: In community, this abstraction is note encoded):

 happiness = thresholdMoney * (1 + otherNeed1 + otherNeed2 +...+otherNeedN), where thresholdMoney is either 0 or 1.

12.8.2 Objective [indicators of] well-being

A.k.a., Well-being data without felt bias.

Objective well-being (OWB) is based on a measured criteria of requirements that a human as a member of the species should have satisfied in order to lead a full, self-actualised, or good life, given what is known (i.e., given that which is objective). Objective well-being refers to objective indicators and an inquiry into the linkages between objective and subjective measures. Objective well-being is based on human needs and values.

When determining the objective state of well-being, the subjective and observation reports are analyzed statistically with previous information.

The two primary indicator types are:

- Social [quality] indicators
- Material [economic] indicators

Well-being may be objectively measured by providing data on the fulfillment of common need (frequency and composition):

- Measured by access opportunity and actualization.
- Measured by access quality.
- Measured by access disparity (distributive justice).
- Measured by health (psychology and physiology).

The access view could be extended to view well-being as access to:

- · Access to resources (made into useful objects).
- · Access to opportunities (made from useful services)
- Access to conditions (made from useful experiences)

The concept of human needs can be universalized to the human system, and quality-of-life is the quality of the personal experience therein. Some human "societal" systems account for human needs, resources, and their ecology, and others account for it less. In part, wellbeing is identified through those services and goods that satisfy substantive individual needs.

QUESTION: What are the indicators of human well-being based on universal characteristics. Here, the human needs are not necessarily viewed as drivers of human behavior, but as human and societal requirements for well-being.

It is possible for objective (or external) measures to not track with self-reported (or subjective) measures. People may be feeling highly satisfied with a life way that seems poor by objective measures. It is important to remember here that the idea of synthesized happiness is a real physiological effect. Subjective well-being is by definition experiential. Comparing what people think with objective measures about their situation provides valuable and useful data on society. Objective measures of well-being come from observed and actual conditions and do not depend subjectively (circularly) on the respondent's own perceptions. Thus, the goal is to compare a subjective measure of material well-being (need fulfillment, not GNP per capita).

In the simplest of strategies, measurement would consist of two distinct scales to assess each item

regarding a human need; one of the scales would record the degree of fulfillment and the other would record the relative importance (priority) of the need.

The following are common and market-State transposed indicators for human habitat [city] service and quality of life:

- Economy
- Education
- Environment
- Energy
- Finance
- Fire and Emergency Responses
- Governance
- Health
- Safety
- Shelter
- Recreation
- Solid Waste
- Telecommunication and innovation
- Transportation
- Urban Planning
- Waste water
- Water and Sanitation

Further, it is possible to observe the state of people's lives along the four dimensions of human societal organization:

- Material (economics, access, aesthetics)
- · Social (moral, understanding, belonging)
- Decision (autonomy, self-direction, contribution)
- Lifestyle (flow, education, opportunity)

Analyze the state of people's lives that cause their current state of well-being using the core and stabilizing values of a community-type society (only 3 core shown below):

- Freedom
- lustice
- Efficiency

12.8.2.1 Threshold needs (basic needs)

Threshold needs have two primary characteristics:

- Threshold needs are things you cannot make yourself and must acquire.
- After the organism has passed the threshold required to meet (or fulfill) the need, focusing on the need further will yield diminishing returns.

The basic needs of future generations of humans will be the same as those of present humans. To avoid serious harm and to participate and act within future human societies people will require the same logical preconditions: not just survival, but health and autonomy. This stems from the biological, physiological and psychological foundations of human needs. Until the genetic make-up of Homo sapiens changes significantly, it may be assume that the same universal satisfier characteristics will apply.

The most basic of human needs include food, water, and shelter. A major ecosystem provisioning service is to provide food through culturing soil interactions (Daily et al., 1997; Sandhu et al., 2007), pollination (Losey and Vaughan, 2006), and animal and fish stocks (Holmhund and Hammer, 1999). Similarly, the production of water for human throughput, irrigating, and manufacturing, and other systems is a primary (life) provisioning services of numerous ecosystems (Daily et al., 1997; Wilson and Carpenter 1999). In addition, ecosystem services provide for the production of supplies (wood, peat, fossil fuels, and running water) for heating, electrical production, fuel generation, and hydropower generation (Daily et al., 1997; Guo et al., 2000) and the production of fiber and building materials from ecosystems (Raffestin and Lawrence, 1990). Human Contribution to harness ecosystem services to habitat services is vital. Basic human requirements are often supported by natural ecosystem services. Relationships between ecosystem services and personal and community security (particularly in the inner city) have been demonstrated through green design projects (Kuo et al., 2001). Aggression and crime reduction has been documented in areas with some natural greenery or parks (Kuo et al., 2001). Ecosystem services have even become a focus in some national security issues involving water resources and poverty and agricultural security (Sandhu et al., 2010)."

While basic needs are universal, many goods, services, activities and relationships required to satisfy them are environmentally (and temporally) variable. Needs for food and shelter apply to all peoples, but there are a large variety of cuisines and forms of dwelling which can meet any given specification of nutrition and protection from the elements (these need satisfiers are distinguished from needs by Max-Neef). Need satisfiers are contextual, whereas the needs are not significantly relative to context.

A conceptual bridge be built to link basic needs and specific satisfiers using the idea of 'universal satisfier characteristics'. If we define 'satisfier characteristics' as that set of all characteristics that have the property of contributing to the satisfaction of our basic needs in one or any context, then we can in principle identify a subset of universal satisfier characteristics (USCs): those characteristics of satisfiers which apply to all human contexts. USCs are thus those properties of goods, services, activities and relationships which enhance physical health and human autonomy in all societies. For example, calories a day for a specified group of people constitutes a characteristic of (most) foodstuffs which has transcultural relevance.

There is a threshold need for water, food, shelter (true needs), and also, contributed-distribute access (i.e.,

freedom and distributive justice).

Well-being basic indicators:

- Basic needs (food, shelter, water, sleep, medical, power)
- Safety
- Belonging
- Esteem
- Self-actualization

Well-being is a state of being where all members of a community:

- Have economic security
- Are respected, valued have personal worth.
- Feel connected to those around them.
- Are able to access necessary resources.
- Are able to participate in the decision-making process affecting them.

12.8.2.2 Itemized Indicators of human well-being

The following is an itemized list of indicators of human well-being, used in common parlance (i.e., the indicators of):

- Physical, psychological, social, cultural, economic, governance
- Rank personal happiness, personal values, personal preferences
- Well-being, health (physical, psycho-sociological), time use.
- Physiological [health] attributes to be tracked as indicators:
 - Diet
 - Movement
 - Exposure to toxins
 - Disease and illness rates
 - Life vitality duration
 - Joy and depression
 - Example indicators of these above attributes would include consumption rates of local resources for some geographic location, ingestion of toxics through food, or reported participation in outdoor exercise. Although the brain is part of the body, psychological and physical health were purposefully separated to highlight their respective importance to human well-being, mirroring the efforts of more general human well-being frameworks (i.e., GNH).
- Psychological [mental] attributes to be tracked as indicators:
 - Emotional, spiritual, and cognitive health. The emotional attribute of this domain includes the experience of positive feelings, no depression,

or anxiety. The experience or condition which is now known to be positively and negatively influenced by exposure to natural environments, or simply the knowledge that those environments exist (also called existence value). Incidence of depression and anxiety or the capacity of shortterm and working-memory.

- Social (cultural) attributes to be tracked as indicators:
 - The "cultural" is commonly defined as a system of shared beliefs, values, customs, behaviors and artifacts that humans create and pass on to future generations. While social attributes related to natural resources are most commonly associated with indigenous groups, this is not exclusive as all human populations have social components that depend on natural resources to some degree (e.g. fisheries and mining). Additionally, as with all the domains, social attributes and indicators are likely to overlap with those from psychological, social and physical domains.
 - Attributes of culture related to the wild environment include traditional resource stewardship practices, food collection and preparation, language, and natural resourcebased legends.
 - Social research has found that social interactions where extentionality and belonging exist are among the primary determinants of overall well-being. Social health is most often encapsulated in the concept of social capital, and includes the attributes of strong families and friendships, and community [informationdecision1 cohesion. The societal environment provides a variety of opportunities for people to develop social ties while engaging in outdoor activities, environmental stewardship, or passing down knowledge. While there are few specific examples of indicators of social health related to the environment, they could include things such as self-reported participation in outdoor activities with family members, the number of generations of family who engage in outdoor activities together, the frequency of social events held in the city environment, or the frequency of participating in parties highlighting locallycollected food or events.
- Economic (domain) attributes to be tracked as indicators:
 - Economic health is traditionally the most commonly measured domain of human wellbeing.
 - Income, income distribution, purchasing power.

- Access (and access opportunity) distribution.
- Access to meaningful contributions.
- Governance (domain) attributes to be tracked as indicators:
 - Governance refers not to specific laws or politicians, but to the way that power (over others) and decision-making (subjectively) is structured within society.
 - Several studies have explored how people's experience with environmental governance influences their overall satisfaction and sense of empowerment, and thus human wellbeing. Can someone effect change in their lives, and can they participate in control over their environment? Common attributes from these studies include trust in decision-making processes, social justice, transparency. Indicators for decisioning include self-reported trust in decisioning as well as objective measures of opportunities for the public to participate in decision-making and the outcomes of public policy differentially affecting diverse demographic groups.

12.8.2.3 Well-being metrics and Interventions

A crucial distinction between well-being metrics and potential interventions [in their use] is that a well-being metric does not dictate an intervention, but is data for developing an intervention that will influence [or control] a metric in a positive/intended direction.

Metrics are a directional requirement for the intentional state change of society. Once wellbeing metrics are widely recognized as a directional requirement for society, conceptually, one would like such measures to be supported by those with the ability to begin building an integrated habitat service system and underlying community information structure.

13 The criteria for well-being

A.k.a., The elements of well-being, the needs of well-being, well-being needs, well-being elements, composition of well-being, factors of well-being, criteria of well-being, dimensions of well-being, indicators of well-being, measures of well-being, well-being outcomes, measurable categories of well-being.

Well-being is state of successful, satisfying engagement with one's life and the realization of one's full physical, cognitive, and psycho-emotional potential.

The two distal goals of well-being are:

- 1. Positive affect, emotion, and experience.
- 2. Cultivation and expression of one's full potential.

The categories (elements, needs) of well-being are describing the outcomes of what a flourishing individual may have or strive (direct) toward.

In general, well-being has five to eight (five or more) measurable elements (in the context of any individual), each with three properties (identified below):

- 1. **Emotion** <u>of the type positive</u> (happiness and life satisfaction)
- 2. Engagement (the flow cycle)
- 3. Meaning (understanding and purpose)
- 4. **Relationships** <u>of the type positive</u> (social connection and belonging)
- 5. Accomplishment (goal achievement)
- 6. **Competence** (the ability to exert mastery over the environment)
- 7. Health (mental and physical)
- 8. **Freedom** and **contribution** (autonomy and responsibility)

These elements of well-being, and the human needs in general, are what a human free of coercion chooses to do for its own benefit (i.e., this is what a free person would pursue). Well-being's five or more elements comprise what free people will choose for their own benefit.

Each measurable element of well-being must have 3 properties to count as an element:

- 1. It must contribute to well-being.
- 2. It must be pursued for its own benefit, and not to get other elements (other benefits).
- 3. It must be defined and measured independently of other measurements (Read: exclusivity).

There exist both subjective and objective variables in computing [the elements of] well-being measures:

- 1. **Subjective measure** Positive emotion is a subjective variable defined by what someone thinks and feels.
- 2. Subjective and objective measures Engagement, meaning, relationships, and accomplishment have both subject and objective components since someone can believe they have engagement, meaning, good relationships and high accomplishment, and be wrong or deluded.

Therefore, well-being is a combination of feeling 'well' (good, excellent, etc.) as well as actually having meaning, good relationships, and accomplishment.

The three subjective and objective data inputs for well-being:

- 1. **Self-reported** (prompted assessment of self and social) life-satisfaction and flourishing (indicators of 'happiness').
- 2. **Quality of life** (observed and prompted quality of conditions assessment) 'conditions' flow indicators of surviving and flourishing.
- 3. **Material sufficiency** (observed material resource and distribution assessment) - 'resources' flow indicators of surviving and flourishing.

Martin Seligman (2002) suggested that well-being research could be organized into a framework for individual well-being and flourishing that built upon and added to his initial categories.

QUESTION: What are the conditions and actions in life that are highly likely to increase current and long-term happiness?

According to Seligman individual well-being and flourishing encompass [at least] five independent components (PERMA):

- 1. Positive emotions
- 2. Engagement
- 3. Positive relationships
- 4. Meaning
- 5. Accomplishment

Each of these components was chosen based on three criteria:

- 1. It contributes to well-being.
- 2. It is pursued for its own sake.
- 3. It is independent of the other components.

A simplified view of the elements of *well-being* may be:

1. **Positive feeling** - emotions and relationships that intrinsically generate feelings of wellness, purpose and motion.

- A. **Positive relationships** an integrated and sustainable relationship with ourselves, others, and the environment. involvement of, and the ability to establish, strong trust, empathy, affection and intimacy.
- 2. Flow (optimal engagement) engagement in the highest potential [becoming] cycle of life, the flow cycle.
- 3. **Meaning** contribution is how one fits into the lives and information systems of all others. Meaning refers not only to belonging and contribution, but also about understanding all information in potential presence in the world.
- 4. Accomplishment (growth in ability to exert mastery over the environment. Accomplishment allows the individual a measurable way to know their actions are meaningful and to allow them to feel efficacious in their actions. Unlike meaning, accomplishment is more focused on the feedback being given back from the environment than it is on what the individual is contributing (Seligman, 2011).

Elements of well-being (detailed view):

- 1. Positive emotions regenerative synthesis of a happy state of being.
- 2. Engagement ability to grow in potential, and restore ability to express potential.
- 3. Meaning understanding and purpose in daily life.
- 4. Positive relationships positive interrelationships with other consciousnesses.
- 5. Accomplishment goal setting and accomplishment.
- 6. Health foundational mental and physical constitution/composition to carry about abilities.
- 7. Contribution sharing and working with others.
- 8. Competence mastery over environment and autonomy (or self-direction) in navigating life.

The elements of well-doing:

- Meaning Purpose in, and autonomy of, integration.
- Sustainability Continuity of cycle; regenerability.
- **Connection** Understanding; to see and be interconnected.
- Affect How you feel; how someone feels.
 - **Positive affect** feelings that "we" want more of for ourselves and loved ones. For example, the feeling of flow and wellness; to feel joy and happiness and pleasure.
 - Negative affect feelings that "we" want less of for ourselves and others. For example, the feeling of hate, anger, jealousy, fear.

Elements of self-being; being self-directed and self-

empowered (basic view, Tony Robbins needs model detailed in the Social System):

- 1. Certainty
- 2. Variety
- 3. Significance
- 4. Love & Connection
- 5. Growth
- 6. Contribution

Elements of a well self-being (mixture view):

- 1. Certainty (Meaning & Survival)
- 2. Variety (Exploration & Discovery)
- 3. Significance (Accomplishment & Recognition)
- 4. Love & Connection (Positive emotions & appreciation)
- 5. Growth (Flow & Creation)
- 6. Contribution (Positive relations & Participation)

Notes on relationships between the elements of a well self-being:

- The psychological human needs are different forms of positive feeling (or positive emotions). For instance, someone can feel significant, loved, secure, stimulated, growing, and altruistic.
- Engagement and flow can represent the interaction between uncertainty and certainty, and can also be represented by the interplay of connection with self, significance, and growth.
- Meaning and achievement are highly related to significance, but both meaning and achievement can be found with any of the needs.
- The self-being needs serve as both pathway and gate for the different categories of well-being (Read: PERMA).

The emotional, psychological, and social factors of wellbeing include:

- 1. High emotional well-being:
 - Positive affect (positive emotions and relationships)
 - Negative affect (low)
 - Life satisfaction
- 2. High psychological well-being
- 3. Self-acceptance
- 4. Personal growth
- 5. Purpose in life
- 6. Environmental mastery
- 7. Autonomy
- 8. Positive relations with others
- 9. High social well-being
 - Social acceptance
 - Social actualization

- Social contribution
- Social [value] coherence
- Social [information] integration

When there is high emotional, psychological, and social well-being, then there is highly likely to be thriving.

Eudaimonic psychology recognizes three universal needs (happiness):

- **Autonomy** what a human free of coercion chooses to do for its own sake (intention).
- **Competence** ability when interacting with an environment, over time and intention, leading to mastery in interacting with the environment.
- **Relatedness** what consciousness feeds back as meaning, integration into a larger whole of understandable objects (spatializations) and relationships (conceptualization).

In freedom psychology, freedom is a construct, and only by measuring the elements to a real-world object is there an overall picture (visual, useful meaningfully) of how much (quality/quantity) freedom there is. The measurable elements of freedom are (include), at least:

- 1. Is there a lack of coercion; is there coercion? Is there the presence of uncoerced choice? Note that this may not be solely observational.
- 2. Is there a feeling of happiness in one's ability to selfdirect their life? Note that this may not be solely self-reported.
- 3. Is there appropriate challenge in contribution and exploration in life? Note that in concern to selflearning/growth, this is generally self-reported, and that in concern to social-learning/growth, this is generally observational (via standard, common procedures).

NOTE: In the market where there is a lack of unification and integration, true socialgrowth (in knowledge of oneself and a material environment that enables well-being) is often mistaken for financial-profit, market and commodity, growth.

13.1 Happiness measurable elements (categories) of happiness are:

Happiness is a real "thing" (conscious feeling) defined by the measurement of life-satisfaction with three aspects. Positive psychology recognizes three elements of happiness (i.e., the three universal needs of a positive psychological state of conscious-experience):

• **Positive emotion** - feeling loved and an extensional self-directional state, in the moment). Positive

emotion is characterized (represented, signed) by good feelings, and the feeling of being positively energized and self-directed moment to moment [leading to the flow cycle].

- **Engagement** being consciously present in the flow of life relationships. Engagement is the actual experience of 'flow', cyclically.
- Meaning behaving through the awareness of relationships. To have an awareness of a set of relationships is to have belonging [to that set of relationships]. In this sense, meaning is belonging. "To belong" means that "to contribute" will likely feel good, because to contribute to 'the all' means that, at its highest potential, the all can contribute back to "you." contributing to something greater than the individualized self is most likely an act that naturally generates a happy state in individuals among a population engaged in that behavior.

Each of these three feeds into life satisfaction and is measured entirely by subjective report.

13.2 Elements of physiosphere (conscious embodiment):

- 1. **Information** Informational systems interconnect the habitat, and everyone therein. Humans have information input, process, and output requirements.
- 2. **Materials** Spatial materials interconnect all service support systems through the technical service system to becoming architecture that provides appropriate structure to contain the remaining set [satisfiers] of life-support needs. Humans have spatial input, process, and output requirements.
- 3. **People** Other conscious embodiments (i.e., other people).

13.3 Survival measurable elements

Elements of survival:

- 1. **Gravitosphere** (gravity and land for moving on)
- 2. **Atmosphere** (atmosphere for breathing and moving in)
- 3. Water (hydrosphere for planetary life)
- 4. **Nutrition** (food; *ecosphere* for planetary organism complex)
- 5. **Shelter** (clothing and building; *archosphere*; architecture; for organism protection)
- 6. **Power** (energy and temperature; *enersphere*; electricity; for organism extensionality)

Elements of lifesphere (life service system):

- 1. Architecture (to bound environment);
- 2. Water (to start environment);
- 3. Nutrient (to recycle environment);
- 4. Medical (to restore environment);
- 5. **Power** (to change environment)
- *Material* [re-]cycling coordination and habitat integration
- Informational coordination and integration

13.4 Technical support measurable elements

Elements of technosphere (technical service system):

- 1. Data processing (Computational systems)
- 2. Information processing (Communications & Interface systems)
- 3. Materials cycling (FAIT & Recycling systems)
- 4. **Transportation cycling** (Distribution & Transportation systems)
- *Material* [re-]cycling coordination and habitat integration
- Informational coordination and integration

13.5 Exploratory support measurable elements

Elements of explosphere (exploratory service system):

- 1. **Technology development** (produce newly applicable, useful spatial-informational systems)
- 2. **Science and research** (study and discover through to new integrations/conclusions)
- 3. Art and music (social entrainment creations)
- 4. Recreation (social leisure activities)
- 5. Learning development (education and mentoring)
- 6. **Consciousness** (consciousness exploration, restoration and re-/de-focusing)
- *Material* [re-]cycling coordination and habitat integration
- Informational coordination and integration

The conception of 'worthiness' recognizes three universal needs of living:

- 1. **Explore** life by exploring what makes life worth living.
- 2. **Understand** life by understanding what is flourishing, well-being, happiness, life-satisfaction, etc.
- 3. **Build** life by building the enabling conditions of a life worth living, a 'well' human life.

The conception of life as re-cycling motion involves the universal operationalizable needs of motion: out, in, together:

- 1. The need for motion to complete.
 - A. To embodied consciousness there is feeling (visceral need).
- 2. The information about understanding the need for motion to complete.
 - B. To consciousness there is, or is not, informational awareness of need.
- 3. Together, a spatial-informational system that coordinates our common need to complete motion.
 - A. It is possible to formalize the fulfillment of needs via a habitat service system, brought into existence through the need to contribute itself.
 For example,
- The need for 'nutrition' (material-energy recycling) causes food seeking behavior, and 'flavor' [feeling to consciousness] directs consciousness (...under non-aberrant conditions where flavor may be used to trick consciousness). Can consciousness distinguish between what is optimal.
- The need for self ('self-development') and social ('contribution') causes information seeking behavior ('exploration').

The conscious conception of real "things" entails three needs:

- 1. Objects (real objects) bodily interface
- 2. Concepts (real concepts) mental interface
- Consciousness (self-integration of real objects and concepts) - feeling interface (sensorial-intentional interface)

CLARIFICATION: Possibly, 'reality' to 'consciousness' is the 'chronos' of the combination of 'information'[-alization] (meaning, conception) and 'matter'[-ialization], together. In other words, the conscious moment of 'now' is the integration of space[ialization] and concept[ualization]. The -lization part refers to gaining control (competence and master) over some socio-technical element in the environment.

The conception of life recognizes three universal needs of conscious existence (What is life?):

*Note that here, consciousness has access to information (a mental/computational state; data-conceptualization), spatialization (a material state; matter), and togetherness/ meaning (a social state; relationshipsocialization).

- Spatial object (i.e., space, matter, material, surface)
 An entity or type of object? If so, which one?
- 2. **Informational concept** (i.e., meaning, semiotics, language) A process? If so, what specific process distinguishes life from all other processes?

3. **Togetherness integration** (i.e., shared method, common process) - The ongoing supra-process of a reality where consciousness expresses through organisms that inhabit environments within biosherical ecologies. Thus, perceptible from the matter side as an entity (an object constructed by matter by natural entities that resists gravity) and the consciousness side as an entity that integrates meaning and is self-directed, and while embodied, can experience greater and lesser states of happiness, pleasure, positivity, flow, etc, and greater on the continuum to lesser states happiness, suffering, negativity, pain, etc.

The elements of human life flourishing:

- Hedonic well-being life satisfaction, positive affect.
- Eudaimonic well-being meaning, self-expression, growth, accomplishments, competencies, relationships, social participation.
- Physical health (physical well-being) & energy.
- Contribution.
- Domain satisfaction (e.g., work, health, recreation).
- Relationships, social participation.
- Impact on ecosystem accomplishments, generativity, influence.

A basic list of human needs:

- Physiological needs: breathing, food, water, shelter, clothing sleep.
- Safety & security needs health, family and social stability.
- Love & belonging needs intimacy with other humans.
- Self-esteem confidence, respect of others.
- Self-actualization creativity, spontaneity, purpose and meaning, inner potential.

Individual physical "resources" include, in part:

- Physical health
- Physical fitness
- Mobility
- Energy

Individual cognitive "resources" include, in part:

- · Ability to focus and concentrate
- Memory
- Goal setting
- Pattern recognition
- Problem solving

Note that physical and cognitive resources influence one another.

14 Additional globally recognized human standards and human development indices

A.k.a., Instruments, human welfare indices, human rights indices, well-being indices, life indices, humanity indices, human scale development indices, socio-economic indices, socio-economic development indices, civil indices, global population satisfaction index, life satisfaction index, global happiness index, etc.

Globally recognized human standards and indices include, but are not limited to the following:

14.1 Common global human standards

Common standards related to human life quality:

- **ISO 37120** Sustainable Development of Communities — Indicators for City Services and Quality of Life
- **ISO/DTR 37121** Inventory and Review of Existing Indicators on Sustainable Development and Resilience in Cities
- ISO 37151:2015 Smart community infrastructures

 Principles and Requirements for Performance Metrics
- **ISO/TR 37150:2014** Smart Community Infrastructures - Review of Existing Activities Relevant to Metrics
- **PAS 181** Smart city framework- Guide to establishing strategies for smart cities and communities
- **PD 8101** Smart cities- Guide to the role of the planning and development process
- **PAS 182** Smart city concept model. Guide to establishing a model for data
- PAS 180 Smart cities Vocabulary
- IEEE The happiness screening tool for business product decisions [standards.ieee.org]
- **IEEE The State of Well-being Metrics** from IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems [standards.ieee.org]
- **IEEE P700** Model Process for Addressing Ethical Concerns During System Design
- IEEE Global Initiative on ethics of autonomous and intelligent systems - Ethically Aligned Design (EAD): A vision for Prioritizing Human Wellbeing with Autonomous and Intelligent Systems. [engagestandards.ieee.org]
- **NISTIR 7889** Human Engineering Design Criteria Standards. Part 1: Project Introduction and Existing Standards
- US Department of the Army Pamphlet 602-2 -

Guide for human systems integration in the system acquisition process. (2018). Department of the Army. Washington, DC. [armypubs.army.mil]

• US Air Force AFHSIO-001 Human Systems Integration Requirements Pocket Guide. (2019). U.S. Air Force. Human Systems Integration Office. [apps.dtic.mil]

14.2 Common global human indices, scales, and surveys

The most valid ("established") indices and surveys include, but are not limited to:

- Canadian Index Of Well-Being
- Bhutan Gross National Happiness Survey
- Flourishing In The European Union Survey
- World Happiness Report Uses A Cantril Ladder Survey
- Panas (Positive Affect Negative Affect Schedule) Survey
- Organization For Economic Cooperation And Development (Oecd) Guidelines On Measuring Subjective Well-Being. [oecd.org]
- Great Britain Office Of National Statistics (ONS). [ons.gov.uk]
- Eu's Brainpool Project; European Social Survey. [europeansocialsurvey.org]
- The Warwick-Edinburgh Mental Well-Being Scale (Wemwbs)
- Temporal Satisfaction with Life Scale
- Ryff's Scales of Psychological Well-Being
- Rao's Decent Living Standard

Common human indices and their reports include, but are not limited to:

- World Happiness Report [worldhappiness.report]
- Human Development Report
- Multidimensional Poverty Index
- Dutch Index of Living Conditions
- Multidimensional Poverty Index
- Individual Deprivation Measure
- Social Progress Index
- Social Progress Indicator Report
- Australian Unity Well-being Index
- NOVA SouthEastern University, quality of life assessment tool/instrument
- Psychometric instruments to measure flow [the flow state]
- National Academies of Sciences, Social Determinants of Health (Social Determinants, 2016) [nap.edu]
- The Blue Zones comparison criteria (Poulain, 2013) [uu.nl]

Common, human indicators in the market-State environment include, but are not limited to:

- Objective indicators:
 - Better life index. [oecdbetterlifeindex.org]
 - Millennium Development goal indicators. [<u>unstats.un.org</u>]
 - Global reporting initiative SDG Compass. [globalreporting.org]
 - B-Corp. [bcorporation.net]
- Composite indicators:
 - UN Human development index. [hdr.undp.org]
 - Social process index. [socialprogressindex.com]
 - UK Office of National Statistics Measures of National Well-Being. [ons.gov.uk]
- Social media sourced data
 - The Hedonometer. [hedonometer.org]
 - World Well-being Project. [wwbp.org]

The survey-based measurement tools listed below and others are on the Authentic Happiness UPenn Website [authentichappiness.sas.upenn.edu]. Note, each model has corresponding self-report measures that indicate the domains of interest:

- The Satisfaction with Life Scale: a 5 item measure that captures overall satisfaction with one's life. [ncbi.nlm.nih.gov]
- Cantril's ladder, a single item life satisfaction measure, commonly used in epidemiological studies. [qol.thoracic.org]
- The Subjective Happiness Scale: a 4 item measure of overall happiness. [sonjalyubomirsky.com]
- The Psychological Well-being Scales (Ryff Scales of Psychological Well-Being), 18 to 84 item measure of autonomy, environmental mastery, personal growth, positive relationships with others, purpose in life, and self-acceptance. [centerofinquiry.org]
- The PERMA-Profiler, a 23 item measure that captures positive emotion, engagement, relationships, meaning, accomplishment, negative emotion, physical health, and overall well-being. [internationaljournalofwellbeing.org]
- The Meaning in Life Scale, a 6 item measure that assesses the presence and search for meaning. [michaelfsteger.com]
- A variety of emotion scales exist (see p. 137 -Appendix A "Experienced Well-Being Questions and Modules from Existing Surveys" in Subjective Well-Being Measuring Happiness, Suffering, and Other Dimensions of Experience and see p. 251 Annex A of OECD Guidelines On Measuring Subjective Wellbeing) [nap.edu]

14.3 Human development

In the context of human well-being (welfare), 'development' means improvement of human wellbeing (i.e., the progression of the state-dynamic of global human well-being from a lesser state/dynamic to a greater, better, or more beneficial. 'Development' refers to an increase in quality of life (standard of living) over time. However, not every index measures what it claims to measure, or even understands what it is measuring. Without connecting an index to a societal specification, there is no usage of the index to developmentally reorient that society. And, without a societal specification, there can be no accurate formation of an index. Therein, welfare (in the market-State) is likely to replace the actual and objective meaning of fulfillment, masking it with rights and duties as the basis for life and social justice (as opposed to objective human fulfillment).

14.4 Human index

An index is a tool used to measure and rank an environments' (or systems') expressed level of some conception(s). In general, societal indices measure concepts that are valued relative to that society. For example, the "United Nations Human Development Index" (UNDP, 2009) is a United Nations tool to measure and rank countries' social and economic development based upon schooling ("education"), life expectancy ("health"), and income ("standard of living"). Schooling, life expectancy, and income are valued by entities related to the United Nations, and are therefore, are measured by the Index.

Today, there are many societal-level human relevant indices, including but not limited to:

- Environmental sustainability indices
- Environmental performance indices
- Human development indices
- Physical quality of life indices
- National happiness indices
- Progress indices
- Vulnerability and poverty indices
- Peace indices
- · Well-being indices
- The Fordham Francis index
- The blue zone index
- Etc.

As expressed in early 21st century society, many of these societal-type indices contain ideological biases, fail to include ecological considerations, lack an objective and unified understanding of human consciousness, disregard technological development, misunderstand human nature, and conflate social constructs with physical existence (e.g., measuring years in school as 'level of education'). Structural assumptions often make indices biases and of little use outside of the limited structure within which the index was created.

14.4.1 Survey example: The Authentic Happiness Inventory: an instrument

The Authentic Happiness Inventory (AHI, Seligman et al., 2005) is a self-report measurement for the assessment of global happiness and comprises aspects of subjective and psychological well-being that was especially designed for use in intervention studies. The AHI consists of 24 sets of five statements from which the participant has to choose the statement that describes his feelings during the past week best.

14.5 Human rights

The U.N. Declaration is worth citing in full to recognize their underlying life-value logic:

- All humans have the <u>right(s)</u> [given by the State and/or supported by market conditions] to
 - Freedom of speech and belief.
 - Freedom from want.
 - *Dignity* and worth of the human person.
 - *Justice* of treatment; not to be subjected to inhuman or degrading treatment and punishment.
 - Equal access to public service.
 - Political voting universal and equal suffrage.
 - Social security [assistance] and [the resources required for] the free development of self/ personality.
 - Working conditions that are just and favourable.
 - Rest and leisure.
 - *Threshold conditions* representational of a standard of living adequate for the health and well-being of himself and his [sic] family, including food, clothing housing and medical care.
 - *Education* and equally accessible higher education.

The underpinning principle of all of these United Nations stated "rights", is an onto-ethical ground of each individual [human] perceiving and behaving toward other [human] beings as another and complementary aspect of an implied [moral] whole, enables [human] life against its many-sided oppression.

15 Life access

INSIGHT: *The inequality of our experiences sets the limits of our potential.*

In a community-type society, most of the population lives within and travels between integrated city systems. Note here that there are still populations that live outside these city systems, and, there are structures placed in natural environments for discovery and other human activities.

15.1 City parameters

A healthy city is one that is continually creating and improving those physical and social environments and expanding those community resources which enable people to mutually support each other in performing all the functions of life [need] and in developing their maximum potential. (Chadwick, 1842)

City parameters includes:

- 1. A clean, safe physical environment of high-quality (e.g., high quality housing).
- 2. An ecosystem that is stable now and sustainable in the long-term.
- 3. A strong, mutually supportive and non-exploitative environment.
- 4. A high degree of public participation in and control by the public over the decisions affecting their lives, health, and well-being.
- 5. The meeting of basic needs (food, water shelter, income safety, and work) for all the city's people.
- 6. Access to a wide variety of experiences and resources, with the possibility of multiple contacts, interactions, and communication.
- 7. A diverse, vital and innovative city economy.
- 8. Encouragement of connectedness with the past, with the cultural and biological heritage, and with other groups and individuals.

Strategies to achieve city parameters:

- 1. Planning process based on ecological principles.
- 2. Varied social and economic opportunities.
- 3. Minimum intrusion (of freedoms).
- 4. Principle of closed system (e.g., health is reduced by traffic, so design without traffic, if traffic, then redesign).

15.2 Access to societal structures that enable education (learning; intrinsic life-value needs)

The higher level capacities of human thinking require not

only love and care at a young age, but also, education in the form of access to information and activities by which some has the opportunity to become a self-directed lifelong learner. Herein, education is the richer development and more refined application of the mental and physical capacities of human social self-consciousness. Education requires not only access to information, but also the ability to express information freely.

- 1. To be deprived of education is to be cut off from the essential social condition of living a fully human life.
- 2. To be deprived of the ability (i.e., an inability) to test the given against the possibly better is to be harmed in human capacity to think and act in creative and novel ways that expand the life-value of society.
- 3. To be deprived of the ability (i.e., an inability) to access the unified information resources of one's society leads easily to a life reduced to the mindless re-enactment of scripts (belief systems) written for them by the socially powerful and others for the sake of meeting their own needs.

NOTE: The general research suggests that economic work motivation is a need (or desire) that is goal driven resulting in some action, where a highly motivated person could outperform a more technically competent one.

15.3 Access to societal structures that enable beautiful expressions (aesthetics)

NOTE: *It is [in part] the life-value of aesthetics that ensures the preservation and care-taking of wild space.*

Human beings are capable of experiencing both the natural and the socially constructed world as aesthetic (or beautiful). Beauty is an emergent property of material organization that requires human experience. The relevant material relation is not just between the things in the environment, but between the living being as the subject of experience and the things in the environment.

It may be argued that there is no universal human capacity for aesthetic experience (or evaluation). However, the human experience of "awe" in the presence of natural forms has inspired creation and action in people across time and cultural spaces. Further, if the universe has a pattern to its structure, and humans are some sub-set expression of that pattern, then it is likely that expressions of that pattern in objects and spaces will uplift and evoke a sense of beauty (or harmony) in a human observer. The value of beauty cannot be understood reductively, since to reduce the beautiful object to its [abstract] material constituents (e.g., rock and water, tree and hills, sound waves, ink on a page, etc.) eliminates the relationship of the object to the conscious observer.

The life-value of the aesthetic capacity of humankind lies in its potential to uplift (and harmonize) the experience of consciousness, bringing it into greater alignment with its highest embodied potential. There is a physical reality to which consciousness relates through an aesthetic dimension to experience. An aesthetic environment enriches life insofar as it frees thinking and activity from calculating the ways in which things may be useful to itself and others. To see beauty in something is to let it be.

If there are no beautiful objects or spaces, there can be no experience of beauty. The existence of beautiful spaces and objects can be threatened by social processes.

The life-requirements that must be satisfied if the aesthetic capacity is to be developed and enjoyed largely involves personal and societal commitments to put effort into the cooperative creation of beauty and the preservation of already existing natural beauty.

The life-requirements involved in the development of the aesthetic capacity is both subjective (aesthetic cultivation) and objective (generation and preservation of natural patterns). The aesthetic sense requires cultivation (self-directed harmonization) more than education (self-directed learning). It requires individual freedom to release trauma and limited conditioning in order to align more greatly with patterns representative of a high degree experiential fulfillment. Or, said in other way, it requires individual freedom to release attachment from artificial limitation in order to resonate more greatly with patterns reflective of a higher potential capability and fulfillment.

Unless these life-requirements are met, the aesthetic capacity does not develop fully, and humans are harmed by losing connection with the environment's potential ability to uplift and inspire, which is not instrumentally useful or commercially exploitable. The harm lies in the impoverishment of an individual's sensibility caused by a one-dimensional relationship with the environment (i.e., only an instrumental, and not aesthetic, relationship).

There is a serial order of priority between physicalorganic and social (socio-cultural) life-requirements, these prioritizations are reflected in societal decisioning. Physical-organic life-requirements are basic to human life in a way that social (socio-cultural) life-requirements for the existence of beautiful natural spaces and social artefacts are not. There is no 30 day fatality from aesthetic starvation.

NOTE: A society that encodes a monetary-value system is unlikely to express a high-degree of aesthetic capacity due to the sprawl of the system as it inefficiently consumes wild space.

enable caring and working, together (coordinating)

NOTE: Future generations don't have to grow in their care through punishment, and then a percentage choosing compassion and appreciation, instead they can grow in their care be experiencing care from their environment.

Just as there is intrinsic life-value to work ("labour"), beyond its instrumental value, so too is there intrinsic value to caring, in the life of the one who cares. When human beings care about one another, they increase their own life-value by expanding the number of affirmative connections between themselves and other humans, and therein, they increase the life-value of others by acting toward them in such a way as to enable them to express and enjoy more life-value in their own lives. In a caring relationship, others are encountered as people about whom we care, and not as threats to be destroyed [in competition].

The capacity an individual requires to exist in a caring relationship is the capacity to live in reciprocity with others, to care about (i.e., take interest in) others as unique and unrepeatable bearers of self-determined, free life; and also, to allow oneself to be so cared for, and thus, to form social relationships, as far as possible, by the goal of expanding mutually enriching forms of understanding , interaction, and universal fulfillment of life requirements. Love and care enable individual humans to develop healthy dispositions toward other people - to value them as unique life-bearers and to develop mutual relationships with them.

All humans begin life in the state of an organism that requires, for its full development, wise and systematic love and care. A caring-loving experience is a requirement for healthy (fully adaptive) emotional development, from which profound flow states of capability emerge. If people are to be able to form non-violent, non-exploitative, non-instrumental, caring relationships with other people, then they require nonviolent, non-exploitative, and non-instrumental care and love from adults while they are young. Healthy emotional development becomes the capacity to interact with others in a way that demonstrates genuine concern for their self-development.

Being loved and cared for, especially while young, is a shared social (socio-cultural) life requirement, because without it the human capacity to love and care for others is degraded. Since the degradation of this capacity does not eliminate the existence of others from one's life, the lack of development of this capacity leads to a higher probability of conflict and the social pathologies of violence and the indifference to suffering it engenders. Just as organic life-requirements can be satisfied in multiple ways and with some degree of alignment, so too can this human life-requirement. Since the structures of relationship in which adult care and love are manifested toward children can vary, it follows that

15.4 Access to societal structures that

the ways in which this social requirement of human life may be fulfilled, can vary, from culture to culture. Human capacities for reciprocal caring are essentially intrinsic life-values, whose development depends on the satisfaction of the life-requirement for loving and caring family and friendship relations.

As a type of society, community encodes structures to generate and sustain caring relationships, as the model of [applied] human relations. The social (socio-cultural) life-requirements for the expression and enjoyment of the capacity to care can be determined by asking which societal structures ("institutions") are involved in the development of a caring personality.

There exists a set of economic relationships ("institutions") between the natural life-support system and human social life-development. Similarly, family organizations ("institutions") connect the instinctual inheritance of human beings and the social culti[vation] of human emotions.

APHORISM: *No one can flourish who does nothing of value for others.*

15.4.1 Intrinsically life-valuable work

NOTE: Well-organized societies ensure that only physically necessary and desired labour is performed, so that there is time to fully express our highest potential nature.

Intrinsically live-valuable work is the second universal social (socio-cultural) requirement of human life. There is a shared human life-requirement for an economic systems that satisfy the conditions for workers ("labour's") realizing its intrinsic life-value. In order to fulfill the requirement for work in a community-type habitat service system, the work that people perform must not only contribute as a function to social continuation, it must also be expressed and enjoyed as an individually meaningful human effort that is consciously chosen and contributes something that others' lives require.

Co-operation and mutual commitment enable the growth of higher-level human thought and creation, becoming the development of more capable expressions of humanity (and that which it is becoming). Here, work is doing what is of value to others and meaningful to oneself. A habitat work structure enables people to contribute to the provision of universal life services (consistent with each person's enjoyment of them). The value of work for others is defined by its contribution to the provision of the universal services each and all require to live as human.

The "vocation" of each individual is to do what s/he can that is of life-value to others and of life-interest to self. This could be viewed as giving back into what enables the humanity of each. All work involves some degree of transformation of existing materials (some degree of ingenuity, creativity, or just effort). Therein, work can have intrinsic as well as instrumental lifevalue. Economic work (i.e., "labor") produces objects and services that fulfill organic and social requirements.

The primary value of work (or labor) is not its "economic" value (as in, the production of exchange values), but its direct ability to effect organized and predictable change in ourselves, our lives, and our environment(s).

Transparency and cooperation are required to ensure that only necessary work is performed. Humans require work to be individually meaningful and consciously contributed.

All economic work in community is contributionbased and part of a larger whole. In community, work is determined through decisioning, explained by the transparently unified societal model, and carried out in the materialized world through coordinated cooperation.

To suffer forms of work that are devoid of intrinsic life-value for oneself and one's society is to suffer in one's humanity. Humans alienated in their working lives represents a significant area of insufficient fulfillment in early 21st century society. For any person or group to be reduced in their working (labouring) activity to a mere tool of system-requirements is to be harmed in their human capacity for creative self-realization and productive contributions to the well-being of themselves and others.

To suffer forms of work that are devoid of intrinsic life-value for oneself and one's society is to suffer in one's humanity. For any person or group to be reduced in their work ("labor" activity) to a mere tool of systemrequirements is to be harmed in their human capacity for creative self-realization and productive commitments to the well-being of others.

Where people are reduced to mere tools, they are objectively harmed in their human capacity for intrinsic life-valuable activity. There is therefore a shared human life requirement for economic decision systems that satisfy the conditions for workers (contributors, labourers) realizing intrinsic life-value. In other words, community is a structure that facilitates individual consciousness in realizing [some of] its life-value by contributing to activities that maintain and advance the community).

Societal conceptions of work, given that extrinsic forms of motivation have been shown to repress or erase intrinsic forms of motivation:

- A constructive activity to produce life-value for others as a goal - what healthy humans are impelled to do.
- 2. Adam Smith conceived work as a "dis-utility" what one has to sell into another's property to survive.
- 3. Work is something done for reward.
- 4. Work is something done to avoid punishment (coercion).

In the market, money is a socio-economic unit (of time) of work, which represents the time someone has completed giving their body over to another for necessary socio-economic exchange (a.k.a., laboring). Money is the object-expression a market-based society uses to represent a unit of power over (or, control over) others (i.e., a unit of potential power over another, authority).

The intrinsic life-value of work is not just the particular capacities developed in work life, but in work being the way in which individuals create and fulfill a sense of belonging [of social well-being] through contribution at all scales of society.

There is intrinsic life-value in:

- 1. The capacities that work allows someone to develop,
- 2. The extent to which it allows one to develop them, and
- 3. The social self-consciousness of oneself as a contributing member of society.

Workplaces may express different conditions given different societal configurations:

- 1. **Authoritarian workplaces:** Where the primary value of labor in the market is the production of exchange values, *power-over-others protocols*.
- 2. **Cooperative workplaces:** Where the primary value of work in community is its instrumental and intrinsic life-value, *togetherness protocols*.

Service types by societal configuration:

- In the market, the top-level human (synthetic, controlled) services are generally called 'industries', more fully, 'corporations' (States are corporations), 'business entities' (private entities), and 'State associable entities' (government entities, public entities).
- 2. In community the top-level human (synthetic, controlled) services called 'habitat services', more fully, 'habitat service systems'.

16 Life Potential

A.k.a., Actualization potential.

Actualization potential is the conscious-self need for actualization upon potential. 'Actualization' is the expression of the potential in oneself (one's life) leading to self-development [through uncertainty]. When these needs are met, the consciousness is likely to experience a [greater] sense of wholeness and fullness as a human being. Per actualization needs, behaviour, in this case, is not driven or motivated by deficiencies, but rather, one's desire for personal growth and the need to become all the things that a person is capable of becoming, social contribution and personal development being two important variables.

Other terms for 'actualization' include, but are not limited to:

- 1. Love and Belonging and extentionality
- 2. Esteem
- 3. Self-actualization
- 4. **Transcendence** *experienced through biology into consciousness as the* need (desire) to connect with something beyond one's identified self.
 - *Transcendence subjective measure [of well-being]:* quality of life (subjective well-being) at time of survey data collection.
- 5. Cognitive (intellectual, mental) experienced through biology into consciousness as the need (desire) to know and understand, to record and calculate (as sub-processes). Calculation can be automated. A computer is a computational system, which performs calculations. When a society develops a digital computational system, how does it apply this resource? Is it applied commonly to meet everyone's common need for understanding, and for recording and sharing that understanding, or is it applied otherwise? Of note, environmental conditions and conditioning affect an individual's physical ability to do these things on their own.
- 6. **Aesthetic (psychological)** *experienced through biology into consciousness as the* need for natural symmetry and order (i.e., beauty), and other structures that promote optimal feelings.
- 7. **Environmental aesthetics** It could be said that there is the study of environmental aesthetics, which explores the meaning and influence of environmental perception and experience on human life.
- 8. **Nature** Natural environments turn out to be particularly rich in the characteristics necessary for restorative experiences. The interactions of natural settings and childhood development are not completely understood but the absence

of this interaction has been dubbed naturedeficit disorder. Indigenous peoples have been communicating the necessity of incorporating more nature into the lives of those in early 21st century society for decades. Interactions with nature and its ecosystem services have been shown to enhance cognitive and problem-solving abilities, promote independence, focus attention, promote better environmental awareness, generally benefit early childhood development, and yet, these are obvious results.

9. Social identity - as defined values. [Social] Identity is defined values.

16.1 Access potential

I.e., Together in a biosphere, a global population requires access to materially regulated space-time; wherein, there is human actualization.

Access potential is the self-conscious desire to gain and sustain a self-conscious access level to materially regulated space-time. In any society there must be a way for individuals to regulate social contact, and have that understood and abided by among each other (a.k.a., personal boundary):

- Current personal space the immediate space surrounding a person (or individual system), in which he or she feels belongs (sole, discretionary access) to them. This buffer zone is used by the individual to stay comfortable in various situations. The personal space is considered adjusted in size depending on various factors, mostly sociopsychological (e.g. social settings or by means of protection).
- 2. Designated personal space the space, given location as part of a/the habitat service system, a person feels belongs (sole, discretionary access) to them. A designated personal space (e.g., bedroom with curtains closed, dressing room) may provide someone's current personal space the condition of privacy among a social population. The dwelling, for example, is an intangible location that offers the potential for privacy, a buffer zone, by controlling the closing out of the outer social environment.

In a general city living situation, most people want some people to have access to them some of the time, and it is necessary to control the number of people who see them in certain contexts. In the context of needs and satisfiers, privacy may serve as a satisfier for the needs of leisure and freedom. The presence of any structure indicates the potential for some potential elevation of privacy. In application, the notion of privacy is most commonly applied to individual's dwellings and personal information spaces. The living environment provides physical separation from the outside world by the use of walls. While separate rooms may provide privacy between persons living together. From the leisure perspective living areas provides privacy in the form of intimacy, spaces of closeness and subjective and/or non-functional (personal) surroundings. Private space and withdrawal from public situations provides a feeling of freedom. The physical barriers play a major role for achieving privacy. As individuals need to withdraw from social situations, the living area may provide such a service. The walls and the doors act as physical barriers that accommodate the privacy as a satisfier. This is seen both from a public point of view, but it may as well be from people living together. The furnishing and room separation plays a significant role in the perception of privacy and withdrawal in a living environment. The exterior walls provide the inhabitant with separateness from the outer environment, while the rooms and the doors provide privacy between the inhabitants. The physical barriers of the home, in particular, offer the opportunity for an individual to withdraw from what is called social observation, or in an institutionalized manner, surveillance.

Privacy is enclosure, and one of its most relatable analogies is a 'door'. A 'door' closes out; the wall encloses. The walls and the doors provide different functions. As the wall is a set perimeter for appraisal or enclosure, the door provide the user with an option of closing people out or inviting them in. The wall is the common, interfaced structure. A similarly idea, 'withdrawal enclosure' may be a significantly necessary function of a dwelling, not only from the outer environment, but also for the co-inhabitants. However, the use of walls can cause an undesired effect in the inhabitants by extreme enclosure.

QUESTION: Are there sufficient growth and contribution opportunities?

16.2 Contribution potential (to the intersystem team)

INSIGHT: When the structure of society nurtures fulfillment, then individuals among that society are likely to nurture the continuation and growth of the society through contribution.

Contribution potential is the self-directed/self-educated desire to gain and sustain placement on InterSystem Teams. Humans are a social organism in that all individuals have an innate desire to belong and be needed. Work, by creating some thing [of value] for others, fulfills the feeling of being needed and of desiring a helpful social role in the lives of others.

Community represents a structure that facilitates the full development of individual self-capacity to identify with, and care about, other's [well-being]. Caring relations (versus power-over-others or transactional relationships) as a model for social relations, is likely to increase overall life-value, because the outcome of successful caring (as a goal) is the elevation of the object of care to a better life-state, without loss of life-value of the one caring.

Through contribution individuals reciprocally enrich each others lives, as opposed to the application of exclusivity and gain over others. A contribution-base structure generates a space to care about others as unique and unrepeatable bearers of a similar pattern of life, to allow oneself to be so cared for, and thus to decide material relationships, as far as possible, by the goal of expanding mutually enriching forms of interaction.

When human being care and/or appreciate one another they increase their own life-value by expanding the number of affirmative connections between themselves and other humans, and they increase the life-value of others by acting toward them in such a way as to enable them to express and enjoy more life-value in their own lives. Caring relations as a model for human relations (whether they be familial, sexual, or friendly), such that when we do encounter others, we encounter them as people about whom we care, and not threats to be destroyed.

In contrast, market-based, transactional relationships where zero-sum competition is the dominant mode of social relationship must produce, over time, less, rather than more life-value than co-operation and care; in competition there are must be losers, and to lose when life-value is at stake is to suffer a diminution of life-value.

Work (a.k.a., InterSystem team work, engineering, and economic work) is an activity with the direct potential of doing or creating some thing [of value] for others (or another).

- In the market, work is an activity that generates money. Therein, leisure is an activity that does not generate money.
- In community, economic work (i.e., socio-economic work) is an activity with the direct potential of doing or creating some thing [of value] for others (or another) and oneself.

More fundamentally, work (intersystem team engineering, or other) is the societal basis for shared social (socio-cultural) life-requirements and service. Work that is satisfying to those who do it and of value to others. Work as that which is of value to others and of interest to the self.

The social requirement of human-life work includes:

- Intrinsically life-valuable work (social or economic work).
- Agency (personal choice) the freedom and ability to "control" one's own life, by choosing what to do and put effort into. A society that creates agency, rather than strips it away.

In the market, work is an activity that generates money through the mechanism of "profit". Profit is derived [in part] when a company is "formed" and labor is "hired" -- to extract profit from the labor. Such an activity is the pursuit of one's selfish self-interest, as opposed to acting to benefit oneself and others, while not artificially limiting the freedom of others. The profit mechanism strips away all meaning and value from labor other than whether it makes a profit. The market-based dynamics of considering what is valuable for the group as opposed to one individual's selfish contextual interest is lost when everything is reduced to a financial decision.

Humans need positive social roles in a community setting for them to feel socially fulfilled. This requirement is a social [ontological] imperative, a desirable opportunity-condition, because humans are a social organism.

Some human societal configurations do not imperatively fulfill or recognize (or even have a mechanism to do so) positive social contribution-based conditions, because everything has been reduced to a [financial] market-exchange transaction, where social and economic relationships are transactional (exchanged) because of competition and/or scarcity (instead of unified cooperation and contribution).

QUESTIONS: What is the function of work beyond earning a living or getting paid to pay bills? If money, and the concept of exchange, were removed from work altogether, what would work look life?

16.3 The potential for freedom

NOTE: For mortal beings, the most life-valuable way of using one's present time is to act in intrinsically valuable ways that at the same time open up possibilities for even richer activity in the future.

Freedom potential is to have the time and external order to decide without social coercion. There exist, at least, four conditions for activities to be conditions of freedom:

AXIOM: The idea of 'freedom' is bound up on the idea of 'doing anything' (i.e., having any ability to be active in a real world).

- 1. The human must be aware of the point of what is being done. The human must consider that which is to be done through that activity as something desired.
- 2. The human must direct and organize the activity.
- 3. The human activity must be incorporated into a community with some shared understanding of what is important, and where the activity of each only makes sense in the context of what we do together.
- 4. Being recognized (by others) as valued social

members.

In capitalism, activity aimed at satisfying the ends of life, labor, is by definition, unfree. An employee's labor is unfree in that the employer (authority) directs the laborer and the employee serves the ends of owner, not the employee.

The concept of freedom in every societal system is bound up in the definition (and encoding) of 'time'.

What is 'time'?

- 1. Is time 'money' (where, the present moment is sacrificed for a future 'monetary' reward)? Spend a life-time to maximize money-value.
- 2. Is time free for life valuable uses (present moments in a finite life eventually run out)? Spend a life-time to maximize life-value.

A society oriented toward human fulfillment is likely to apply automation to reduce all unnecessary contribution so that humans have the free time to decide where they would most like to contribute [to fulfilling the real world needs-requirements for everyone in the community].

In society, freedom is bounded by the natural conditions of life (the life-grounded or life-requirements) of other people. Decisions and actions that in some way undercut the life-requirements of on which everyone, including the individual consciousness inhabiting the sovereign physical vessel, depends. At a social self-conscious level, one's sense of one's own individual freedom involves an understanding and actualization of goals, which embrace, protect, and unite life on earth.

Hence, among a social population, 'freedom' (as inherently bound up with 'justice' and technical 'efficiency') is the condition of having free choice of one's daily activities, in concern to knowing, organizing, and deciding one's own efforts.

The free activity of humans (the human condition) has [at least] the following characteristic requirements:

- 1. **Material need[iness]** The free activity of humans is material as responsive to needs that individual humans ("we") have as living human beings.
- Intrinsically social (or cooperatively driven)

 The free activity of humans depends on the collaboration of others (i.e., coordinated access is freedom, while freedom is time, while coordinated access is time).
- 3. **Financial necessity (or scarcity driven)** The free activity of humans depends on individual ("your") financial freedom (i.e., money is freedom, while freedom is time, while money is time).

Freedom requires, in addition to the satisfaction of biological and socio-cultural life-requirements, some degree of free time (and mental structure-energy) in which the person can contemplate different possibilities for capacity expression and development and decide between them. There is a level of access, and then there is the level of freedom of access, which is either collaborative by protocol, or competitive by authority. Someone trapped in the "rat race" of capitalism may express complex and challenging capacities, in a particularly human way, at work, and yet feel oppressed, rather than free. If money-value pressures cause these capacities to be expressed in routinised ways, then the capacities are not freely developed, but coerced by the structure of 'work' in which the person is trapped. In other words, in these capitalist structures, 'work' is not seen as a collaborative InterSystem Team engineering operation where everyone works from the same unified specification, because we see our commonality and finality.

16.4 "Free"-time potential

"Free" time presupposes some degree of available time as the material condition of experiencing oneself as capable of deciding between different possibilities for activity (i.e., free choice, freedom). Surplus (available) time can occur in different social spaces, but is not necessarily identical to 'leisure time'. There is surplus time whenever one is not directly compelled to act one way, rather than another, by natural or social or material necessity, but is instead able to reflect upon and decide between different possibilities for action. Free time is thus time experiences as an open matrix of possibilities for action rather than a closed structure of coercion. It follows from this definition that work can be free time (i.e., contribution) to the extent that workers have control over the direction, pace, and content of their work activity, (i.e. where they are not simply fungible 'human resources' determined in their every move by the technical apparatus of work, managerial power, and imposed deadlines).

Conversely, in the market-State, 'human resource management' (HRM) is a corporate term defined as:

- Human refers to the skilled workforce in an organization.
- Resource refers to limited availability or scarce.
- Management refers to how to optimize and make best use of such limited or scarce resource so as to meet the organizational goals and objectives.

Therefore, human resource management is meant for proper utilization of available skilled workforce and also to make efficient use of existing human resource in the organization. Note that in community, humans are not resources (in either the materialistic sense or the scarcity sense), humans are not managed by other humans, and humans are not a scarce resource.

Unfree time is time scheduled and action sequenced in obeisance to a set of ends imposed upon the person. These routines leave no choice space in which alternative actions appear feasibly possible. In all cases of free activity, time is experienced as the open matrix within which the person thinks about what to do, how to do it, and, perhaps most importantly, why to do it. Activity is governed by the internal structure of that which is being thought about and enacted, and not a coercively imposed, mandatory end only extrinsically related to the internal structure of the practice. Making money is an extrinsic end. Contribution is an intrinsic end.

Individuals in community are released from the time-pressures of the market, but not from the timepressures of real human needs and requirements. There are stills deadlines in community, but deadlines that emerge from real world needs, not arbitrary deadlines imposed by private funding entities who want market-based results.

In community, people experience time as an open matrix of possibilities for life-valuable ends. As such, free time is not simply empty time, or time in which there is nothing to do; it is rather bound up with and inseparable from the forms of free life activity it makes possible. The benefit of optimizing the fulfillment of need through service together creates more free time, with which to further develop capabilities.

Scholarly references

- Azar, Edward E., Paul Jureidini, and Rold McLaurin. "Protracted Social Conflict: Theory and Practice in the Middle East." Journal of Palestine Studies 8, no. 1 (Autumn 1978): 41–60.
- Baugher, Shirley & Anderson, Carol & Green, Kinsey & Nickols, Sharon & Shane, Jan & Jolly, Laura & Miles, Joyce. (2000). Body of Knowledge of Family and Consumer Sciences. Journal of Family and Consumer Sciences: From Research to Practice. v92, n3, p29-32.
- Bhattacharya, Priyanka. (2019). *Positive Organisational Practices in Indian Engineering and Technology Institutes: A Model Building Approach*. Doctor or Philosophy. Thesis. Birla Institute of Technology and Science, Pilani. 2012PHXF0012P [eprints.bits-pilani. ac.in]
- Bremner, D.L. (2014). Human Needs and Problem Solving Approaches to Creating New Social Structures: Action Research on Conflict Resolution in Georgia, 2000-2002. The London School of Economics. UMI Dissertation Publishing, ProQuest LLC. UMI Number: U615872. [etheses.lse.ac.uk]
- Biggeri, M., Libanora, R., Mariani, S. & Menchini, L. (2006). Children conceptualizing their capabilities: results of a survey conducted during the First Children's World Congress on Child Labour. Journal of Human Development and Capabilities7(1), 59–83. [researchgate.net]
- Carnes, Bruce, A. Longevity, Biological. The Encyclopedia of Adulthood and Aging. (2015). DOI: 10.1002/9781118521373.wbeaa004
- Costanza, R., B. Fisher, S. Ali, C. Beer, L. Bond, R. Boumans, N.L. Danigelis, J. Dickinson, et al. 2007. *Quality of life: An approach integrating opportunities, human needs and subjective well-being*. Ecological Economics 61: 267–276.

- de Vos JA, Lamarre A, Radstaak M, Bijkerk CA, Bohlmeijer ET, Westerhof GJ. *Identifying fundamental* criteria for eating disorder recovery: a systematic review and qualitative meta-analysis. J Eat Disord. 2017;5(1):34. [ncbi.nlm.nih.gov] [ncbi.nlm.nih.gov] [scholar.google.com]
- Diener, Ed., Scollon, C.N., Lucas, R.E. (2003). The evolving concept of subjective well-being: the multifaceted nature of happiness. Advances in Cell Aging and Gerontology. Vol.15, 187-219. Elsevier Science. [citeseerx.ist.psu.edu]
- Ed Diener, Christie Napa Scollon, and Richard E. Lucas. *The evolving concept of subjective well-being: the multifaceted nature of happiness*. Advances in Cell Aging and Gerontology, vol. 15, 187–219. 2003 Elsevier Science. [citeseerx.ist.psu.edu]
- Food as Commons or Commodity? Exploring the Links between Normative Valuations and Agency in Food Transition. José Luis Vivero-Pol. 2017. Journal of Sustainability. Article on 9(3), 442. <u>doi.org/10.3390/</u> su9030442 [mdpi.com]
- Gander F, Proyer RT, Ruch W. Positive psychology interventions addressing pleasure, engagement, meaning, positive relationships, and accomplishment increase well-being and ameliorate depressive symptoms: a randomized, placebo-controlled online study. Front Psychol. 2016;7 doi:10.3389/ fpsyg.2016.00686. [ncbi.nlm.nih.gov] [ncbi.nlm.nih. gov]
- Geier, A.B., Rozin, P., Doros, G. (2006). Unit Bias: A New Heuristic That Helps Explain the Effect of Portion Size on Food Intake. Psychological Science. Vol 17; Issue 6, pp. 521-525. https://doi.org/10.1111/j.1467-9280.2006.01738.x
- Goldin, J. (2013). From vagueness to precision: raising the volume on social issues for the water sector. Water Policy, 15(2), 309. doi:10.2166/wp.2012.211
- Gregory V. Bochmann and Michel Raynal. *Structured specification of communicating systems*. IEEE: Transactions on computers, 1983. [lis.csail.mit.edu]
- Holm, D and Murray, HMM and Pauw, CJ and van Niekerk, AS. (2004). Project to fast track the implementation of energy efficiency standards in South African housing for improved comfort, health and reduced carbon emission. Nova Institute, Faculty of Theology, University of Pretoria.
- Hone, L.C., Jarden, A., Schofield, G.M., & Duncan, S. (2014). Measuring flourishing: The impact of operational definitions on the prevalence of high levels of wellbeing. International Journal of Wellbeing, 4(1), 62-90. doi:10.5502/ijw.v4i1.4 [pdfs.semanticscholar. org]
- Human consequences and responses. Stern, P. C., O. R. Young, and D. Druckman. 1992. Global environmental change: Understanding the human dimensions. Washington, D.C.: National Academy Press. [ciesin. org]
- Human Rights Education System: Strengthening the Capabilities of the CHRP for the Promotion and Protection of Human Rights in Mindanao. (2013). GOP-United Nations Multi-Donor Programme Phase 3. CORM Consultants, Inc. [ombudsman.gov.ph]
- Huppert, F.A., So, T.T.C. (2013). Flourishing Across Europe: Application of a New Conceptual Framework for Defining Well-Being. Social Indicators Research,

110(3), 837. [<u>link.springer.com</u>]

- Jackson, Tim & Jager, Wander & Stagl, Sigrid. (2004). Beyond insatiability - needs theory, consumption and sustainability. Consumption

 Perspectives from Ecological Economics. 10.4337/9781845423568.00013.
- Janse van Rensburg, C., Rothmann, S.I., & Diedericks, E. (2017). Person-environment fit, flourishing and intention to leave in universities of technology in South Africa. SA Journal of Industrial Psychology/SA Tydskrif vir Bedryfsielkunde, 43(0), a1422. https:// doi.org/10.4102/sajip.v43i0.1422 [scielo.org.za]
- Kahneman, D., Diener, E., & Schwarz, N. (Eds.). (1999). Well-being: The foundations of hedonic psychology. New York: Russell Sage Foundation.
- Kuo, F., Sullivan, W.G. (2001). Aggression and violence in the inner city: Effects of environment via mental fatigue. Environment and Behavior. Vol. 33. pp543–571.
- *Life value and the right to life* by John McMurtry. Published in Studies in Social Justice, Volume 5, Issue 1, 2011.
- Marletto, C. (2015). Constructor theory of life. March, 26. Royal Society Publishing. doi: org/10.1098/ rsif.2014.1226 [constructortheory.org]
- Maslow, A. H. (1943) *Theory of Human Motivation*. Psychological Review 50, no. 4. 370–96.
- Maslow, A.H. (1943) *A preface to motivation theory*. Psychosomatic Med., 5, 85-92.
- McMurtry, John. (2011). Human Rights versus Corporate Rights: Life Value, the Civil Commons and Social Justice. Published in: Studies in Social Justice. Volume 5, Issue 1, p11-61. [citeseerx.ist.psu.edu]
- Michel Poulain, Anne Herm and Gianni Pes. *The Blue Zones: areas of exceptional longevity around the world*. Vienna Yearbook of Population Research. 2013. (Vol. 11), pp. 87–108.
- Mobus, George. (2017). A Framework for Understanding and Achieving Sustainability of Complex Systems. Systems Research and Behavioral Science. Vol 34, Issue 5. doi.org/10.1002/sres.2482 [onlinelibrary. wiley.com]
- Murray, M., C. Pauw, et al. (2005). The House as a Satisfier for Human Needs: A Framework for Analysis, Impact Measurement and Design. XXXIII IAHS World Congress on Housing - Transforming Housing Environments through Design. Pretoria, South Africa [repository.up.ac.za]
- Nickols, S.Y., Ralston, P.A., Anderson, C., et al. (2009). *The family and Consumer Sciences Body of Knowledge and the Cultural Kaleidoscope: Research Opportunity and Challenges*. Family and Consumer sciences Research Journal, Vol. 37, No. 3, March, 266-283. [higherlogicdownload.s3.amazonaws.com]
- Noonan, Jeff. (2011). Use Value, Life Value, and the Future of Socialism. Rethinking Marxism, 23(1), pp117-134. DOI:10.1080/08935696.2011.536352
- Noonan, Jeff. (2014). Thought-time, money-time, and the temporal conditions of academic freedom. Time & Society. 24. DOI:10.1177/0961463X14539579 [researchgate.net]
- Noonan, Jeff. "Materialist ethics and life value". Oliver, G.F. (2012). Breeding the Phoenix: An analysis of the military's role in peace building. George Mason University Dissertation. School for Conflict Analysis

and Resolution. Fairfax, VA. [pdf.sematicscholar.org]

- Pauw, CJ and Schoonraad PJ. Survey of social and energy efficiency issues – eMbalenhle and Zamdela, February 2004. Nova Institute, Faculty of Theology, University of Pretoria, 2004.
- Prentice, M., Halusic, M. and Sheldon, K. M. (2014), Integrating Theories of Psychological Needs-as- Requirements and Psychological Needs-as-Motives: A Two Process Model. Social and Personality Psychology Compass, 8: 73–85. doi:10.1111/spc3.12088
- Qizilbash, M. C. (1996a). Capabilities, well-being and human development: a survey. Journal of Development Studies 33(2),143–162. [researchgate. net]
- Qizilbash, M. C. (1996b). *Ethical development*. World Development 24(7), 1209–1221. [researchgate.net]
 - Poulain, M., Herm, A., Pes, G. (2013). *The Blue Zones:* areas of exceptional longevity around the world.
 Vienna Yearbook of Population Research. Vol. 11, 97-108. [uu.nl]
- Pretty, J.N., Barton, J., Bragg, R.E., Sellens, M., et al. (2007). Green exercise in the UK countryside: Effects on health and psychological well-being, and implications for policy and planning. Journal of Environmental Planning and Management. 50. 211-231. 10.1080/09640560601156466. [researchgate.net]
- Ramones, S. M. (2011). Unleashing the Power: Anthony Robbins, Positive Psychology, and the Quest for Human Flourishing. Master of Applied Positive Psychology (MAPP) Capstone Projects. 21. [repository upenn. edu]
- Rao, D.N. (2017). Decent Living Standards: Material Prerequisites for Human Wellbeing. Social Indicators Research. Volume 138, Issue 1, July 2018, pp 225-244. [springer.com]
- Robeyns, I. (2003). Sen's Capability Approach and gender inequality: selecting relevant capabilities. Feminist Economics9(2–3), 61–92.[researchgate.net]
- Ryff, C. D., Singer, B. H., Love, G. D., (2004) *Positive health: connecting well-being with biology*. The Royal Society, London, 359, 1383-1394.
- Social determinants of health: A framework for educating health professionals Consensus study Report. 2016. The National Academies of Science and Engineering Medicine. Copyright Clearance Center. [nap.edu]
- Schotanus-Dijkstra, M. & ten Klooster, P.M.T., Drossaert, C., et al. (2016). Validation of the Flourishing Scale in a sample of people with suboptimal levels of mental well-being. BMC Psychology. DOI: 10.1186/s40359-016-0116-5. [researchgate.net]
- Soilleux. R.J. (2017). Towards Closed Environmental Control and Life Support for Space Habitats Part I: A Basic System. NSS Space Settlement Journal. 3 Kings Paddock West Winterslow Salisbury Wilts. UK SP5 1RZ. [space.nss.org]
- Studer, R. G., & Stea, D. (1966). Architectural Programming, Environmental Design, and Human Behavior. Journal of Social Issues, 22(4), 127– 136. doi:10.1111/j.1540-4560.1966.tb00555.x
- Summers, J. K., Smith, L. M., Case, J. L., & Linthurst, R. A. (2012). A review of the elements of human well-being with an emphasis on the contribution of ecosystem services. Ambio, 41(4), 327–340. doi:10.1007/s13280-012-0256-7 [ncbi.nlm.nih.gov]

- Tadros, M.S. (2013). Integrating the Human Element into the Systems Engineering Process and MBSE Methodology. Sandia Report. SAND2013-10742. Sandia National Laboratories [pdfs.semanticscholar. org]
- Thriving on our changing planet: A Decadal Strategy for Earth Observation from Space. 2018. Committee on the Decadal Survey for Earth Science and Applications from Space Studies Board, Division on Engineering and Physical Sciences. Consensus Study Report of The National Academies of Sciences, Engineering, Medicine. The National Academies Press. Washington, DC. doi.org/10.17226/24938 [nap.edu]
- Yilmaz, Murat & O'Connor, Rory. (2012). Social Capital as a Determinant Factor of Software Development Productivity: An Empirical Study Using Structural Equation Modeling. International Journal of Human Capital and Information Technology Professionals. 3. 40-62. 10.4018/jhcitp.2012040104.

Book references

- Alkire, S. (2002). Valuing freedom: Sen's capability approach and poverty reduction. Oxford, England: Oxford University Press.
- Anderton, A. (2000). *Economics* (3rd edition), Ormskirk, UK: Causeway Press.
- Appleby, M.C., Olsson, I.A., Galindo, F. (Eds). (2018). Animal Welfare. CABI.
- Bay, Christian. (1998). "Human Needs as Human Rights," in The Power of Human Needs in World Society, edited by Roger A. Coate and Jerel A. Rosati. London: Lynne Rienner.
- Bay, Christian. "Taking the Universality of Human Needs Seriously," in Conflict: Human Needs Theory, edited by John Burton. New York: St. Martin's Press, 1990.
- Bloom, Paul. (2011) *How pleasure works*. W. W. Norton & Company; Reprint edition (May 6, 2010)
- Branden, Nathaniel. (1995). *The six pillars of self-esteem: The Definitive Work on Self-Esteem by the Leading Pioneer in the Field*. Bantam Press.
- Braybrooke, D. (1987). *Meeting Needs*. Princeton University Press.
- Brown, M. M. (1985). Philosophical studies of home economics in the United States (Volume I). East Lansing, MI: Michigan State University.
- Brown, M. M. (1993). *Philosophical studies of home economics in the United States*. East Lansing, MI: Michigan State University.
- Buettner, D. (2001). *Thrive: Finding Happiness the Blue Zones Way*. National Geographic.
- Buettner, D. (2012). The Blue Zones, Second Edition: 9 Lessons for Living Longer From the People Who've Lived the Longest. National Geographic.
- Burns, D. J. (1989). *Current approaches to the study of higher level human needs*. Home Economics Forum, 3(2), 9-10.
- Burns, D. J., Rayman, D. M. (1989). *Motivation as a theory of needs in home economics*. Home Economics Forum, 4(1), 15-17.
- Burton, J.W. (1997). Violence Explained: The Sources of Conflict, Violence and Crime and Their Prevention

(Political Analyses). Manchester University Press. p32.

- Chompsky, N., Herman, E.S. (2002). *Manufacturing consent: The Political Economy of the Mass Media*. Pantheon.
- Colin, P.M. (2018). "Book Review: Materialist Ethics and Life-Value." In Essays in Philosophy. Vol. 19, Issue 1, 238. McGill-Queen's University Press. [commons. pacificu.edu]
- Cowan, R. (2005). *The dictionary of urbanism*. Streetwise Press.
- Davies, James C. "*The Existence of Human Needs*." In The Power of Human Needs in World Society, edited by Roger A. Coate and Jerel A. Rosati. London: Lynne Rienner, 1988.
- Fisher, Ronald J. "Needs Theory, Social Identity and the Eclectic Model of Conflict." In Conflict: Human Needs Theory, edited by John W. Burton. New York: St. Martin's Press, 1990.
- Galindo, F. Ed. Appleby, M.C., Olsson, A.S. (2018). Animal Welfare, 3rd Edition. CAB International. UK. ISBN-13: 9781786390202
- Galtung, Johan. "International Development in Human Perspective." In The Power of Human Needs in World Society, edited by Roger A. Coate and Jerel A. Rosati. London: Lynne Rienner, 1988.
- Gough, Ian. (2017). Heat, Greed, and Human Need: Climate Change, Capitalism and Sustainable Wellbeing. https://doi.org/10.4337/9781785365119.00010
- Gough, Ian. (2014). NEF working paper. Climate change and sustainable welfare: The centrality of human needs. The New Economics Foundation. [b.3cdn.net]
- Huitt, W. (2007). Maslow's hierarchy of needs. Educational Psychology Interactive. Valdosta, GA: Valdosta State University. [edpsycinteractive.org]
- Keynes, J. M. (1931), 'Economic Possibilities for our Grandchildren' in Essays in Persuasion, London: Macmillan, 321-332.
- Max-Neef, Manfred. (1992). Real-Life Economics: Understanding Wealth Creation. Development and human needs. Paul Ekins & Manfred Max-Neef, Routledge, London, pp. 197-213. [alastairmcintosh. com]
- Max-Neef, Manfred A. (1999). Human Scale Development: Conception. Application and Further Reflections. New York: The Apex Press, pp. 32-33.
- Maslow, A. H. *Motivation and Personality*. 2nd ed. New York: Harper & Row, 1970 (1st ed. 1954).
- Maslow, A. H. (1968). *Toward a psychology of being*. New York: Wiley and Sons.
- Maslow, A. H. (1971). *The farther researchers of human nature*. New York: Harper.
- Maslow, A. H., & Lowery, R. (Eds.). (1998). Toward a psychology of being (3 ed.). New York: rd Wiley and Sons.
- Max-Neef, M. A. (1991). *Human scale development*. New York, NY: The Apex Press. [dhf.uu.se]
- Mitchell, Christopher. "Necessitous Man and Conflict Resolution: More Basic Questions about Basic Human Needs Theory." In Conflict Human Needs Theory, edited by John Burton. New York: St. Martin's Press, 1990.
- Narayan, Deepa. 1999. Bonds and Bridges Social: Capital and Poverty. Policy Research WP n. 2167. Washington DC: The World Bank.
- Narayan, D., Patel, R., Schafft, K., Rademacher, A.

& Koch-Schulte, S. (2000). *Voices of the Poor: Can Anyone Hear Us?* Oxford University Press for the World Bank, Oxford.

- Noonan, Jeff. (2012). *Materialist Ethics and Life value. Materialist Ethics and Life value*. McGill-Queens University Press. pp46-58. ISBN:9780773539655
- Nussbaum, M.C. 2000. Women and Human Development: The Capabilities Approach. Cambridge: Cambridge University Press.
- Nussbaum, M.C. 2006. Frontiers of Justice: Disability, Nationality, Species Membership. Cambridge, Mass. The Belknap Press: Harvard University Press, 2006.
- Nussbaum, M.C. 2011. Creating Capabilities: The Human Development Approach. Cambridge, Mass.: Belknap Press of Harvard University Press.
- Oades, L. G., & Mossman, L. (2017). *The science of wellbeing and positive psychology*. In M. Slade, L. G. Oades, & A. Jarden (Eds.), Wellbeing, recovery and mental health (pp. 7–23). Cambridge: Cambridge University Press. DOI:10.1017/9781316339275.003 [cambridge.org] [scholar.google.com]
- Rakesh, Vanya. (2016). Adoption of Standards in Smart Cities - Way Forward for India. The Centre for Internet and Society, Blog. [cis-india.org]
- Sandole, Dennis J. D. "The Biological Basis of Needs in the World Society: The Ultimate Micro-Macro Nexus." In Conflict Human Needs Theory, edited by John Burton. New York: St. Martin's Press, 1990.
- Sandel, M. 2012. *What Money Can't Buy: The Moral Limits of Markets*. London; New York: Allen Lane
- Seligman, Martin. (2002). Flourish: A visionary new understanding of happiness and well-being. Simon & Schuster.
- Sen, A. 1999, Development as Freedom, New York: Knopf.
- Sites, Paul. Control: *The Basis of Social Order*. New York: Dunellen Publishing, 1973.
- Sites, Paul. "Needs as Analogues of Emotions." In Conflict: Basic Human Needs Theory, edited by John Burton. New York: St. Martin's Press, 1990.
- Whitworth, B., Ahmad, A. The Social Design of Technical Systems: Building technologies for communities. 2nd Edition. Interactive Design Foundation. [interactiondesign.org]
- Wiggins, D. 1987. Essay 1: Claims of Need. In Needs, Values, Truth: Essays in the Philosophy of Value. Oxford: Oxford University Press.
- Wu, TIm. (2016). *The Attention Merchants: The Epic Scramble to Get Inside Our Heads*. Knopf.

Online references

- Ellyatt, Wendy. (2018). The Flourish Model: and the History of Global Wellbeing Indicators. [flourishproject. net]
- Green, C.D. (2000). Classics in the History of Psychology. York University. Toronto. [psychclassics.yorku.ca]
- Schwartz, B., et al. (2019). *Human systems integration*. SEBok Wiki Article. [sebokwiki.org]
- Johnson, R.D., Holbrow, C. editors. (1975). *Space Settlement: A Design Study*. NASA/Ames Research Center Library. [settlement.arc.nasa.gov]
- Fundamental human needs. Uploaded by dokumento. Scribd. Accessed: 11, December, 2019. [scribd.com]

- McGregor, S.L.T. (2010). Well-being, Wellness and Basic Human Needs in Home Economics. McGregor Monograph Series No. 201003. Mount Saint Vincent University. Halifax, Canada. [consultmcgregor.com]
- McMutry, J. (2012). Articles by Prof John McMutry. [globalresearch.ca]
- McMutry, J. (2018). Corporate Globalization versus The Civil Commons by which People's Lives are Sustained by Prof John McMurtry. [bsahely.com]
- McMutry, J. (2018). Explaining Life-Value Onto-Axiology | The Primary Axiom of Life Value and the Universal Human Life Necessities and Principles of their Provision. [bsahely.com]
- McLeod, Saul. *Maslow's Hierarchy of Needs*.
 [simplypsychology.org]
- Michael, Katina. (2019). Engineering based design methodology for embedding ethics in autonomous robots. [katinamichael.com]
- Pelenc, Jerome. (2014). Combining the capability approach and Max-Neef's needs approach for a better assessment of multidimensional well-being and inequalities: a case study perspective with vulnerable teenagers of the region of Paris (France). Paper presented at the HDCA international conference "Human Development in time of crisis: renegotiating social justice" September,2014. Athens, Greece. [mpra.ub.uni-muenchen.de]
- Space Settlements: Spreading life throughout the solar system. National Space Society Resource Page. (Accessed December 2019). [space.nss.org] [space. alglobus.net]
- Wenner, Charlotte. (2018). The Elimination of 'Magical Thinking' in Activism: John McMurtry and the Life- Value Onto-Axiology. [medium.com]

THE DIRECTION OF A COMMUNITY-TYPE SOCIETY

TABLES

Table 26. <u>Direction > Human Needs List</u>: Survival and betterment needs, generate goals, are the [in part] reason why humans move intentionally in the world. In each of the four sectors, the first need is a pre-requisite of the second need. 1, 2. Sufficient physical and mental health, food and water, safety and security, structure and belongingness, love and respect from others, and self-esteem, to be alive and to want to stay alive. 5, 6. How much 'more' appears to depend on both our individual personalities and characteristics (nature) and our experiences and environment (nurture). Whenever the four survival needs are met, humans attempt to satisfy their four betterment needs, which are the needs we must satisfy to improve the quality of our existence. Satisfying the first two produces transitory happiness. Satisfying the last two produces lasting contentment for the individual and contributes directly to the 'ongoing survival of the species'. Satisfying the first two produces transitory happiness. Satisfying the first two produces transitory happiness. Satisfying the first two produces transitory happiness. Satisfying the last two produces lasting contentment for the individual and contributes directly to the 'ongoing survival of the species'. Source adapted from: Hertnon, Simon. (2016). A Theory of universal human needs. [simonhertnon.com]

	Survival needs	Betterment needs
Individual goals	Existence	Happiness (to feel good about being alive)
Individual needs	 Physical well-being Mental well-being 	5. More respect from others 6. More self-esteem
Species goals	Survival (of the species)	Contentment (and ongoing survival of the species)
Species needs	3. A safe and healthy environment4. Reproduction or limiting reproduction	7. Appreciation of 'life' and all that you have 8. Doing contributory actions in helping others to satisfy their unmet needs)

Table 27. Direction > Flourishing: The conceptualizations of flourishing (incomplete).^[1]

1. Hone, L.C., Jarden, A., Schofield, G.M., & Duncan, S. (2014). *Measuring flourishing: The impact of operational definitions on the prevalence of high levels of wellbeing*. International Journal of Wellbeing, 4(1), 62-90. doi:10.5502/ijw.v4i1.4

Keyes	Hupper & SO	Diener et al.	Seligman et al.
Positive relationships	Positive relationships	Positive relationships	Positive relationships
Positive affect (interested)	Engagement	Engagement	Engagement
Purpose in life	Meaning	Purpose and meaning	Meaning and purpose
Self-acceptance	Self-esteem	Set-acceptance and self-eseteem	-
Positive affect (happy)	Positive emotion	-	Positive emotion
-	Competence	Competence	Accomplishment/Competence
-	Optimism	Optimism	-
Social contribution	-	Social contribution	-
Social integration	-	-	-
Social growth	-	-	-
Social acceptance	-	-	-
Social coherence	-	-	-
Environmental mastery	-	-	-
Personal growth	-	-	-
Autonomy	-	-	-
Life satisfaction	-	-	-
-	Emotional stability	-	-
-	Vitality	-	-
-	Resilience	-	-

Table 28. <u>Direction > Well-being</u>: The sub-scale dimensional indicators of flourishing on the Mental Health Continuum Short Form (MHC-SF; Keyes, 2005).^[1]

1. Hone, L.C., Jarden, A., Schofield, G.M., & Duncan, S. (2014). *Measuring flourishing: The impact of operational definitions* on the prevalence of high levels of wellbeing. International Journal of Wellbeing, 4(1), 62-90. doi:10.5502/ijw.v4i1.4

Component of flourishing	MHC-SF Indicator (During the past month, how often did you feel)	
Emotional well-being		
Positive affect	Нарру	
Positive affect	Interested in life	
Life satisfaction	Satisfied	
Social well-being		
Social contribution	that you had something important to contribute to society	
Social integration	that you belonged to a community	
Social actualization	that our society is becoming a better place for people like you	
Social acceptance	that people are basically good	
Social coherence	that the way our society works makes sense to you	
Psychological well-being		
Self-acceptance	that you liked most parts of your personality	
Environmental mastery	good at managing the responsibilities of your daily life	
Positive relations with others	that you had warm and trusting relationships with others	
Personal growth that you had experiences that challenged you to grow and a better person		
Autonomy	confident to think or express your own ideas and opinions	
Purpose of life that your life has a sense of direction or meaning to it		

Table 29. <u>Direction > Flourishing</u>: Components of flourishing and indicator items from the Flourishing Scale $(FS)^{[1]}$

Hone, L.C., Jarden, A., Schofield, G.M., & Duncan, S. (2014). *Measuring flourishing: The impact of operational definitions on the prevalence of high levels of wellbeing*. International Journal of Wellbeing, 4(1), 62-90. doi:10.5502/ijw.v4i1.4

Component of flourishing	FS Flourishing Indicator	
Purpose/meaning	I lead a purposeful and meaningful life	
Positive relationships	My social relationships are supportive and rewarding	
Engagement	I am engaged and interested in my daily activities	
Social contribution	l actively contribute to the happiness and wellbeing of others	
Competence	l am competent and capable in the activities that are important to me	
Self-respect	I am a good person and live a good life	
Optimism	l am optimistic about my future	
Social relationships	l am optimistic about my future	
Autonomy	l am not coerced to learn or work	

Table 30. <u>Direction > Human Needs</u>: Human life ability requirements for living and operating together.^[1]

 Pelenc, Jerome. (2014). Combining the capability approach and Max-Neef's needs approach for a better assessment of multidimensional well-being and inequalities: a case study perspective with vulnerable teenagers of the region of Paris (France). Paper presented at the HDCA international conference "Human Development in time of crisis: renegotiating social justice". Athens, Greece. [mpra.ub.unimuenchen.de]

Life Skills	Sustainable human development	The capability approach covers	Fundamental human needs approach covers
Learning to know	Observe the situation	Developing reasoning	Understanding, meaning, creation
Learning to be	Being able to observe autonomously simple instructions	Enhancing agency	Life, technology, exploration, freedom/autonomy, achievement of
Learning to live together	Being able to work together (team work)	Building potential through social contribution	Affection, participation, positive relationships
Learning to do	Being able to participate in a common work; acting with determination	Being able to duplicate, operate, and debug; express basic and supra- functionings	Subsistence, protection, procreation

Table 31. <u>Direction > Flourishing</u>: Components of flourishing and indicator items from the elements of well-being identified by Seigelman.^[1]

1. Hone, L.C., Jarden, A., Schofield, G.M., & Duncan, S. (2014). *Measuring flourishing: The impact of operational definitions on the prevalence of high levels of wellbeing*. International Journal of Wellbeing, 4(1), 62-90. doi:10.5502/ijw.v4i1.4

Component of flourishing	PERMA-P Flourishing Indicator
Positive emotion	In general, how often do you feel joyful? In general, how often do you feel positive? In general, to what extent do you feel contented?
Engagement How often do you become absorbed in what you are doing? In general, to what extent do you feel excited and interested in things? How often do you lose track of time while doing something you enjoy?	
Positive relationships	To what extent do you receive help and support from others when you need it? To what extent have you been feeling loved? How satisfied are you with your personal relationships?
Meaning	In general, to what extent do you lead a purposeful and meaningful life? In general, to what extent do you feel that what you do in your life is valuable and worthwhile? To what extent do you generally feel that you have a sense of direction in your life?
Accomplishment	How much of the time do you feel you are making progress towards accomplishing your goals? How often do you achieve the important goals you have set for yourself? How often are you able to handle your responsibilities?
General well-being	Taking all things together, how happy would you say you are?

Type of project	Example outcome	Example outcome indicators	
Environmental	Increase life flourishing	Level of service flows	
Societal Increase human flourishing		Level of human need/requirement fulfillment	
City Increase human well-being		Level of life satisfaction; Range of tasks taken by volunteers; Level of volunteer confidence	
Self	Increase flow[ing] and happiness	Level of life feeling; level of life motives; level of life master-ability	

 Table 32. Direction > Outcomes: Highly simplified table of outcome indicators for a societal project.

Table 33. <u>Direction > Outcomes:</u> Highly simplified table of outcome indicators for a societal-type project. This table shows examples of market-type societal indicators, State-type societal indicators, and general human indicators. The market and State indicators are presented here for comparison. Note that there is still education in community, but it is indicated differently than through schooling. Literacy levels and language fluency are indicators in community.

lncome (Market type)	Educatability (State type)	Education (Commons type)	Physical	Social	Psychological
Employment rate	Personal education level	Personal education level (self-potential in relation to all)	Instances of illness	Participation in exploration activities	Happiness
Income earned	Pre-school attendance rate	# of youth in exploration activities	Severity of illness	Participation on InterSystem Team	Self-esteem
Ability to meet consumption needs	Primary school attendance rate	# of youth on InterSystem teams	# of participation days missed due to illness	Physical abuse	
Net worth	Secondary school attendance rate		Access to routine medical care	Emotional abuse	
Value of household assets	Vocational school attendance rate		Access to emergency medical care		
Value of loans taken	University school attendance rate		# of meals per day; meal cycling (e.g., fasting)		
Access to credit	# of children supported in school		Nutritional value of meals		
Bank account use	Literacy levels		Access to clean water		
Home ownership	National language fluency		Distance to water source		
Land ownership			Access to sanitary environments		
Quality of house					
# of family members per bed					

Table 34. Direction > Human Requirements: Economic tangibility and relationship to the self.

Economic design outcomes (offerings)	How	Tangibility	Relation to self	
Resources (source objects)	Extract (harvest, collect, gather, synthesize)	Fungible	Naturalized	
Services (functions of object complexes)	Deliver	Intangible	Standardized, Customized	
Products (goods, usable objects)	Make (manufacture, produce)	Tangible	Standardized, Customized	
Experiences (conscious usage of objects and object complexes)	Being	Memorable	Personalized	

Table 35. Direction > Human Requirements: Human Research Program Integrated Research Plan; a table of category options	
for deliverables.	

Category	Subcategory	Example input Users	Example Deliverables
Requirement or Guideline	Habitat Service System Design System Protocols and Preference Protocol	Contributors to the development of the sustainment and next iteration of the habtiat service system as an information system	A duplicable informational service system
	Habitat Service System Operating Procedures and Guidelines	InterSystem Team contributors as part of habitat service sub-system teams	An duplicable operational habitat service system
Technology or Tool	System solutions, prototype hardware, prototype software	Power system operations; medical system operations, project coordination	Power; first aid and restorative counciling; project coordination interface and computational processing
	Database	Human research program (is part of Exploration HSS); habitat service system operations; demand articulation and search program [Reality boundary and human demand models]	Database created by gathering [all] existing data [Human flow/flourishing models]
	Simulation	Habitat service operation, decision probability computation (space); societal development program [Simulation flow models]	Decision support tool, integrated habitat infrastructural system model [Integrated information and material flow models]
	Computational models, software	InterSystem habitat service operational teams, common community users [Computation flow models]	Service quality and risk assessment models, resource planning model, coordination and prioritization models, inquiry search and decision resolution models [Information flow models]
Countermeasures	Prescription	Individuals among society	Demands
	Protocol	InterSystem team, common and personal access users	Decision system; InterSystem team habitat service operational procedures; common and personal access
	Prototype hardware or software	InterSystem team, Discovery and development team	Systems integration testing assessment
	Materials	InterSystem habitat operational system teams	
Standard	Update	Working groups, Discovery working groups, Coordinators	Community specification standard (unified, new pages waiting for reprint)
	New	Working groups, Discovery working groups, Coordinators	Community specification standard (unified, new pages waiting for reprint)
Risk characterization, and Quantification	Evidence	Working groups	Societal risk coordinated information sub-system
Study and Results Demand request study, accounting, or analysis		Operational system definition, HSS project development Human service analysis and integrations	

Table 36. Direction > Human Needs: Human need list (simplified example).

Need	Resource	Act of satisfying need (activity)	Reason	Output
Nutrition	Food	Eating	Organism	Health, motion, excretion
Shelter	Building material	Sheltering	Organism protection; organism work protection	Land usage

Table 37. Direction > Human Needs: Human need list with modalities of human living.

Needs of	Туре	Being	Having	Doing	Interacting
Need to remain alive	Survival	Conscious	Consciousness	Choice	Breathing
Need to eat	Physiological	Hunger	Food	Eating	Cultivating, Preparing
Need to shelter	Physiological	Sheltered	Shelter	Sheltering	Constructing
Need to drink water	Physiological	Hydrated	Hydration	Hydrating	Cultivating, Preparing
Need to sleep	Physiological	Asleep	Restful environment	Sleeping	Sleeping
Need to move	Physiological	Moving	Movement	Movement	Moving
Need to orient in-self	Core value	Freedom	Alignment with self-direction	Participating	Serving
Need to orient in-social	Core value	Justice	Alignment with human need	Contributing	Restoring
Need to conserve while orienting (need to orient conservatively)	Core value	Efficiency	Aligment with what is possible	Flowing	Ephemeralizing
Need to adapt	Stabilizing value	Learning and integration	Having adaptability	Exploration	Educating
Need to sustain structure		Health and vitality	Having structurality	Restoration	Restoring
Need to see others as common		Appreciation and compassion	Having extensionality	Meditation	Meditating
Need to regenerate		Regenerative and technological abundance	Having capacity	Calculation	Computing
Need to coordinate		Openness and sharing	Having coordinality	Coordination	Sharing
Need to contribute		Cooperation and collaboration	Having contributionality	Contribution	Contributing
Need to contribute		Intrinsic motivation (autonomy, mastery, purpose)	Having intentionality	Self- determination	Choosing

Table 38. Direction > Ecological Service Needs: Ecological service categories of human need (highly simplified).

Ecological Needs Service	Sub-category: Human Needs
	Food
	Fiber/Textile
	Genetic resource
	Biochemical medicines
Provisioning Services	Fresh water
	Air quality regulation
	Climate regulation (Global & Regional/Local)
	Water regulation
	Erosion regulation
	Water purification and waste treatment
	Disease regulation
	Pest regulation
	Pollination
Regulating Services	Natural hazard regulation
	Moral values (limitations and optimizations)
	Belief values (limitations and optimizations)
	Exploration
	Discovery
	Learning
	Aesthetic
	Therapeutic
Aspiration Services	Creation
	Soil processors
	Decomposers
	Soil formation (soil synthesis)
	Photosynthesis
	Primary regulators
	Primary production
	Nutrient cycling (recycling without universal solvent, water)
Supporting Services	Water cycling

Table 39. Direction > Well-being: The Warwick-Edinburgh Mental Well-
--

Statements	None of the time	Rarely	Some of the time	Often	All of the time
l've been feeling useful	1	2	3	4	5
l've been feeling relaxed	1	2	3	4	5
l've been feeling interested in other people	1	2	3	4	5
l've had energy to space	1	2	3	4	5
l've been fdealing with probelms well	1	2	3	4	5
l've been thinking clearly	1	2	3	4	5
l've been feeling good about myself	1	2	3	4	5
l've been feeling close to other people	1	2	3	4	5
l've been feeling confident	1	2	3	4	5
l've been able to make up my own mind about things	1	2	3	4	5
I've been feeling loved	1	2	3	4	5
I've been interested in new things	1	2	3	4	5
l've been feeling cheerful	1	2	3	4	5
l've been feeling pain free	1	2	3	4	5

 Table 40. Direction > Human Ergonomics: Human ergonomic factors (Simplified).

Human Erganomic Factors	
Human Characteristics	Human Characteristics
	Psychological aspects
	Physiological and anatomical aspects
	Group factors
	Individual differences
	Psychophysiological state variables
	Task-related factors
Information Presentation and Communication	Information Presentation and Communication
	Visual communication
	Auditory and other communication modalities
	Choice of communication media
	Person-machine dialogue mode
	System feedback
	Error prevention and recovery
	Design of systems and processes
	User control features
	Language design
	Database organization and data retrieval
	Programming, debugging, editing, and software programming aids
	Software performance and evaluation
	Software design, maintenance and reliability
Manufacturing	Manufacturing
	Hardware design
	Hardware performance and evaluation
	Hardware design, maintenance and reliability
Display and Control Design	Display and Control Design
	Input devices and controls
	Visual displays
	Auditory displays
	Other modality displays
	Display and control characteristics
Environment	Environment
	Illumination
	Noise
	Vibration
	Whole-body movement
	Climate
	Altitude, depth and space
	Other environmental issues
	Other environmental issues
Work Design and Organization	Work Design and Organization
Work Design and Organization	
Work Design and Organization	Work Design and Organization

	Job scheduling	
	Selection, screening and orientation	
	InterSystem monitoring and accountability	
	Education and training	
	Use of support	
	Technological change and integration	
Health and Safety	Health and Safety	
	General health and safety	
	Etiology	
	Injuries and illness	
	Prevention	
Methods and Techniques	Methods and Techniques	
	Approaches and methods	
	Techniques	
	Measures	

THE DIRECTION OF A COMMUNITY-TYPE SOCIETY

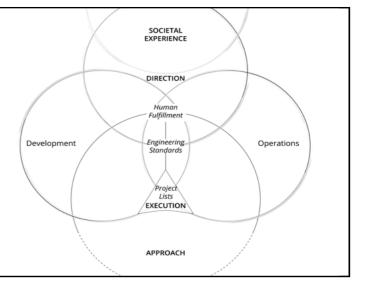
The Execution of a Community-Type Society

Travis A. Grant,

Affiliation contacts: trvsgrant@gmail.com Version Accepted: 8 June 2020

Acceptance Event: *Project coordinator acceptance* Last Working Integration Point: *Project coordinator integration*

Keywords: execution, project execution, societal execution, community execution, system execution, project lists, project list execution


Abstract

To execute is to take action. Execution is a state of motion, a state of movement consciously energizing. Execution is to take action (i.e., to go from) becoming (potential, design) into actual being (actualized, materialized). Execution done well ("right") is a planned and disciplined process that involves a logical set of connected activities acted upon by an organization to produce an expected result (to make work successful). To take action requires the synchronous integration of a set of project plan lists. There are two categories of list, a list that includes certain information traceable to requirements, and a list that includes uncertain information traceable to risks (detriments to the project). The execution of a plan involves the combining or positive project lists along a timeline (schedule), whereupon risks are mitigated and responded to through reasonable controls. The execution of a societal-level project is complex and multivariate. Human flourishing can be resolved for by applying effort toward the combined resolution (actionable

integration) of a set of directional (positive) lists. In the market, these lists represent exchanges of property/ownership. In the State, these lists represent hierarchical relationships of one person having power [of coercion] over another. In order to sustain a fulfillment-oriented society, relationships must be sustained that meet the society's minimum level of informational and spatial requirements. In an effort to provide the most efficient execution possible, there must exist cooperation and coordination among projects (project coordinators), working groups, and habitat teams.

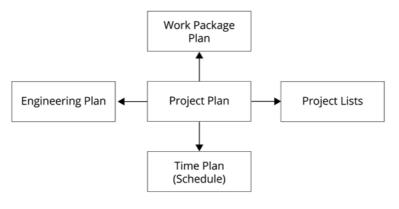
Graphical Abstract

Figure 9. This project executes through a series of project lists. The execution of the lists is approached in a specified manner. The result of the execution is a set of standards (representational of the intended society) and a set of habitat operations (that utilize the standards) to produce a specified direction (e.g., human fulfillment).

1 Introduction

Execution is to take action. Execution is a state of motion, a state of movement consciously energizing. Execution is to take action (i.e., to go from) becoming (potential, design) into actual being (actualized, materialized). Execution done well ("right") is a planned and disciplined process that involves a logical set of connected activities acted upon by an organization to produce an expected result (to make work successful).

In concern to project execution and control, lists a prerequisite. Lists are presented best as tables (matrices). In a database, tables store computable values. For purposes of execution, lists are an execution [coordination] tool. Relational tables can be computed (combined) by software as an information system. It is possible to operate a society without the price or violence mechanisms in that the information required to make the economy work can be performed by computer simulation, extrapolation, and calculation upon relational tables of project-relevant data so that the value and demand is represented within a software system.


To be effective, the execution of the plan must include people coming together to consciously create a type of society sufficiently long that this transformation can actually happen at a global scale.

To be effective under market-State conditions, the execution of a plan [to generate and sustain community] only comes through great leadership. Here, leadership involves:

- 1. Stepping out to go first and take risk.
- 2. Rational, organizational, and socially relatable abilities and skills.

In the real world, a plan is critical to long-term survival; without planning people tend to live day-to-day, always reacting to unforeseen threats, instead of seeing potential problems and avoiding them completely. This is especially true when there are not enough resources or contributions. Here, the primary concern is a lack of a desire, or of foresight, to take an interest in the plan (which exists regardless of interest, because humanity shares a common $plan \cdot et$).

Figure 10. The execution of a societal-level project plan involves its own development. It also involves work, the design and development of a final system, a time line, and a series of project lists that integrate actionable project information.

2 [Project] Project lists

A.k.a., Positive lists, accountable lists, accountabilities.

A project list is a repository of all listable elements relevant to the execution (running, coordination) of a project. Whatever a project is composed of, it can be added to a [project-relevant] list. Lists contain data accessible for execution, which may be software, hardware, or human, or some combination thereof. A list is any information displayed or organized in a logical or linear formation, which is necessary for the coordinated execution of any task.

In terms of computation, which is a necessary component of the execution of a complex socio-technical system, it is useful to understand a list as a data structure that generalizes one or more atomic vectors. An atomic vector is the simplest directional data type. Data without a vector (i.e., scalar values; data without useful decisional information) can be vectorized through operations. Each sub-system of a total societal system has a different set of interrelated "atomic" vectors:

- In a social system, a 'value' (condition, *need*) is the simplest directional data type (i.e., is an atomic vector). Values are orientationally usable data packets with an identifiable vector (meaningful direction). Data organized for meaningful fulfillment has an atomic vector.
- 2. In a decision system, an 'objective' (claim, *requirement*) is the simplest directional data type (i.e., is an atomic vector). Objectives are measurable outcomes. Action taken on the part of objectives has an atomic vector.
- 3. In a material system, an 'object' (matter, *technology*) is the simplest directional data type (i.e., is an atomic vector). Objects have shape. The motion of objects has an atomic vector.
- 4. In a lifestyle system, an 'organism' (life, *feeling*) is the simplest directional data type (i.e., is an atomic vector). Life has consciousness. The experience of consciousness has an atomic vector.

A project is necessarily composed of the following executional list elements (components, parts):

- 1. **The lists** The execution of a direction as a set of lists that account .
- 2. **The meta-relational database** The descriptive meaning of each list, and all lists in relation to one another.

2.1 What are the listable elements of a societal-level project plan?

In order complete a project, a project plan must identify

and relate the following lists, upon which calculation can be done:

- Schedule list The items in this list are Tasks within a hierarchical structure of groupings called the WBS (Work Breakdown Structure). The temporal association as an activity.
- 2. **Concerns list** Each Concern is either a risk or an issue, which are handled in much the same way via a decisioning process.
- 3. Actions list The list of all tasks (actions, activities, etc.), all of which are tracked. Some tasks exist to resolve concerns.
- 4. **Locations list** The list of locations of everything in an information storage system.
- 5. **Humans list** The list of who is contributing, and where and when and with what.
- 6. **Team list** the individuals and machines that carry out activities.
 - A. The human work package as human placement on a team.
 - B. The human work package as the human selection of tasks as part of a team.
- 7. **Events list** This is the list of computational integration points on a timeline. More broadly, any notable interaction between two or more people may be listed here. A recorded event always identifies the 'result' of that interaction (e.g., minutes of meeting, a report, a computational result).
- 8. **Deliverables list** The outputs (of processes) that must be completed ("ticked off" as done).

More completely, a project must identify and relate the following eight top-level project lists/tables (within a database), upon which calculation can be done:

- 1. **Objectives list (requirement-oriented breakdown) -** An objective/requirement is a capability to which a project outcome (product or service) conforms to a measurable degree.
- 2. Deliverables list (product/service-oriented breakdown) - Deliverables are requirements packaged with contextual information into the form of products and services (as outputs of processes) required to complete the project. Note: There are project deliverables (project needs/requirements), and sub-project deliverables (sub-project needs/ requirements).
- 3. Actions list (action/Task/Work/deliverableoriented breakdown) - Actions (activities/work packages) are executable [process or construction] tasks. The items in this list are tasks within a hierarchical structure of textual groupings (a work breakdown structure, WBS). Synonyms for 'action'

include, but are not limited to: work, task, activity, executable, "something to do", process, procedure, construction, and resolution. Actions are assigned to systems and/or people. Some actions are automated. Automated actions form automated services - services without the need for direct human effort, no 'event' instantiation (no addition to the Events List). *Note: A project produces a product and/or a service, and so, that is why this type of plan, is called a "plan of action"*); *because, it intends to describe the act of brining something into existence.*

- 4. Events list (Human-to-human-oriented breakdown) - Events are a specific type of task; they are social integration-decision event task. An event (on this list) contains [at least] the location, time, and contents of human-based interactions that have lead to, or will lead to, a change and/or decision about the project (or some aspect therein).
- 5. Schedule list (time-oriented breakdown) In order for action to occur (i.e., "things to happen"), there is time. Actions, deliverables, requirements and events can be organized within time (i.e., they can be scheduled and time delineated). These project information categories can be expressed in terms of a time (i.e., iteration) dimension. A schedule list may also be known be the following labels: timeline, gantt chart, or project schedule. A schedule can be a unified visualization of all (or selected) actions/work, deliverables, requirements, and events per [unit of] time, with all associated meta-/calculable-information. Through the scheduling of accountability project coordination can be calculated and visualized; wherein, it is possible to view: system and human bandwidth; who's available; and who's busy.
- 6. Concerns list (risk/incident/issue-oriented breakdown) - Each issue of concern is either a risk or an incident. This is a list of issues concerning organizations and events that have been/may/or are adverse [in their effects] to the completion of the project (i.e., "threats"). Here, the issue is either a risk (with some likelihood of), or an incident (current affect of), inhibiting project completion. Incidents require resolution (hence, new actions/ tasks to resolve the incident), and risks necessitate mitigation reasoning for project preservation planning. Issues are prioritized (as in, 'triaged'). In general, issues themselves are not scheduled, although their resolutions may be. A planned "issue" is either a test or a trap.
- Contribution accountability list (people/ actor-oriented breakdown) - Profile and activity information on every human in the project, including all their associated project and sub-

project information, resource allocations, and roles/responsibilities.

8. Locations list (Location-oriented breakdown) -Material and digital [resource] locations. Note that resources can be moved to re-located them over time, and this relocation can be scheduled.

2.2 [List] Plannable elements of a project plan

I.e., What are the plannable elements of a project plan?

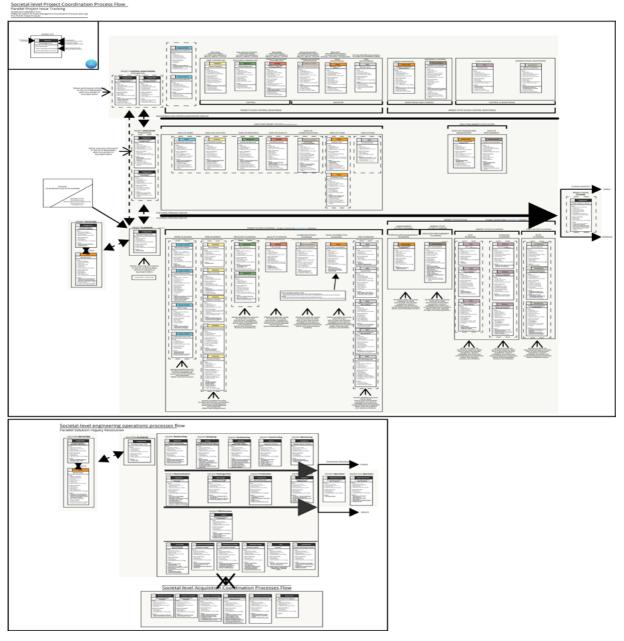
These plans describe how the project will be coordinated, monitored and controlled throughout the project lifecycle:

- 1. **Project charter (project definition plan)** the planned instantiation of a project.
- Communication coordination plan the planned protocols (synchronization and acknowledgement) and platforms by which information is understood and used.
- 3. **Document coordination plan** the planned publication and dissemination of standard references for usable information.
- 4. Schedule coordination plan (time team planning) the planned positioning of team elements in time.
- 5. Resource coordination plan (object and operation planning) the planned positioning and occupation of resources.
- 6. **Issue coordination plan (change control planning)** the planned decisioning of issues.
- 7. Risk coordination plan (challenge response planning) the planned response to negative events.
- Human coordination plan (human team planning)

 the planned positioning of individual humans into an organization of InterSystem teams and working groups who accountably complete tasks to sustain and adapt the operation of society.

This is a project to construct a network of cities. All construction projects are monitored and controlled through a construction plan:

- 1. **Construction plan** the plan to construct the a city location. A simplified construction plan may be summarized as follows:
 - A. Concept design
 - B. Architecture and engineering design
 - C. Site selection
 - D. Materials and tools acquisition, and transport to and from site (a.k.a., resource collection, including tangibles and intangibles)


- E. Operational team formation (i.e., intersystem team to construct and operate the habitat service system)
- F. Site preparation
- G. Main construction (phased delivery)

2.3 [List] Societal project sub-plans

The following is a list of the project sub-plan deliverables for a community-type societal project:

- 1. Design plan conception information set.
- 2. Construction plan materialization information set.
- 3. **Operations plan** knowing the procedures of the system.
- 4. Maintenance plan knowing when to maintain systems.
- 5. **Configuration plan** knowing where and how to reconfigure systems.
- 6. **Disaster recovery plan** knowing how to recover systems; continuity of operations.
- 7. Market-State relationship plan know how to

Figure 11. This is the project coordination planning chart for a community-type society. This is a societal-level project planning flow-chart that coordinates the execution of project operations and lists. Please refer to the project's website for the full size asset.

communicate with entities in the market-State to sustain working relationships.

- A. Political communications strategy (a.k.a., State communications strategy, State relationship plan)
- B. Market communications strategy (a.k.a., business plan, market relationship plan
- C. Public communications strategy (a.k.a., social/ crowd communication plan)

2.4 [List] Accountable and assessable elements of a project plan

Accounting and assessment are essential if a plan is to be executed as expected. All questions about plans are answered, in part, through the accounting for, and assessing of, goal related information. For instance, in concern to how much land is needed and how many people to populate the city with, that would need to be assessed and calculated.

- Resource accounting and assessment: An assessment would need to be conducted on the available resources (this is often called a resource survey), but in the market, this would be a financial resources assessment, because the first city will require financial resources to acquire the material resources to construct and maintain the first city environment.
- 2. Land accounting and assessment: An assessment would need to be conducted to determine how many people could reasonably populate that land with the available technological resources. In other words, given the land and technology available, how many people can said physical environment sustainably and healthily support. Of course, the issue of technological acquisition returns the equation to the amount of financial resources available for the effort. A comprehensive site analysis and land/environmental assessment is used to determine possible locations for placement of the first experimental community city. The analysis will compare between locations. It will provide (given current trends) a feasibility/viability determination for the experimental city for each location.
 - A. Site analyses and selection includes, but is not limited to:
 - 1. Is the site safe?
 - 2. Is the site conducive?
- 3. Task/transformation (a.k.a., transaction in market) accounting and assessment: An accounting and assessment of the transformational actions (tasks).
- 4. People accounting and assessment: An assessment of the people populating and/or to

populate an environment; their value orientation, understanding, and abilities, and possibly, other qualities that are required to construct and operate a city in community.

- A. Human screening materials Societal screening questionnaire and documentation for entrance into the community network. This project proposes an entirely different way of living from the many other ways seen throughout early 21st century society. Entrance into the community will depend highly upon the value orientation and expression of the individual. The society will screen individuals to ensure that their orientation and life direction is aligned with that of the society as defined in its standard specification.
- B. People analyses and selection includes:
 - 1. Screening documentation and procedures.
 - 2. Orientation documentation, procedures, and assets. Has the person
- 5. Jurisdictional and geopolitical analysis (accounting and assessment in the State): An assessment of the jurisdiction where the city may/is being developed to ensure that the political and legal climate will not tear the new societal environment apart.
 - A. Jurisdictional/geopolitical analyses and selection includes, but is not limited to:
 - 1. Is authority accepting of societal system type?
 - 2. Is authority stable?
 - 3. Is public environment safe?
 - B. Contractual agreements (legal declaration)1. What are the responsibilities of parties?
- 6. Financial analysis (accounting and assessment in the market): An assessment of the financial resources of the city may/is being developed to ensure that the financial ability will not tear the new societal environment apart.

2.5 [List] Operationalizable societal systems

The list of plannable societal systems [for a communitytype society]. This list includes a system of systems, standards, and support structures, all of which require the completion of tasks, through contribution, in order to sustain the service:

1. Global societal life service system

- A. Global information service system An operational, informational environment (a.k.a., the information, construction environment): The information system as an operational data interface service system.
 - 1. Global societal service standard

- i. Social Information System
- ii. Decision Information System
- iii. LifeStyle Information System
- iv. Material Information System
- B. Global habitat service system An operational, material environment (a.k.a., the materialized, built environment). The city as an operational habitat service system.
 - 1. Life-Support system structure
 - 2. Technology support system structure
 - 3. Exploratory support system structure
 - 4. Multiple city configurations customized for different group preferences (cultures)

Human life uses both informational and material services. These services can be accounted for and planned:

- 1. A living body uses *habitat spatial service resources* (for its benefit and highest potential).
- 2. A living mind uses *habitat informational service resources* (for its benefit and highest potential).

2.5.1 A social information system platform

A social information system platform is required for working at population scale, and it enables:

- 1. Visualization
- 2. Tracing
- 3. Computing
- 4. Collaborating
- 5. Coordinating requirements, workflows, interfaces, design, assembly, etc.
- 6. Smart design and testing (integration of mechanical, electrical, software, and electronics design).
- 7. Convergent modeling.

A societal information resolution interface for:

- 1. All Views
- 2. Technical Standard Articles (social, decision, ...)
- 3. Studies (scientific understanding and research)
- 4. Lifestyles (individual and social calendars)
- 5. Operations (procedural, monitoring, and change control procedures)
- 6. System support (life, technology, exploratory)
- 7. Services (habitat service sub-systems)
- 8. Flows (resource flows)

2.5.2 A team contributions platform

A community-type society necessarily organizes a team set to accomplish organizational tasks. Teams complete tasks.

In order to complete tasks at a systems level, a team

must:

- 1. Develop and use data sets.
- 2. Develop and use procedural tools.

In order to,

- 1. Develop and operate a global information system.
- 2. Develop and operate local habitat service systems.

2.6 [List] Societal standard deliverables

The following is a list of the high-level deliverables for a community-type societal project:

- 1. Societal specification standards (the productsystem; a societal information system, a society)
 - A. Social system standard
 - 1. Written technical standard articles
 - 2. Conceptual modeling
 - 3. Database system production and operation
 - B. Decision system standard
 - 1. Written technical standard articles
 - 2. Design code
 - 3. Software system production and operation i. Information collaboration platform

C. Material system standard

- 1. Written technical standard articles
- 2. Design drawings
- 3. Hardware system production and operation i. Habitat service system
- D. Lifestyle system standard
 - 1. Flow experience standard articles
 - 2. Learning experience standard articles
 - 3. Contribution experience standard articles
- 2. Project overview standard
 - A. Identifiable unifying model
 - B. Written proposal of unification (treatise on community)
 - C. Visual prototype of unification
- 3. **Project plan standard** (the coordinated plan of action)
 - A. Listed variables for actions
 - B. Written understanding of actions
 - 4. Visualized efforts of actions

2.6.1 The functional societal specification standards:

A societal information system may be sub-divided into sub-systems with specialized functional standards:

1. The social system specification

- A. The written documentation part.
- B. The human fulfillment and motivation database.

2. The decision system specification

A. The written documentation part.

- B. The mathematical modeling part.
- C. The software programming of the decision system.
- D. Machine learning interface.
- 3. The lifestyle system specification
 - A. The written documentation part.
 - B. The global access system's interface.
- 4. The material system specification
 - A. The written documentation part.
 - B. The architectural CAD- and BIM-based drawings for the integrated city system and technology therein.
 - C. The 3D visually modeled representation of the integrated city system (with different configurations).
 - D. Integration of the 3D representation into a gaming engine for virtually simulating all operational aspects of the community.
 - E. An open source virtual reality simulator of the city.

The specification standard for a unified societal information system involves:

- 1. A unified specification standard for the construction and operation of the societal system.
- 2. Continued research, design, and error correction of the existing specification standards.

2.7 [List] Societal study deliverables

The following is a list of study deliverables for a community-type societal project:

- 1. **Rational thinking studies** Show me the object, the motion, and the conception.
 - A. **An understandings review** Existing visualizations are explained.
- 2. **Experimental studies -** Show me the controlled change, the test.
 - A. A literature review Existing literature is one source of social data "evidence" on causal and correlative relationships. Literature may be searched for evidence in favour and against a solution concept or hypothesis. Existing literature may also suggest alternative causes to problems. As one of the dependent variables in an article is related to the selected problem, the independent variables may reflect causes of the problem. To select the literature (from a unified information space) and the new causes, it is important to know that the literature is reliable and valid for the practical situation. The systematic review of the literature enables a social population organized through a project-

based structure to benefit optimally from existing knowledge on a subject.

- 3. **Publication studies -** Show me the public integration.
 - A. Scientific journals are the most important medium for the publication of research results. Articles in scientific journals present findings at the frontiers of knowledge and are often characterized by a limited scope. Most journal articles have a similar structure.
 - B. Professional journals In addition to scientific journals, one can also find professional journals. These journals are targeted at an audience of practitioners. The most popular professional journals include Harvard Business Review, MIT Sloan Management Review, and California Management Review. Professional journals have a pragmatic instead of a theoretical focus. These journals seldom publish original research – only popularized versions of research published elsewhere.
 - C. Books Distinguishing between disciplinespecific books, scholarly books, textbooks and handbooks.
 - D. Quick reference materials guidebooks, handbooks, etc.
 - E. Other types of research publications Besides scientific journals and books, there are several other types of publications in which results of scientific research are published. First, conference proceedings contain papers that have been presented at a particular conference. Conference proceedings are particularly valuable for finding out the latest research. Frequently, improved drafts of these papers are later submitted to journals. Most libraries have only the proceedings of the most important conferences available. Second, many research institutes publish series of working papers. These papers describe research-in-progress, and later versions are often submitted to journals. Therefore, these are also particularly important to find out about recently finished and current research projects. Finally, there is so-called grey literature. This is literature that is written for a restricted audience and is difficult to identify and obtain.
- 4. Prototype studies Show me the simulation.
- 5. Assembly studies Show the object to me (i.e., show it to me).
- 6. Verifiability studies Show me where it will be.
- 7. **Cyclability studies -** Show me the material and informational flows.

2.7.1 Quality review deliverables

In order to ensure that deliverables maintain an certain standard of quality, they are reviewed.

2.7.1.1 Standards review

Summarily: Scientific papers, research papers, working papers, reports, white papers, journal articles, etc.

2.7.1.2 Literature review

The following steps may be part of the project plan:

- A literature search regarding the topics mentioned in the left-hand side of the conceptual project design. It results in the theoretical ideas and guidelines for the diagnostic step.
- 2. Empirical analysis of the problem: investigation of the specific characteristics and the validity of the business problem and the exploration and validation of the cause and consequences of the business problem.
- 3. Formulation of the diagnosis from a unified information space.
- 4. Exploration of solutions.
- 5. Feedback of the results of the former steps to the principal, the company supervisor, and the platform or steering committee, and the university supervisors.
- 6. Further detailing of the project plan for solution design and implementation.
- 7. A further literature search regarding topics on solution design, resulting in among other things design specifications.
- 8. Elaboration of one direction into a redesign and a change plan.
- 9. Development of organizational support for the solution and the change plan.
- 10. Presentation and authorization of the solution and change plan.
- 11. Implementation (if included in the assignment).
- 12. Evaluation.

New design project understandings may come from

- 1. Focus on empirical analysis. An empirical exploration and validation means that the symptoms, their potential causes and their potential consequences have to be identified, and evidence to support the analysis has to be gathered.
- 2. Focus upon theoretical analysis. Theoretical analysis and empirical analysis should strengthen each other, but there is no standard recipe for doing so. The sequence in which empirical and theoretical analyses alternate, the way in which they

interrelate, and the relative emphasis on one or the other differs from project to project.

3. Focus upon process-oriented analysis. Usually a process-oriented analysis supports the analysis of the business problem and its causes. A focus on causes and effects is needed to eventually yield a validation of the business problem and a valid analysis of the causes of that problem. However, if the focus on causes and effects is not accompanied by process-oriented analysis, it may remain rather superficial and detached from actual business practices. In contrast, when there is a focus only on process, it is hard to arrive at an integrated diagnosis.

2.8 [List] Social awareness deliverables

The following is a list of the societal interface deliverables for initial development of a community-type society under adverse societal conditions:

1. Social awareness materials

- A. Marketing image assets (including, professional images; and excluding, meme-type images)
- B. Marketing video assets (including, short videos and movies)
- C. Marketing audio assets (including, podcasts and interviews)
- D. Marketing virtual reality assets (including, VR simulations and games)

2. Social awareness events

- A. Lectures and presentations (including, public and private)
 - 1. Real-time presentations (including, streaming and face-to-face)
 - 2. Recorded presentations
 - 3. Specialized presentations (including, nondiscloseable private meetings)

B. Conferences

- 1. Conferences hosted
- 2. Conferences attended
- 3. Conferences available, reason for not attending

3. Financial relationship development

- A. Financial persons relationship development
- B. Financial resource relationship development
- C. Estimation of total financial resources

2.9 [List] Simulation demos and experiences

The following is a list of the project simulation deliverables for a community-type societal project:

- 1. The simulation of the material environment (i.e., simulation of the local and/or network of habitat service systems, city simulation).
- 2. The simulation of information stored and calculated throughout the whole society. This includes the simulation of the economy.
- 3. The simulation of someone's life in a community-type city.

Together, a real-time virtual simulation provides collaborative adjustment and real-time understanding of changes to a living environment.

There are three usage cases for the simulation software:

- 1. The software may be used by engineering teams for system development.
- 2. The software may be used by the public for understanding.
- 3. The software may be used by the marketing team for promotion.
- 4. The software may be used by the relationship development team for promotion.

Objectives of the a software simulation include:

- 1. The user will access a virtual simulation of the real world environment as an occupant to look and walk around, to understand how that space may function.
- 2. The user will feel changes made to the virtual environment prior to those changes being made to the physical environment.

Essential software programs for simulation include, but are not limited to:

- 1. **City Engine** [<u>esri.com</u>] Used to design procedural cities on a large scale.
- 2. **Unreal Engine** [<u>unrealengine.com</u>] Used to apply virtual reality and real-time motion.
- 3. Blender [blender.org] Used to create 3D models.
- 4. **Revit** [autodesk.com] Used for object information modeling.
- 5. **Simulink** [MathWorks.com] MATLAB-based graphical programming environment for modeling, simulating and analyzing multidomain dynamical systems.
- 6. **Fusion 360** [autodesk.com] CAD, CAM, and CAE object-product creation software for product design and development processes within a single tool. The software unifies product design, engineering, electronics, and manufacturing into a single platform.

2.9.1 What is necessarily demonstrated

For purposes of the functioning of a community-type society, as well as, positively influencing those who may be unaware of, or not understand the direction of a community-type society, it is necessary to demonstrate:

- Demonstrate viability through engaging simulated experiences of life among community. Demonstrate the accountability of human life experience.
 - A. Fictional story (film, audio, text).
 - B. VR life simulation (virtual reality) of life experiences.
- 2. Demonstrate feasibility through accounting and simulation, and measurement therein. Demonstrate measurability.
 - A. 3D computational simulation with 3D objects and process metadata.
- 3. Demonstrate how few people are required to provide for the needs of the population. Demonstrate integrated city systems.
- 4. Demonstrate how human demand is accounted for and supplied. Demonstrate a calculated decisioning system.
- 5. Demonstrate how the specification standards form the current state of the society. Demonstrate a unified design.
- 6. Demonstrate how information is experienced within the societal system. Demonstrate information accounting.
- 7. Demonstrate how resources flow through the societal system. Demonstrate resource accounting.
- Demonstrate how the system works in time and with available resource by visualizing (at least, on a timeline) the system's calendar-scheduled operation:
 - A. Visualize the current activities and future activities on the timeline.
 - B. Visualize the current status of a project.
 - C. Visualize all other projects that any given project relates to.
 - D. Visualize all work packages in a project that has a time reference, such as phases, tasks, and milestones, as well as, relationships between them.
 - E. The work packages can have a start date and due date.
 - F. Milestones only have a due date.
 - G. Visualize all work packages, phases, milestones, tasks, and bugs/issues in a timeline view.
 - H. Visualize all precedes and proceeds between different work packages.

2.9.2 A demonstration experience

Several possible demonstration experiences may be

produced, used, and updated:

- 1. A "free access" demonstration experience: A virtual experience or video showing (Read: simulating) people walking into access centers amongst gardens and acquiring products for free, or going to recreational locations and using services for free, or working on InterSystem team positions without hierarchy, while using a unified information system.
- 2. A resource-based demonstration experience: A virtual experience or video showing (Read: simulating) the flow of matter (resources) through a material environment sub-composed of objects usable to humans.

2.9.3 Guides to facilitate understanding

A set of materials for facilitating comprehension of the standards to a wider portion of the global population include, but are limited to:

- 1. Translations of the standard.
 - Translation of the standards and supplemental deliverables into other languages.
- 2. Audio of the standard.
 - A. Oral narration of the design specifications (i.e., turning them into an audiobook). Due to the continuously updated nature of the specifications, some of the content may be difficult to keep up to date in audio format when a human actor is involved in the narration.
 - B. Software oral production of the specifications through a software application. Due to the complex technical nature of the information, pronunciation and grammar may be an issue in the automated vocalized production of the specifications.
- 3. Handbook/Guidebook for the standard
 - Each standard will have a handbook version (or guidebook) to facilitate an understanding of the specification's content, and develop an interest in the project. These companion documents are used for quick reference and a concise overview.
- 4. Video guides for the specification
 - Descriptive video media of the standards presented in a professional, personal, and visually appealing manner.

During development, there is likely to exist some combination of new societal construction and former societal transition.

2.9.3.1 The benefits of virtual reality simulation

Once the stuff of science fiction, virtual reality (VR) has arrived as a relatively affordable and mainstream consumer technology. VR is a new, complex form of

communication, and as with any other medium of communication, it can be used to convey arguments and facilitate change in how individuals view the real world. It is a technology that can be used to demonstrate the feasibility of designs, and it will revolutionize how populations shares their standards for society. The vividness of virtual reality can give an audience a sense of immersion, enhance the emotional impact of a message, and bypass poorly constructed analytical arguments. Individuals no longer need to "tell" or "sell" people what one what is being propose; instead, it is now possible to immerse them in the environment and allow them to freely experience it (in a virtual environment) for themselves. Experiences within immersive virtual environments are more powerful than mere imagination (e.g., reading) in terms of information transfer and influence on actual thinking and behavior.

Through the use of VR people can walk around the community and immerse themselves in the experience of its complex operation. Not only will this be helpful to developers in simulating, testing and improving a system's design, but it is also a highly persuasive marketing tool. Imagine if community could freely share a virtual reality experience of what it would be like to tangibly live and participate in community, to experience as best can be experienced virtually that which is described by the specification standards of a community-type society. It will reveal that what is being proposed in text and model form is actually possible now in the real world. Though, in fact, what is being proposed has been possible for a number of decades.

This VR experience may help individuals come to a greater understanding of what the current modern socio-economic system actually removes from them by its ongoing existence. It may reveal how the current system limits their potential. Through a well-structured simulated experience (orientation), it is probable that developers can help the public reconsider maximizing their current situation in the market-State, and instead, facilitate a shift toward a greater action to what is truly important to them in life, which they may not even be able to well articulate. When people encounter a community-type (a.k.a., resource-based economy, RBE) direction for the first time, they often think about what this direction proposes in terms of what they will lose, rather than what they will gain. Although community is significantly more pleasant, fulfilling and generous than a market-State society, it is so different that people have a difficult time conceptualizing it, and immediately think about what will be absent.

If you want to change people's minds, and if they are on a different paradigm than you, if they identify themselves with a whole different set of presuppositions at a subconscious level, you will frequently not be able to change their mind by being rational. And, the more evidence you show them that is at variance with their fundamental paradigm, often, makes them angrier and more rigid, and so, we need a more eloquent and intelligently persuasive way of helping people re-visualize what is possible (and, what they may be missing out on).

Human senses provide access to the brain and by simulating the sensory environment of a communitytype society through immersive virtual reality people will much more quickly get the perspective we are trying to convey. A virtual reality experience will facilitate rewiring of the brain toward what is possible in the present, and toward our broader, and more integrated worldview. Change on the scale that is required can only be realized when people see and experience a better way.

The experience of a different reality can physiologically change a person's mind. In other words, virtual reality can literally change our minds. Think about the way current media does that (possibly, in the Orwellian sense). It is important to take virtual reality seriously and to create a simulation of a socio-economic system that is inherently positive for all human and ecological life in its focus.

Wouldn't it be great to have a free, open and shared simulator of the community? Through such a simulator we could test out different operational designs, technologies and city configurations, and we could facilitate a personal exploration of the environment for others. A virtual simulation of community would give people a taste of the experience of a life of greater fulfillment. And then, after it is experienced virtually, one could go to our website and find the exact reasoning, designs, tools, and resources for the creation and duplication of the most up-to-date version of the community. When experienced, even virtually, I think most people in modern society will consider community a better way of living than the way they live now.

2.10 [List] Project software

There are several types of project related software:

- 1. **Project coordination software** Project software will include (this, or its equivalent):
 - A. **Communications software.** For example, Slack communications software service [slack.com]
 - B. **Project planning software:** OpenProject management software service [openproject.org]
- 2. Collaborative system development software
 - A. Systems engineering development software
- 3. Operational system software
 - A. Operations service planning software
 - B. Operations monitoring and control software
 - C. Decisions service software with economic calculation software
- 4. Dissemination platform software acts as an interface between project contributors, working groups, habitat teams, and the global population to receive and disseminate information. For instance, an Internet website.

2.10.3.1 Collaboration design and operations software deliverable

A collaborations platform is essential for unified communication, collaboration, information processing and storage between project contributors and the global population.

2.11 [List] Social awareness deliverables

There are awareness generating activities that bring attention to and promote the solution:

- 1. Awareness Development
 - A. A demonstration project involving:
 - 1. A virtual reality tour of a simulated community city.
 - 2. Access to the specification and all available supplemental materials.
 - B. Demonstration project events (100 demonstration projects have happened).
- 2. Conferences
 - A. [Have conference] A yearly event held between organizations that share this similar direction that functions for both relationship development, motivation renewal, and information sharing/integration.
 - B. [Attend conference] Attend and give speeches at other conferences on related topics.
 - C. Attend conferences to network in order to find others who desire to contribute to particular articles in the standard.
 - D. Attend conferences to acquire information to improve articles in the standard.
- 3. Social Marketing materials
 - A. <u>Podcasts and interviews</u> with others who could facilitate the evolution of the specifications and with whom a relationship would be useful for the formation of the community network. These serve two purposes: 1) To remove contradictions and fill in the gaps in our proposal through discussion with others. 2) To facilitate in sharing of the system and possibly get others involved.
 - B. A <u>fictional story (i.e., novel)</u> of life in a community-type society.
 - C. A <u>video or board game</u> as a learning and sharing tool.
 - D. Continued development of the frequently asks questions (FAQs) section of the project.

2.12 [List] Development deliverables

A deliverable is a specific, tangible product or thing; an object and/or information packet. One or more deliverables may contribute to achieving an objective, but an objective is not a deliverable.

Table 41. Execution > Project Lists: Simplified table of project

deliverables.

Deliverable No.	Deliverable name
1	Specification standard (and requisite sub- plans)
2	Marketing materials
3	Software system
4	Hardware system
5	Demonstration experience
6	Dissemination platform
7	Geopolitical analysis
8	Site selection
9	Sufficient market-State currency
10	Business plan

2.13 [List] Project task analyses

The proposed societal systems highest level task analysis categories:

- Lifestyle analysis of a person's typical day or week; "a day in the life of", "an evening with", "a month in the life of".
- InterSystem Team Work analysis all the goals and tasks that someone does in a specific role - daily, monthly, over long periods).
- InterSystem Team Workflow analysis process analysis, cross-user analysis, how work moves from person to person.

For example, a user view (user tasks - what the user has to do) may be to acquire food via:

- Personal access:
 - User self-cultivates at (@) personal dwelling.
 - User self-cultivates at (@) personal garden zone.
- InterSystem Team access:
 - User harvests/forages at (@) culturing zones for foraging.
 - User selects and is served at (@) culturing zones for food harvesting and processing.

2.13.1 Operations tasks

InterSystem Team operations has the following requirements:

- Provide system operational availability that meets requirements. Operational availability is a factor that describes the amount of time that a system can perform its function as a fraction of total time – including downtime for maintenance.
- Monitor the environment (e.g., sensors and surveys). For example, the degree of presence of toxins and "toxic" relationships, either microbial, physiochemical, or psycho-social must accounted

for in design. The build-up of toxic substances in a tightly closed environment (e.g., the "tight building" syndrome) is a design challenge.

• Enable, disable, and monitor processes and capabilities.

2.13.2 Construction tasks

The habitat service system is constructed modularly. Each module has a repair and replacement lifecycle (a duration of existence):

- Test/Prototype construction
 - Prototype fidelity:
 - [Medium to high fidelity] A prototype is a model of the system delivered in the medium of the system.
 - [Low fidelity] A mock-up is a representation in a different medium.

Tasking roles include, but are not limited to:

• Engineer or technician - A person who is skilled (has procedural and semantic knowledge) in designing, diagnosing, developing, constructing, maintaining, and repairing technical system (Read: any information or material system).

The following habitat oriented terms are effectively synonymous, but can be loosely separated to mean:

- Engineering (Engineering/Decisioning as planned) - Development of system and System integration.
- 2. Technician (Operating/Operations decisioning) -Integration of design and System operation.

2.13.3 Maintenance tasks

In general, maintenance refers to inspection and monitoring, repair, replacement, and updating. Technically maintenance only concerns those tasks necessary to maintain a service once its integration has achieved final valid and verified integration.

Maintenance can be a complementary means to restore fault tolerance, non-critical functions and system/human safety. Because movement is limited by physical mechanics, transport time, and mass and volume constraints, maintenance provisions must be available on [each habitat-city] site.

Tactics to ensure efficient and safe maintenance include:

- Advance deployment of spares
- Component commonality
- In-situ manufacturing

- · Low-level repairs
- Autonomous training and procedures
- Robotic implementation and preventative attention

Unless impractical, all equipment that may require maintenance will be located internally; and whenever possible, all external items should be detachable so they can be moved to an interior space for repair. In general, human time and logistics demands must be minimized and conducted under the safest possible conditions.

2.14 [List] Schedule

Define the schedule's data structure as a list:

- 1. Work breakdown structure a detailed list of [project] activities and [creation/development] tasks.
- 2. **Historical information** from similar projects and other lessens learned.
- 3. **Personal calendars** information from project contributors about their own time commitments.
- 4. **System calendars** information on calendar events, significant common durations of time (e.g., holiday, vacation, work, cycle, maintenance).
- 5. **Resource planning and coordination** the number of people available to the project.
 - A. In community, there is the construction of a set of adaptive services that fulfill human need, want and preference. In the initial construction of the, hence forth, continuously operational habitat service system (part of the total societal system), there will need to be agreed upon dates for delivery of specific outputs. And, during operation, there will be maintenance and replacement requirements, which will have static delivery dates [before urgency criticality is raised]. Individuals and systems agree on dates for the delivery of specific outputs, with a degree of flexibility relative to the task priority requirements themselves.
 - 1. In the market, there are milestones, or agreed on dates for the delivery of specific outputs.

6. Visualize the schedule - ready for inquiry process.

- A. Plan "define" activity sequence and duration, develop the network integration or unique production diagram, and compose GANTT chart (i.e., the project implementation unique tasks timeline).
- B. Do Communicate and update schedule core timeline with agreed upon tasked InterSystem Team positions (roles as part of an InterSystem Sub-Team) and tasks.
- C. Check monitor schedule variances.
- D. Adapt update the schedule.

- 7. Monitor the schedule ready for output.
 - A. Project schedule baseline what is needed to sustain what degree of fulfillment (high-level categories include, but are not limited to: life support, some degree of technology support, and some degree of recreational-facility support.
 - B. Schedule variance reports when there is a variance from baseline in the scheduled fulfillment of need, and also when there is a variance from baseline in following (for automated and human systems) through with 'standard'[-ized] practices and procedures when contributing as part of an InterSystem Team.
- 8. Update the schedule ready for *feedback*.A. Schedule updates become notifications.

Humans or automated systems, or some combination thereof, can perform [all] tasks. A unified information system allows for the reporting of habitat service's expected functionality. Is life support sustainable, and what are the plans for the systems evolution? The same goes for technical and exploratory service systems; are they meeting expectation and sustainable? Also, planning overlaps with criticality forming a criticality matrix applied to the determination of task priority [in a functional habitat service system].

2.15 [List] Team functions

The habitat service team functions (a.k.a., habitat service systems) - these are the material associated functions with which the habitat service system teams are associated:

- 1. Life support (core InterSystem Team)
- 2. Technical support sub-composed of Information & Material (core InterSystem Team)
- 3. Exploratory support (core InterSystem Team)

The habitat service system operating team functions (a.k.a., operational processes) - these are the processes that the habitat service system team(s) carry out (actualize, act through):

- 1. Planning (the project plan, strategic processes)
- 2. Maintenance
- 3. Operations (the service itself)
- 4. Incident Operations
 - A. Recovery
 - B. Critical
 - C. Emergency

In concern to the completion of engineering tasks, the role of the InterSystem "engineer" is to:

1. Create service systems to fulfill human need.

- Through distributed, open source specificationing.
- 2. **Operate, maintain, and cycle** service systems to fulfill human need.
 - Through common access, shared resources, and contribution.

The societal development team exists to develop a community-type society, consisting of the above core team functions, includes the following sub-teams:

- 1. Hardware development
- 2. Software development
- 3. Quality assurance
- 4. Documentation
- 5. User testing
- 6. Research and discovery

2.16 [List] Project personnel principal task roles

Information system development team structure (as an organizational structure):

- 1. **Coordinators (coordinating entities)** coordinate information and material information flows for operation in a real-time, given environment.
 - A. <u>Societal information system</u> coordinator (information system coordinator)
 - 1. Planning system coordinator
 - 2. Social system coordinator
 - 3. Decision system coordinator
 - 4. Material system coordinator
 - 5. Lifestyle system coordinator
- 2. Working groups (informational system) develop information systems and standards for operation in a real-time.
 - A. <u>Societal system overview integration</u> working group (<u>Information systems</u> working group)
 - 1. Project plan integration working group
 - 2. Social system integration working group
 - i. <u>Research integration</u> working group
 - ii. Knowledge integration working groups
 - iii. Engineering integration working groups
 - 3. <u>Decision system integration</u> working group
 - 4. Material system integration working group
- 3. Habitat Teams (material system) operate habitat service systems in a real-time environment.
 - A. <u>Habitat service operating integration</u> team
 - 1. Life support service operational team
 - 2. Technology support service operational team
 - 3. Exploratory support service operational team
 - i. Research support service operational team

2.17 [List] Project coordinators and working groups

In detail, the project's coordinators and working groups are responsible for the following. A coordinator is responsible for coordinating the appropriate flow of informational and material resources for the working group. Every working group has, a coordinator.

Most generally,

- A team is a group that holds responsibility and accountability for implementing final standards.
- A group is a group responsible and accountable for developing standards.

Working groups pursue the development and iteration of standards, guidelines, and supporting materials.

2.17.1 Information system coordinator

Responsible for coordinating the flow of information between all relevant information systems.

- Information Systems Working Group responsible for developing the societal system specification [standard], this group also provides technical issue resolution, maintenance of the decision system specification [standard], and proposes test cases. The responsibility for work on standards begins in a working group. Standard[ized] operating procedures facilitate the effort of working group participants and the deliverable by establishing the necessary framework for a workable organization. These [standard] operating procedures outline the orderly process of work by the working group.
 - A. Open Source working Group responsible for overseeing the transparency and correctness of the source code for society, which implements the standard and specification. The Open Source Work Group collaborates closely with its counterparts on the market (e.g., Linux Foundation) to promote transition toward a global open source society and to maintain the health of the development open source community.
 - B. **Technological object standards Working Group** - responsible for discovering, identifying, and classifying material [physical] standards.
 - C. **Data model Working Group** responsible for developing, releasing, maintaining and iterating the data modeling tool (and the collaborative design software system, in general).
 - D. Security & Continuity Working Group

 responsible for an appropriate security
 framework, solutions, technology and human,

standards, procedures, and guidance on the application and implication of security issues, technologies, and standards.

E. **Certification working group** - the certification working group identifies, specifies, and maintains the necessary standards, test tools, and infrastructure to validate users ability to correctly operate behaviors and devices.

2.17.2 [List] Market-State coordinators

Responsible for coordinating the flow of information between all relevant market-State groups and teams.

- Marketing Communications Working Group

 responsible for tasks that handle the public of another type of society: Events, Digital Media, Public Relations, Web Content, and Branding.
- 2. **State Communications Working Group** responsible for tasks that handle the international State relations: Legal and geopolitical analyses. legal contracts, political relationships.
- 3. **Interest Group** An interest group is an organization of people who share a common interest and work together to protect and promote an idea. Interest groups do not generally work on the development of the idea itself; instead, they work in the market-State promoting the idea amongst the public, business, and State entities.

2.17.3 [List] Orientation steering coordinator

Responsible for coordinating the flow of information between all relevant education and on-boarding groups.

- Membership and Orientation Working Group

 responsible for orienting persons from another societal system to the environment of community in a way that acclimatizes them fully with wellness.
- 2. Guiding Manuals and Experiences Working Group - responsible for the learning/training experiences that facilitate understanding and skill adoption, format and content.

2.18 [List] Teams

Work can be separated into sub-projects is completed by teams:

- 1. Societal standard working groups (societal engineering development team)
 - A. Update standards continuously with an annually published revision.
 - B. Continued development and error correction of the existing standards. This includes integration of a continuous 'literature review' into the standards.

- C. The existing standards are:
 - 1. The System Overview Standard
 - 2. The Project Plan Standard
 - 3. The Social System Standard
 - 4. The Decision System Standard. There are two principal parts to the decision standard:
 - i. The written documentation part.
 - ii. The software system part, including all mathematical modeling and software programming. The mathematical modeling and software programming of the decisioning system.
 - 5. The Lifestyle System Standard
 - 6. The Material System Standard. There are four principal parts to the material standard:
 - i. The written documentation part.
 - ii. The architectural CAD- and BIM-based drawings for the integrated city system.
 - iii. The 3D visually modeled representation of the integrated city system (with different configurations).
 - iv. Integration of the 3D representation into a gaming engine for virtually simulating all technical operational aspects of the community.
 - All standards together can be combined into a societal and city simulation – an open source virtual reality simulator of the city for societal engineering and marketing purposes.
- 2. Project coordinator team (societal project coordination team)
 - A. This team is composed of all project coordinators.
 - B. Coordinators are points of contact for working group members and perform integration and synchronization tasks for the project.
 - C. This team organizes an annual conference/event for the whole working group team and between organizations/projects that share this similar direction to analyze, integrate, refine and refinalize (re-commit) the most up-to-date version of the standards.
 - D. This team continues development of the project's (i.e., organizations) operational procedures and website to ensure accuracy with the evolving standards.
- 3. Project orienting team (societal on-boarding team)
 - A. Conducts screening, orientation, and administration activities for working group members (a.k.a., onboarding, etc.).
 - Value screening questionnaire and documentation for entrance into the community once it is constructed. This is a proposal for an entirely different way of living

with a value orientation highly divergent from the many other orientations seen throughout modern society. Entrance into the first city will depend highly upon the value orientation and abilities of the individual. The project will screen individuals to ensure that their value orientation and abilities are aligned with those of a community-type society.

- 2. Orienteering guidebook to simply understanding, facilitate behavioral change, and provide appropriately relatable community life-case (i.e., user case) events.
- B. Continued development of the project's website.

4. Relationship and educational development team

- A. InterProject relationships Develop interproject lines of communication and identify points of similarity and difference.
 - 1. Attend inter-project <u>conferences</u> perceived of and functioning as integration points between all groups and individuals working toward this common direction.
 - 2. Combine projects into one <u>partnership and</u> <u>enter competitions</u> related to this direction.
- B. Media relationships Develop and <u>distribute</u> press releases globally. These relationships are often initiated through the sending of a press release or first person contact.
 - 1. Radio to inform them of the projects state of existence with the next step of a radio interview.
 - 2. Television to inform them of the projects state of existence with the next step of a television segment.
 - 3. Alternative media to inform them of the projects state of existence with the next step of a show of support (within their medium).
- C. Advertising and promotional relationships Pay for advertising, and request from social groups (and project chapters) the promotion of what is possible. Place audience centric advertisements on social media, audience centric. What is trying to be achieved through advertising? What is the audience? How will the audience be attracted? What is the next step to give them after having their attention?
 - 1. Advertising media placing advertisements in media, including social and physical media in order to promote awareness of what is possible.
 - 2. Social group promotion using social chapters and groups to promote awareness of what is possible.
- D. Standards initiated relationships <u>Distribute</u> the standard with a tailored letter to a specific

individual or organization. This is a means of intentionally discovering new relationships.

- The standards, with an accompanying and tailored press release shall be sent to the following entities, for the purposes of informing them of the project's current state of existence (and, if appropriate, requesting their support; requests of support are sometimes not appropriate):
 - i. Subject matter experts
 - ii. Influencers (social influencers)
 - iii. High-net worth individuals
 - 1. To demonstrate to high-net worth individuals that this is a globally workable direction and that financial support of this direction is likely to return a benefit for their investment in global human fulfillment.
 - 2. Because if there is a collapse or catastrophe that happens to humanity on planet earth, and a population of people are likely to restart society, these standards ought to be in the hands of those most likely to survive the catastrophe, wherein they could be used to restart society again from a better foundational point than before. More simply said, get the standards in the hands and shelters of those with wealth who have the likely ability to restart society again if a calamity strikes the planet.
 - iv. Related organizations
- E. Educational relationships Respond to and <u>attend interviews</u> and requests for lectures (most of which will come from responds to press releases).
- F. Adaptation of the standards to other media for education and relationship development:
 - An oral narration of the standards (i.e., turning them series of audio/video presentations). Note that this is challenging because the standards are "living" documents and republished annually.
 - 2. Creation of video media detailing the specifics of the proposal through a series of professional videos for both marketing and learning purposes. Descriptive video media of the standards presented in a professional, personal, and visually appealing manner.
 - 3. Usage of an open source virtual reality simulator of user cases it community cities.
 - 4. A fictional story (i.e., novel) of someone's life in community (in the not too distant future

so that it is relatable). This should not be distant science fiction, but portray a shortterm view of the lifestyle of individuals among community and the community's operation.

- 5. A high-budget movie.
- 6. A board or online game as a learning and sharing tool.

5. State interface team

- A. The jurisdictional and geopolitical analysis and State relationship development process.
 - A comprehensive jurisdictional and geopolitical analysis to determine possible locations for placement of the first community on this planet with comparison between locations and a feasibility/viability determination. Herein, there is a requirement for the establishment of relationships in the geo-jurisdictional area where the community has a probability of placement.
 - 2. Relationship development with State figures.

6. Market interface team

- A. The business analysis and market relationship development process.
 - A business plan and accompanying analysis to ensure the continued financial viability of the community within the larger monetary market. The first version of the society [at least] will require significant resources from the market (or States), and hence, the community will require some balance of [angel] donations and business interaction. The society will have to interact with the market [to some degree], and this will have to be planned and accounted for.
 - 2. Relationship development with business leaders.
- B. The financial contracts (e.g., financial, land, resources, as well as business on-boarding)
 - 1. A legal contract structure for entering into and exiting contracts.
- C. The legal escrow (or financial collections structure)
 - A financial escrow structure storing money for the executed construction and sustainable operation (until duplication) of the first city. There must be some pool of money to pay for the land, materials, and technology for the construction and operation of the city, including its information system. Donation of resources is also possible (e.g., donation of land, materials, or technologies).
- 7. Habitat InterSystem operations team (habitat service system team)
 - A. Operational team roles are filled by accountable

and capable members.

- B. The life support service team has sufficient
 - 1. Enrolment (membership)
 - 2. Documentation (knowledge)
 - 3. Procedures (skills)
 - 4. Technology (material tools and resources)
- C. The technology support service team has sufficient:
 - 1. Enrolment (membership)
 - 2. Documentation (knowledge)
 - 3. Procedures (skills)
 - 4. Technology (material tools and resources)
- D. The exploratory support service team has sufficient:
 - 1. Enrolment (membership)
 - 2. Documentation (knowledge)
 - 3. Procedures (skills)
 - 4. Technology (material tools and resources)

2.19 [List] Milestones and phases

Top-level milestones include, but may not be limited to:

- 1. Deliverable of a unified societal concept of operation in the form of a set of societal system standards. [COMPLETE]
- Deliverable of coordinated updates to the societal standard to bring it up-to-date given newly available information. Note here that a standard's filename suffix identifier identifies the revision: AURA/SSS-..-...-###
- 3. Deliverable of a yearly integrated commit to republish the standard after as a final [edition] working group integration point. Note here that a standard's filename internal identifier identifies the edition: AURA/SSS-..-###-...
- 4. Deliverable of sufficient number of individuals capable of constructing and operation the first city and its informational system (or, some portion of it).
- 5. Deliverable of sufficient financial resources and legal contracts to supply the requirements of constructing the first city and its informational system, and not just some portion of it.
 - A. Deliverable of actual resources for construction through to operation.
- 6. Deliverable of sufficient jurisdictional (legal) agreement in writing that construction and operation of the first city and its informational system is safely certain.
- 7. Deliverable of sufficiently operating habitat service system (i.e., city system) and societal information operating system.

3 [Project] Risk

A.k.a., Negatives, threats, hazards, vulnerabilities, dangers.

Risks (negative risks) are what might go wrong. To develop a negative risks list, identify what might go wrong. Negative risks are those events or conditions that are likely to, or are, negatively influencing one or more project objectives (e.g., quality as effectiveness, efficiency as time, and cost as resource usage, etc.). If something reduces the optimality of completing the project, then it is a risk.

There are three common dimensions of risk:

- 1. Hazards and exposure
 - Human
 - Natural
- 2. Vulnerabilities
 - Social
 - Technical
 - Resource (economic as *object* or *money*)
- 3. Lack of [coping] capacity
 - Infrastructural

Common categories of risk include:

- 1. **An absence** of what is required:
 - A. Omissions (of information)
 - B. Unclear (information)
 - C. Illogical (information)
 - D. In-coherencies (of information)
 - E. Weaknesses (of otherwise useful structure)
 - F. Inconsistencies (of applications)
- 2. Barriers to understanding and behavior change:
 - A. Cultural barriers (social barriers)
 - B. Motivational barriers
 - C. Profit and resource acquisition barriers
 - D. Physics (barriers of physical reality)
 - E. State-regulatory (barriers of State authority)
- 3. **Actions** with the potential to de-rail understanding and behavior change:
 - A. Actions taken on the part of market encodings, which consciousness requires decoupling from in order to operate community.
 - B. Actions taken on the part of State encodings, which consciousness requires decoupling form in order to operate community.

Risk-type questions associated with ongoing fulfillment include, but are not limited to:

- 1. Does the community have uninterrupted access to their human needs/requirements?
- 2. At what quality/optimality are the needs being met?
- 3. Are those needs met in a regenerative manner?

- 4. Does the community have any unmet needs?
- 5. What concerns may cause the community's access to their [basic] needs to be interrupted?

A risk is a constraint or uncertain event (condition, state, or shape) that may present a potential problem for a project. A risk constraint is what is known that could go wrong and cause additional problems.

Note here that 'risks' and 'issues' are the same thing, problems. A 'risk' hasn't happened yet, and an 'issue' has happened (or is happening now). An 'issue' is a "risk" with a probability of happening 100% (not 99% as risk itself is categorized). Issues are experienced risks (i.e., "risks in reality"). Risks and issues are sometimes collectively known as "concern coordination" (or, "concern management"). Risks are mitigated and issues re-solved.

A concern will have 1 or more actions associated with it, and some actions will be associated with 1 or more concerns. Concerns and actions require actors (systems or people) and accountability.

INSIGHT: *Trust is essential because it is how you make an accurate assessment of the risk.*

3.1 Fundamental current risk question

The current fundamental risk question posed to this project is:

What are the challenges to widespread understanding and adoption of the project's deliverables?

3.2 Project uncertainty

INSIGHT: The paradigm of understanding that humanity creates its living algorithms from should not be deeply flawed.

All projects exist in an uncertain environment (otherwise there would be no need, no human requirement, for a project). An 'uncertain' environment is a 'probable' (similar to 'likelihood') environment. An emergent networked [eco-societal] system is, by assumption, an uncertain environment, with the conditions of risk and constraint (on all integrations, decisions, and actions). Risk is a measure of the probability that a negative outcome will occur. Risks represent potential disalignment from trajectory. Risk coordination identifies the risks to safety, performance and the project (e.g., overruns, schedule delays, etc.).

Every project involves some degree of uncertainty. Before a project is started, a plan is prepared based on certain assumptions and estimates. Assumptions are documented because they will influence the development of the project's resource selection, schedule, and work scope. A project is based on a unique set of tasks and estimates of how long each task should take, various resources, assumptions about the availability and capability of those resources, and estimates of the inputs and total effects (true costs) associated with the resources and their particular flow through the system. This combination of assumptions and estimates causes a degree of uncertainty that the project objective will be completely accomplished and/or accomplished within a specified time-frame. For example, the project scope may be accomplished by the target date, but the final resource requirements may be much higher than anticipated, because of low initial estimates for the necessity of certain resources. As the project proceeds, some of the assumptions will be refined or replaced with factual information.

Someone may not absolutely know the outcomes of one's own actions, but by thinking probabilistically, can perceive a distribution over outcomes. The expected value of an action can then be computed from utility (human requirement fulfillment functions) and probability integration through computation. This cognition "entangles" the agents' betterness relations (i.e., what relationship is the better choice?) as well as the agents beliefs/values about possible outcomes.

INSIGHT: You have to accept some risk, nothing is ever going to be 100% risk free of uncertainty.

3.2.1 Project risks

The following are risks commonly associated to all projects. Project difficulty involves a number of variable conditions:

- Number of tasks more task would increase project/mission difficulty
- Skill variety a project requires the integration of some essential abilities, like the ability of information searching and word processing, to complete the project. Skill variety would increase the project/mission difficulty.
- **Time limit** Time limit means that there exists a deadline. Tight time limit would increase the mission difficulty.
- **Resource support** Resources here mean that all the tools, equipment and solutions could help someone complete their mission. Limited resources support would increase the mission difficulty.

3.3 Real problems

The technical procedures required in formulating [environmental] problems should, but sometimes do not, begin with the question: "Does the problem really exist?" Problems in the real-world, the designed environment, are often assumed without detailed systematic analysis, leading to problem definitions that target the wrong system, or target a system without a problem. For a human societal system, an environmental problem exists if, and only if, a malfunction can be detected between the designed environment and the system of human behaviors. Due to the nature of human-environmental dependency, environmental problems must not only be detected, but they must be resolved, so that humans are mutually fulfilled.

Because this is a societal system development project, anything that has the potential to impact the next iteration of the societal system is a potential risk.

3.3.1 Patchworking

INSIGHT: To change what "you" are experiencing, it is normally essential to observe what you are already actively choosing.

Patchwork is, by definition, the incomplete resolution of a problem. Often, when complex systems are patchworked, problems don't go away, they just transform I to a different kind of problem.

When patchwork is considered a long-term solution, then possibly, a society is not recognizing the structural nature of societal problems. The current system has deep structural problems. This is likely to lead to the desire to patchwork the existing system rather than restructure the system itself by building a new system to make the existing one obsolete.

Its time to stop talking about patchwork ("bandaids") and start to address the underlying problems. When addressing surface problems, it is extraordinarily difficult to also address structural problems. Generally, a problem-solvers attention is either focused on surface issues, or focused on the structure, which necessitates an awareness of surface issues. We can take actions now as "band-aids" to help us get out of our immediate suffering, but it should be our goal to restructure the environment so that the suffering is not continuously regenerated.

Many of the ideas, values, and structure that compose a community-type society are not insertable in modern environments; they represent a different structure, which does not mesh (i.e., integrate) with non-community-type structures.

INSIGHT: *It is unwise to believe a system is correcting, when a patch is applied, when in fact the patch is actually just compensating (providing temporary compensation).*

3.4 The risk list

A.k.a., Negatives list, risk list, threats list, negative influences list, risk register, hazard list, vulnerability list, potential harms list, negative impacts list, challenges list, negative probabilistic constraints list, negative issues list, stresses list, chaos list, danger list.

A negative risk list identifies sources that could interject

negative risk into a project. Take note that many of these risks are interconnected, because they relate to individual human beings, who live in an interconnected environment with other human beings. A negative risks list identifies what might go wrong in the project (or project situation) in terms of scope, time, quality, and quantity.

3.4.1 [Risk] Assuming bias

A.k.a., Inaccurate data, false data, misleading data, irrational thought.

Often, humans prefer environments that are familiar to them. Visual preference and attachment to certain environments are often tied to a person's past experience.

There are currently three sources of false and biased data among society:

- 1. Businesses
- 2. Governments
- 3. Independent analysts

Among those three sources, there are many reasons for false and biased data, including but not limited to (note that these are the four most prevalent causes):

- Businesses (companies) are typically interested in protecting any edge they have over their <u>competition</u>, therefore they are frequently unwilling to release information related to proprietary products and processes.
- 2. Businesses are typically interested in maintaining a competitive advantage over their <u>competition</u>, therefore they may release false information to mislead and misdirect.
- Government entities restrict the release of sensitive information for reasons of "<u>national security</u>" (Read: competitive advantage and socio-economic safety), therefore reducing in number what should be the largest pool from which to acquire data.
- 4. Due to the three points listed above, when companies and government entities do allow the release of certain information, that data may not only exclude "sensitive" information, but may also exclude some of the elements necessary for a complete understanding of the data, leading to misinterpretation in the data analysis.

People in early 21st century society are following rules that are often not apparent to them.

Someone who is closed minded, won't go any further in updated their understandings (mental models) to more correct, accurate, and/or fulfilling understandings. In general, a close minded approach to life is due to mental attachment [to some past state of experience or integration].

QUESTION: *Is the person open to updating their [mental] models and behaviors?*

Widespread change is only going to happen when it is served up to the population [who currently expect service in a market] at their level to them on a silver platter. Everybody wants the end result, but they are not ready, capable, or willing to do the work.

APHORISM: The greatest challenge is letting go of old forms.

3.4.1.1 [Risk] Enculturation (acculturation)

A.k.a., Indoctrination (in+<u>doctrin</u>-ation - to have made the doctrine of another active inside oneself).

Childhood indoctrination into a culture that imposes requirements on fulfillment that orient away from optimum. Some environments bring people into adulthood from childhood with limiting and hurtful belief systems. We are all influenced by the collective consciousness in which we develop. Some conceptions, and behavior, can disable our ability to meet our optimal fulfillment.

Remember [to overcome] the inertia [of the present subjective limitation].

3.4.2 [Risk] Assuming that humans are broken

There is a belief among certain segments of the human population that humans are fundamentally broken.

INSIGHT: The shrewdest fraudsters don't sell fake medicines and potions; the shrewdest fraudsters sell fake illnesses and imaginary defects. When the fake medicines and potions don't work, then an intelligent consumer moves on to other solutions, but when the intelligent consumer's mind is conformed to a subset of its potential through integration of false belief, then the fraud can go on for a lifetime(s).

When people claim "you" are defective, don't accept stigmas, analogies, or beliefs; instead, ask for evidence.

3.4.2.1 [Risk] Poverty

Assuming that poverty stems from within the individual and is not caused by lack the material infrastructure to have needs fulfilled throughout life.

3.4.2.2 [Risk] Societal issues

What if a great many societal issues on the tip peoples tongues today, such the growing wealth gap, ecological destabilization, poverty, the debt crisis, the unemployment crisis, and other ongoing points of focus were all found to have no possibility for true long-term resolution within the current global socio-economic system. What if the problem were not political parties, corporate influence, governmental regulation or lack thereof. What if the problem is psychological, and hence, sociological, embedded within an outdated economic tradition that rewards, reinforces and continuously creates and perpetuates those very problems, imbalances, conflicts, scarcities, exploitation, waste production, and other societal problems created out of advantage and income producing phenomenon. So, it naive to think walk against what works in their favour on that basic level. We must either accept the current detrimental socio-economic system with all its inherent problems, for they are built-in, or we begin to think more scientifically and "out-of-the-box" with regard to prior traditions, realizing that until the entire social system is uprooted and replaced by a system that actually that rewards and reinforces ethical practices and balance rather than oppressing them by design, then nothing will every change.

If the solution does not align to some threshold degree with real world fulfillment, then it will (not yet) be reified into societal existence, or it may freely be reified into societal existence as it is a solution that does align with an optimal threshold state of fulfillment, given all the information known.

Eliminate the causes of the problems through the a new design to be engineering into operations in the environment, the processes that produce bigotry, greed, prejudice, elitism, advantage, the need for welfare, they all become obsolete.

QUESTION: Given what is known and available, is there is always an optimal solution to the social, and societal, problems we commonly share around us? Could we not pull this world together into an optimal state of common fulfillment with a rapid quickness?

3.4.3 [Risk] Assuming that society and humanity cannot be sufficiently understood

There are some people who say that humans will never understand how humanity could live in mutual global access fulfillment, because the intelligence of humans, or the way the mind of a human works, it is not capable of understanding. A portion of these people expect an irrational answer, so they have no problem accepting the bogus explanations that fulfillment comes from consumption in the market-State. Which, is about as irrational as it gets, because the market-State is an abstraction. Sometimes people state that it's "OK" not to understand it, that we aren't supposed to understand how our society works, that we can't understand how a better society could exist now, that there is no "perfect" way to understand society. These are statements of simple self limitation.

Another group may say, "Well, we are still investigating;

someday we will understand how society runs and could run." Unfortunately, this group in particular doesn't collaborate, cooperate, or share in any way. Such a group may advance the direction, or it may just be scamming those who agree with the direction, but in either case, it is an inefficient and will likely be less effective also, than an effort that shares work and collaborates globally.

To summarize the conditions of societal self-imposed limitation, there are:

- 1. Those who think that everything is OK, and it is not. For instance, those who think the market-State, or some other '-ism', are how society works and works well.
- 2. The other half can be divided into two groups:
 - A. Those who say we can't understand society and how society could work best given what is known and available, because we will never understand it.
 - B. And those that say that someday we will understand it, and "you" just need to keep sending them the funds..."you" just send them the money and they will do the job. Don't you worry, just send money. Someone will figure it out eventually if the money keeps coming in. We don't understand it because we don't have the money to understand it; it doesn't exist yet because the money isn't available for it yet.

3.4.4 [Risk] Assuming that it is not possible to design and operate a planned societal system

Some groups of people, today, hold that social system design, or more completely, socio-technical engineering, is impossible. They believe that social systems with immaterial properties cannot be constructed on the basis of a design, as one can create material systems like buildings or machines on the basis of design. However, professional (working) organizational procedures show (demonstrate) that social system design is possible: in market and State organization it is common practice to redesign departmental structures, individual positions or work procedures, and to introduce these redesigns successfully in the organization to change the conditions, orientations, and otherwise, behaviors, in the social environment.

In a societal system, planned socio-technical system change is feasible, given an openly unified information space with value-orienting conditions (Read: organizational procedures and meanings) that compose a [probably] workable (in terms of human requirements optimization) future state of the socio-technical societal system.

Herein, societal-level social system design only has societal-level meaning if it is [probably] realizable. Anybody can produce a design (i.e., make a model or a drawing of something); anyone can design a flying building by drawing wings onto a building. Realizable design, on the other hand, is making a model of an entity that can be realized materially on the technical basis of a specific model. Therein, it may be said that societallevel social system design only has real, materializable meaning if it is possible to create a materializedbehavioral social system on the basis of that design.

A more fundamental difference in design and realization between material and social systems is not in the design process itself, but in the realization of the system (in every [conscious] moment). The material system is realized by the deciders (makers, constructors) who are in turn oriented influences in the social network. Through material-conceptual, cooperative processes, the material resources required by humans become met. The materializing aspect of a common information system is the 'material' system, largely realized through design (whether known or not). In principle, the realizers, themselves, structure their own realized experience.

In contrast, a social system has essentially immaterial aspects and components. It is made and driven by the thoughts and feelings of the human actors in the system. A redesigned social system is realized by these actors by changing their ideas upon their social systems.

In social system design the social system is realized on the basis of a design made by people in a decisioning control (a.k.a., change agent, some sufficient intelligent agent) role, such as owner, manager, specialized staff, and controller.

Social systems are not designed for and realized by machines or robots, but for human actors (individuals and groups), with self-organizing and self-control faculties. Typically, these actors who facilitate the emergence of a social system designed for humans, they are likely to experience a high-degree of freedom in the realization of their new social system, because it is designed for themselves, by themselves.

The realization of a social system redesign may be counteracted by monitoring the development of the new system and by taking action on dysfunctional differences between the unfolding reality and the redesign.

Design is based on knowledge of a certain segment of the existing reality, and generates knowledge to create a new segment of reality. Therefore it entails epistemological issues, concerning ideas on the nature of knowledge, and ontological issues, concerning the nature of reality.

Epistemology defines the criteria by which warranted knowledge is possible: What are the origins, nature and limits of scientific knowledge. So epistemology can be regarded as the 'science of science' or "logical data structuring of science".

There exists a material reality, independent and dependent upon an observer (an ontological position), and that it is possible to develop objective knowledge of this reality by observation and reasoning (an epistemological position, a logical position).

One can share data on this social world through

communications and other actions. The material and social worlds coexist, just as the self and social worlds coexist.

Research in systems design science could, or not, be motivated by a drive ("quest") to improve the human condition. Obviously, humans have requirements for living and being, given a [real] world environment. If they have requirements, then there must there be conditionals related to those requirements. If there can be conditions, then there can be conditions to human consciousness from particular arrangements of the environment. Technologies are particularly useful arrangements of the environment. Once existence can be accounted for and human habitat (economic) arrangements can be sectorized and tabled (calculated), then the planning of global human fulfillment becomes increasingly likely.

A technological rule is a chunk of knowledge, connecting a certain intervention or system in a certain context with a certain outcome from the human social domain. More specifically, the logic of the technological rule is: if "you" (someone) want to achieve Y in setting Z, than do X (or something like X). This logic is concise, but the actual full description of a technological rule may take a full report or article or standard.

A full formulation of such a technological rule gives for a solution concept X the objectives the application of the solution concept would serve (the Y), and for which situations (the Z) the rule would be valid.

In general, for solution-concepts to be integrated (into active concepts in operation), they are tested first. "Field tested" is a simple way of saying, "the solution concept is sufficiently tested in its intended field of application to be [in this application] 'effective', which that it is known by measuring to have produced the solution concept sufficiently per specification.

Organizational problem-solving project, following the steps of the regulative cycle: problem definition, analysis and diagnosis, plan of action, intervention and evaluation.

3.4.4.1 [Risk] Lack of effective modeling

There is always the risk, while advancing in understanding (and ability) that someone (or some group) become attached to a model, which at the time (and in a particular context) was useful, but now represents an impediment to a continued progression of understanding, and fully integrated creation.

The principal question that determines whether a presented model applies to the next iteration of the society, is: How does the presented model relate to all other models, and how do all other models relate to the presented model; where are the interrelationships? In other words, Where is the visualization of the whole, unified model [for all information flow]:

• In community, there is a societal-level informationbased project-engineering approach model (mechanism).

- In the market, there is the price mechanism.
- In the State, there is the violence mechanism.

The system of a community-type society is unified; unified system, and to have a whole understanding of the system, the whole documentation [more than likely], must be read.

There is a risk, that some people may dismiss parts, or the whole system, because they have only flipped the pages of the documentation to a specific section, which they read and may disagree with.

CLARIFICATION: *Please do not dismiss the whole system because of "flipping" through the pages of the documentation briefly, and chosen to read one section, or an insufficient number of sections to understand have the whole system is fundamentally unified.*

3.4.4.2 [Risk] Pre-complete models of community

In this proposal, the concept of community connotes the unification of humanity at a global level. Here, "community" is a type of society, like the "market-State" is a type of society. A society is the global population, and the idea is conditional by what the population thinks "global" means. Global could mean "village" to an isolated or isolationist population. However, for this proposal, global means workable for the entire global human population.

There are groups of people in the early 21st century, who promote and support a common, cooperative, and moneyless direction that call themselves, "communities". However, in this proposal, there is only one unified community, and those isolated populations that call and identify themselves as community are not community, as conceived of here, because they are many, and not one adaptive system. Community is characterized, in part, by: a unified social organization, a unified and visible economic calculation (and decision organization), and access to common pools of resources (and forms of account). Often it is the case that none, to very few, of these "so-called" communities operate, together, with these characteristics. And yet, in their minds, they believe that they are. In part, a consequence of this assumption is not putting effort and resource toward actual unification of thought and action at the global level. This consequence may be seen as an ignoring behavior of this/the societal standard for a community-type society. That ignoring may come in the form of a lack of contribution to its development and a lack of contribution to its applied operation (i.e., as an actual, continuous physicalized community). Another consequence may be that people who feel like they are facilitating the development of community travel from one of these isolated "communities" to another encountering the same problems and never generate an understanding why they all have conflict.

3.4.5 [Risk] Assuming that humans do not have common categories and optimal methods of completing needs

In early 21st century society, there is a large population of people who have no ability to function on the wild landscapes around their homes or outside of their cities; they are 100% dependent on industry (capitalist service). Over millennia, very small groups of individuals were able to carry themselves through the generations with phenomenal health and a fulfillment outlook on life; and we seem to have lost all of that through the last generations.

When living in nature, all adult humans are "experts" on the topic of survival, because they have awareness of a set of absolute human requirements for survival and thriving. In early 21st century society, people are living in a time in history where human beings have forgotten even what it takes to keep their own bodies alive in time and space.

3.4.6 [Risk] Assuming socio-economic safety

There are multiple ways by which people feeling unsafe about their socio-economic situation and comparison to others could de-stabilize society sufficiently to reduce the likelihood of accessible personnel, resources, and environmental conditions to complete the project.

3.4.6.1 [Risk] Hiding behaviors

Profit-making entities are counterproductive because if you screw up you have an incentive to hide the screw up or to not release it.

3.4.6.2 [Risk] Conflict risks

There are multiple forms of conflict that could destabilize society sufficiently to reduce the likelihood of accessible personnel, resources, and environmental conditions to complete the project.

- 1. Social conflict ethnic, racial, and cultural conflict.
- 2. Economic conflict Competition over resources.
- 3. Ecological conflict Carrying capacity overall reached given the current situation.

APHORISM: New blood always steps into the shoes of old.

3.4.6.1 [Risk] Crisis

Although there is a lot that can go wrong when a crisis occurs, crises are incredible opportunities for people to reconsider what is important and what is truly needed in life.

NOTE: Conflict affects social relationships and wars affect economic flows, significantly.

3.4.6.2 [Risk] Catastrophe

In some cases, going through a catastrophe can bring about a more rapid change in mindset. In terms of societal re-orientation, that major catastrophe in someone's life that causes them to reflect more greatly on the absence of community in their lives, doesn't necessarily need to shared by everyone all at the same time. It may not be a major catastrophe that affects a wide-range of people that leads to some individual more greatly adopting the realization conveyed by this Project. Instead, it may be the loss of a loved one in the family due to suicide or cancer, the collapse of one's business, or the loss of a home.

3.4.6.3 [Risk] Rapid change

It is probably unwise to tell novices to this direction that their houses are going to get bulldozed and replaced with something better. If that is what is actually going to occur, that their houses are going to get bulldozed and replaced with something better, then you are going to have to "sell" that skillfully.

For example, the following sequence could occur to quickly and harm the transition to community at a global scale by harming supply chains and rational thinking:

- 1. Virus strikes people.
- 2. Governments and media stoke the fires with sensationalist headlines and spread panic.
- 3. Corporations lose revenue
- 4. Workers lose their jobs
- 5. Consumers stop buying
- 6. Structure collapses or adjusts.

3.4.6.4 [Risk] Uncontrolled migration

An economic migrant (or refugee) is someone who is traveling from one country or area to another in order to flea a low standard of living. Economic migrants exist where local geo-political situations are unstable. These are people who are people who are not necessarily desiring to live in community, but are fleeing a low standard of living for a location with greater economic access. There are significant opportunities and threats with economic refugees. The opportunities relate to facilitation of a greater population of humanity more greatly toward living in community. There are two main categories of threat. Firstly, the background, beliefs, and behavioral propensities of the migrants themselves. And secondly, the carrying and integration capacity of the habitat service system.

Community involves global cooperation; it does not, however, involve forcing grouped sub-populations of humans to live together in the same geographic location.

3.4.7 [Risk] Assuming technology

Technology is going to fix [all of] our social and economic problems. Then, what is the definition of a problem. You

never go looking for the answer to something when you think you know the answer already.

"There are these people who outsourced their thinking to the machines in the hopes that this would set them free. Only to find themselves enslaved to other people with machines." - Frank Herbert, 1965

3.4.7.1 [Risk] Technological disruptions in early 21st century society

Technological disruptions, such as job loss due to technology, could de-stabilize society sufficiently to reduce the likelihood of accessible personnel, resources, and environmental conditions to complete the project. For instance, global internet disruption, supply chain disruptions, etc. In the early 21st century, the manufacturing of a standard smartphone requires the coordination of hundreds of components from around the globe, all of which are brought together in a specific order on a factory floor by different business and nation through market-State relationships. Supply chain disruptions are a major problem when trying to meet the needs of society.

In the market-State almost everything is unpredictable because there is, at least, competition and secrecy. Thus, useful (or, potentially useful) information is unavailable, and there is also mis-/ and dis-information, which further complicates the ability to appropriately fulfill human requirements and apply efficiency appropriately.

3.4.7.2 [Risk] Machine learning (artificial intelligent) agents

Robots and AI (general and specific), algorithms (soft algorithms) and machines (hard algorithms) will, if advancement continues, could take over all significant operations-functions in society. As AI (automated, learning algorithms) become all economic and social life, all private law-related issues will become public ones.

- Societal systems (in the future, AI systems) can mold the preferences and behaviors of humans (for example, in ways that make the humans easier to satisfy, by making humans prefer lower quality objects than would be optimal for them given what is available).
- Societal systems (in the future, AI systems) can mold the preferences and behaviors of humans (for example, in ways that make the humans easier to satisfy, by making humans prefer lower quality objects than would be optimal for them given what is available).

3.4.7.3 [Risk] Automated decisioning

Humans are capable of recognising the decisions that are appropriate in a given context in order to achieve a desired outcome. Traditionally, it has been the human that has taken those decisions and taken responsibility for their outcome. As scientists and engineers develop machines to automate decision and task processes, the role of humans change from that of labourer and manager to that of contributor to the overall process of deciding and operating. It is essential to consider the effect automation of decisioning may have on a humans thought processes and cognition.

The deployment of machine technologies will impact:

- How humans perceive themselves and their society.
- Their ability to understand that situation.
- Their ability to identify or recognise what decisions are optimal.
- Their ability to take those decisions.

Whilst the deployment of automation for certain types of system challenges may be appropriate, (e.g., long term monitoring and repetition), these machine technologies change the humans societal role; and, if they remove human knowledge, they can constrain the societal system around the automated decision. The resulting system loses some of the agility and flexibility that the humans could have provided.

- The ultimate **freedom** to reconstruct the environment toward one's will.
- The egoic **freedom** to control everyone else's action by inhibiting the publishing of individual information without the prior consent of the individual (e.g., copyright).
- In community, freedom is stabilized by justice, expressed as a value of equal access to those services that fulfill humanity, including equity of fulfillment.
- This equal access is stabilized by efficiency, expressed as optimization, or practically, "doing more, with less".

Science and engineering have, for many years, been developing machine technologies that are capable of taking (or making) decisions faster, and more effectively, than humans. As part of the societal decisioning, it is the accountability of us, as contributors to the unified model, to simulate, forecast and understand the consequences of applied design decisions. For systems that deploy machine decision technologies, accountability as well as the flow of resources and information, are transparent. Therein, all humans have an inherent interest in and responsibility to the consequences of such a deployment on the human cognitive contribution to delivering the societal system's purpose. Wherein, a community's highest internal purpose is to facilitate a population of lifeforms in their development toward their highest potential life experience (i.e., higher self, etc.).

There are multiple forms of decisioning with their own

risks:

- 1. Proof of work based systems are bad because of proof of work, which wastes power/energy.
- 2. Leader-based systems are bad because they have a leader, who takes subjective decisions.
- 3. Voting based systems are bad because they contain votes, which are subjective.

It is relevant to note here that voting based system can become less uncertain when high overall percentage of votes is required to pass/agree on a decision (for example, when 90-99% threshold of vote agreement is required, versus 50%). Voting based systems can become more certain when the information being used by the voting population has a high transparency, and thus, a validly high confidence in it. For example, when the information a voting population has on the selection and situation a contributor will experience once completing tasks in a team or working group.

3.4.8 [Risk] Assuming that everything is "OK" view

A.k.a., The "everything's OK" view.

Often, there are two reasons why people think everything is "OK" among the population of the planet in concern to human well-being:

- 1. The first rationalization is technology. If technology is working (i.e. if technology is advancing), then that means the idea/feeling that everything is "OK" can't be far off.
- 2. The other argument is the argument from authority. "You know, all these PhDs, all the politicians, all the authorities, all around the world, they are making sure everything is "OK".

3.4.9 [Risk] Assuming incentives badly aligned with human fulfillment

People can't agree to change their behavior at the same time in ways that would be advantageous to everyone. There is a local maximum where everyone is stuck.

3.4.9.1 [Risk] Market incentives

The fact that you have to pay to be alive means that there is always a drop of [financial, artificial] stress living in the back of everyone's mind, so not matter no how much one tries to let go, it is always still present when in the market. The first couple of community-type integrated city systems will still exist in the market, and be largely populated by people brought-up under market conditions. The "back of the mind" stress of money will likely impact individual decisioning, and is something to remain aware of.

3.4.9.1 [Risk] Siphoning resources from community

There may be people that will "game" the free access societal system in order to acquire objects to re-sell them in the market. Some of these people might move into a community-type society in order to siphon off resources. The incentives and causes for this behavior are numerous in the market. Individuals in community may wish to facilitate an income for family and friends outside of community. Individuals may simply desire to join, take objects of value, and then return to the market to live a life of greater wealth.

3.4.10 [Risk] Assuming existing lifestyle commitments

It is a challenge when people have existing commitments and systems that they have set up that hey don't want to disrupt. Unfortunately, people can become so invested in not disrupting what has been created that it is difficult to look at what could be an improvement. We have become invested in a system that we didn't plan very thoughtfully, versus creating something that we can become invested in that we thoughtfully planned.

3.4.10.1 [Risk] Existing lifestyle contentedness

A.k.a., Life's [egoic] inertia

Many people are content in their lives; they are not interested in "upsetting" the stable inertia of their lives. Therefore, it is, often, not until an environmental influence does so for them. Such an environmental influence could come in the form of a disaster, and then recovery to a better state, or it can come through exposure to new information, leading to self-realization and a different decision, a different behavior. An environmental influence may not necessarily be a disaster, natural disaster or human made disaster, but instead, through a self-realization that a better way of living is actually possible now, for "me". A facilitation of the self-realization of a better way could come through a better virtual reality (VR) technological experience of the operation of community and having to share, the specifications for its actual operation. If you were placed, for 10 minutes into the sensory environment of a physicalized community-type society, and then, you got to experience how that way of living would operate possibly via reading over a set of comprehensive specification for its conceptual and technical operation[al feasibility]; many people would, from that experience alone, walk away considering to better their lives by contributing to a community lifestyle. The impact of the sensory experience of combined with a specification for possible constructed operation, that will be a powerful motivator for a portion of the population.

This system could feasibly be started with several hundred people (given conducive market and jurisdictional conditions). However, technically, some of the higher-scale elements of the societal system could be cut out and it could operate within market conditions at a small family scale; a family can operate as a community-type of societal organization. As the population [considered 'family'] scales larger, there are the emergence of other system domains and considerations, and decisioning becomes more complex, requiring a multi-variate matrix where each individual has a common set of potentially fulfilled needs given a set of common resources and contributed services by many people across a distributed area. In other words, more [types of] information are required in order for the societal system with a larger population size to work, or more correctly, work optimally.

Hence, another way to look at the proposed societal system is to take those loving family relations that most healthy families experience within their nuclearextended family, and extend them out to the rest of the planet (human and ecological world) through a systemsbased, solution-based approach. When this scaling larger occurs, those relations that where once normative (implicit) at the family-level are made explicit through an explicit societal information system that is cooperatively coordinated into exists by accessing contributors. For example, generally, in a loving and supportive family situation, the humans do not:

- 1. Enforce a retributive, punishment-based system on someone in the family after they do "wrong"; instead, they use restorative methods to restore relationships (wherever possible).
- 2. They share resources and information such that they neither secret information that would better others' decisioning, nor do they enforce a structure of economic exchange (barter or currency) on one another (particularly, when it comes to life and technical support).

Notice here, how the family operation (i.e., a cooperatively coordinated society) may be said to exist in a larger market-State based operation (i.e., a competitively coordinated, punitively justified society). Could a market-State society be said to logically exist inside a cooperatively coordinated society? If society could be designed, specified, and then operated, how might it be best for us to do so? The market-State and the community are two different societal configurations; two different intentional orientations toward society.

In community, individuals cooperate concerning the fulfillment of human requirements; when things "go wrong", humans are not viewed as broken, but sociotechnical systems are re-designed so that the likelihood of breaking human fulfillment is less over iteration (restorative justice). The market-State is the encoding of the requirement for transaction in order to have access fulfillment, which is hierarchically distributed; when things "go wrong" (e.g., contracts, agreements are broken), then individuals are punished (a.k.a., retributive justice, punitive justice, a State). When things go wrong humans are often considered to be broken (vs. organizational structures and functions in community). In community, when something goes wrong, often what is to be changed is the fundamental organizing structure, which is producing an unintended result. It is to the organizational structure that a change may be said to be made. The conscious individual that, in the case of a human making a mistake, that mistake, it does not matter whether it was intentional (i.e., "criminal" using marketstate language) or not ("legal"). If someone caused a mistake, then there must be some possible remaining error in the fulfillment process. Maybe there is an error in the mechanism for a mechanical service system, maybe their is a bug in a software service system, maybe there is a mistake in how someone was treated when they were brought out and they mistreated another, maybe there are aberrant environmental pressures (e.g., money stresses) that are conforming behavior to a subset of its potential, and maybe, this can happen at the individuallevel (with individual decisions) and structural-societallevels (with organizational structural decisions).

3.4.11 [Risk] Assuming communication and language

Unless you get the language precise, communication is not efficient and understand is less certain.

3.4.11.1 [Risk] Terminological issues

The terminology used in some verticals of the specification may be "out of date", or "more updated", than a reader's. This project is for a societal-level project undertaking, and therefore, it covers many disciplines. There may be a gap between the development of a new conceptual understanding and its integration into the unified specification, which may entail structural reorganization.

3.4.11.2 [Risk] Lack of conception

A lack of conception, in early 21st century society, is not reifying a human requirement when it is an obvious necessity. For instance, the Penguin Dictionary of Economics (5th edition) ignores the term 'need' (and 'basic need'), which is not an outlier case in early 21st century society. Mainstream economics has systematically shunned needs-theorising (societal models that include human requirements and their connection to human and ecological well-being).

NOTE: If (and when) social scientists state that data (or evidence) is a result of a social construction, this doesn't mean that there isn't a real, object world that is common to all humans and can be knowledgeably identified, commonly.

3.4.11.3 [Risk] Assumed definitions

QUESTION: *Every priced commodity is called a "good". Does that mean a good thing or bad thing.*

Differing definitive views (Read: definitions) on the fundamental systems that compose a human society will have differing results on systematic societal change.

In early 21st century society, the real meaning of significant terms become equated with their opposite in usage. In other words, people are using a term to mean something that if they perceived the larger whole, they would see how the term they are using, if observed in its express in the real world, would be given an opposite (or near opposite) meaning.

NOTE: A 'definition' is a list of conditions by which a word (term, concept, or encoding) is used. When the word(s) used are not defined (i.e., left undefined), then there is additional, unnecessary space for error, because of the lack of a definition within an argument (i.e., when "you" don't define words, "you" leave unnecessary room for error).

3.4.11.4 [Risk] Language imprecision

Imprecise definition of terms. For example, defining government only in terms of the services it is supposed to carry out (e.g., to permanently maintain public records, to continually provide essential services, to guarantee the security, accuracy, and auditability of recorded information), and leave out how those services are carried out and the extent to which they are carried out (for instance, what are essential services?).

3.4.12 [Risk] Assuming critical thinking

Practically speaking, critical thinking is thinking through what "you" accept and what "you" do. Critical thinking requires a sufficiently open mind (i.e., a mind that is sufficiently unattached to currently accepted information sets that is able, in a timely manner, to accept new information and modify existing information. More simply, critical thinking is a process (or set of processes) used to determine whether or not what "you" are thinking about is true or not.

To make a truth claim while simultaneously denying that truth exists.

- If, there is no acceptance of the existent usefulness of the concept of:
 - Either, the concept of truth.
 - Or, the concept of degrees of truth (i.e., probability).
- Then, there is a truth claim while simultaneously existing a denial (or negation of) truth claim -- there is the negation of logic itself, or more precisely, a negation of a commonly logical relationship to the real world. More colloquially, there is intellectual dishonesty.
- And thus, there is no ability to accurately orient [socially] in an optimally objective direction.

NOTE: Other common words (i.e., synonyms) for 'truth' are: Real, fact, objective, "is the case", "commonly experienced/-able".

Some social configurations hide the light of truth by substituting the absolute conditions of human need with the aspirations of power and profit, triggering possessive [survival] instincts. In this way, human wants became human needs, and as they were unique to him/her they also became one's/her identity. Society then progressed with humans fight over possession in absence of necessity. Hunting the beasts in the shadows cast by lies, instead of the real game that walks in the sun full of nourishment.

If 'philosophy' is the integration of information toward ever increasingly accurate understanding and action in the [real] world, and it requires the usage of the concept of 'truth'. There is an existence beyond that subjective that can be commonly known and operated within by individual consciousness - there exists and objective (common) and subjective (individual consciousness) world; a 'real world'. This real world can be known, and is known with some with some degree of accuracy (i.e., probability). An individual and social population can share information on how it operates, and how we (the individual among a social) can best operate within it.

If there are no facts, then truth, real, or objects of knowledge cannot function. If there are no facts, then there is no history and no science. And, there is no real news, only interpretations about news. And if there are no facts, then how do we explain the truth of conditional (i.e., contingent) true sentences, such as, "The dog is on the mat."?

STATEMENT: *It makes "your" ability to determine what is optimal for your fulfillment in any given situation difficult.*

"The book is against the wall.", is a 'true' contingent sentence. Thus,

- How does someone know that it is 'true', except by seeing (or otherwise sense perceiving, observing, experiencing) that the book is against the wall?
- What is this seeing (experiencing, feeling) if not the seeing of a 'fact', where a 'fact' is not a 'true' proposition, but the truth-maker (i.e., subjective claim) of a true proposition?

This seeing of a fact is not the seeing of a book (by itself), nor of a wall (by itself), nor of the pair of these two [physical] objects, nor of a relation (by itself). The seeing of a fact is the *seeing* of a <u>book's</u> standing (existing) in the [geometric] <u>relationship</u> of <u>being against</u> (Read: a type of logical relationship) a <u>wall</u>. Some people say, that the seeing of a fact is the "seeing/sensing of a [truth-making] fact". If facts/truth exist, then there is a category of information (i.e., categorical inventory) that composes information with some knowable relationship

to a commonly experienceable (i.e., experienceable with everyone with the sense to experience) existence, a real, factual, objective [at least] world. The relation, however, is not visible, as are the table and the wall. So how can the fact be visible, as it apparently must be if I am to be able to see (literally, with my eyes) that the table is against the wall? That is our problem.

Let "023" symbolize a contingent relational truth about observables, such as, "The table is against the wall". It is then possible to setup a problem:

- 1. If one knows that "023", then one knows this by seeing that "023". The table against the wall can be pointed to.
- 2. To see that "023" is to see a fact.
- 3. To see a fact is to see all its constituents (i.e., all that it is composed of). A table object against a wall object.

Facts are claims about observable, experiential things. At a higher level, facts are an information category useful for decisioning within a feedback system (in a real, commonly experiential world). If there are no facts about observable things, then it is reasonable to hold that there are no facts at all. The real world is conceivable as objects and relationships in a situational environment.

3.4.12.5 [Risk] Lack of perceiving the world as a system

Some generalized life system risks to a society include,

- 1. The reduction of feedback.
- 2. The reduction of self-integration.
- 3. The reduction of individual connection from behavior and the consequences of behavior.
- 4. The reduction of the incentive for contribution.

3.4.12.1 [Risk] Reification

APHORISM: *Truth is that which best matches external reality. Truth is not dependent on the internal opinion.*

Reification derives from the Latin word res—describes the process through which objects, places, and human relationships become objectified into "things," or in other words, commeasurable entities. We can understand the social as such to be the locus of reification, for in order to function, any social order relies on the reification of features that pertain to the life of its subjects.

reification

(noun)

1. 1846, "act of materializing," from Latin re-, stem of res "thing" (see re) + -fication "a making or causing." Wherein, reify means, "to make into a thing; make real or material; consider as a thing." From, Latin res "thing, object; matter, affair, event; circumstance, condition" + -fy. Wherein, -fy is a word-forming element meaning "make, make into," from French -fier, from Latin -ficare. Take note that it is not possible to reify an absence.

Reification has two meanings, simultaneously correct in this instance:

- 1. To make something real, to design the concept of operation of some idea, and then, make it in physicality by taking action. More colloquially, "to make something concrete", or "bring something into being". For example, to design a table and then make the table.
- 2. To take action, using conceptual reasoning (i.e., explanations) that have no reference in the physical world. Reification is to make some thing real in conception (knowledge representation) that has no real-world reference (no physicality), and thus, use it in deciding (how to behave, what to create, or otherwise, change), while existing in physical world. This is also sometimes called "false reification" or "fallacious reification".
 - The Reification Fallacy is the fallacy of treating (Read: using, integrating, interpreting) an abstraction only (Read: a pure conception) as if it were a real, material thing (i.e., treating a pure conception, as if it were the conception of an actual object; that which is not a pure conception is an object that can be pointed to and illustrated). Money is an example of reification, when used in the context of being owned by people and transferred among them; instead, the paper textile and metal discs and computing systems are objects that exist and can be pointed to.

At a societal level, it is unwise to give pure concepts shape (Read: false reification), and then, move them around as physical objects. Money is an example of a concept ("ownership") being given shape and moved around. Notice how easy it is to reify (i.e., make real, give shape to) conceptual entities. For instance, in concern to designing a physical location for light, there is illumination as a real world object (and non-illumination as less of it), but there is no 'shadow' as a thing itself; a shadow is less of the thing 'light'. Irrational is converting a concept into a spatial object (first irrationality), then moving the concept as a spatial object around (second irrationality).

What does 'rationality' mean? It means that only objects can be moved; concepts cannot be reified to have shape (as objects do), nor can they be moved around like objects. For example, waves are a concept; there is no physical object called wave; waves cannot be moved. Instead, the water which is moving wave-like is doing the moving. Similarly, mass (weight) is a concept that cannot be moved around; instead, the object that has the attribute of a mass (weight) is that which is moved.

Reification is to conceive of something that is purely conceptual as real. To hold a concept in the mind (i.e., to process it) as if it were real. Things which are reified to exist, but have no real existence. These things can be acted upon and have consequence, though no existence. 'Reification' means to turn a thought into material creation (act of materialization; to make into a thing, to render into material existence). To reify is to make a thing from a mental map such that now that thing exists in material, physical reality. For example, to conceive of a chair and then make a chair, or initiate the material creation of a chair. To make it real, either physically or as a constructed relationship, through encoding. To decide and act in the real world based upon money is an example of the fallacy of reification.

For example, a "shadow" cannot be reified. A shadow is a privation of light, and it is not possible to reify a privation (i.e., the action of depriving). Someone might say, well, a shadow is something because if you stand in a shadow you get cold as opposed to standing in the sun, therefore a shadow is something that does something. However, that statement is inaccurate, for it is not possible to reify something that has no properties. A shadow is not a thing with properties. A shadow is a privation of the light, which provides heat. Simply, it is not possible to reify something that has no principle existence. It is a posterior attribute. If someone sits in a shadow, they are likely to get colder, and therefore believe that a shadow is something. But, a shadow is not a subject or an object; it is an attribute.

Reification essentially means the integration of information into conception (as a mental model), and the degree of abstractional accuracy of the model to a real world. The fallacy is the integration of abstract information as real (or, material). An absence cannot be reified as some thing; an absence is a privation [of materiality]. A 'shadow' is an example of the reification fallacy. A shadow is a privation (material absence) of light, and not a [material] thing (an object with geometric relationships) in itself. In other words, to use the concept 'shadow' in the context, and with the meaning being, that it is an individual and material thing, is an example of the fallacy of reification (to claim some thing is real and material when it is not). Consciousness can experience the sensation of light, for which there is the experience of more and less light, in an environment. The nonpresence of this thing, light, unless it pervades all, does not exist as an object, thing.

Waves, for example, are what some thing does, not what some thing is. To call some thing a wave is to commit the fallacy of 'attribution reification'. Waves don't exist; a wave is an attribute of some thing. Movement is said of some thing, of a subject (e.g., water). Waves are said of an attribute of a subject (i.e., waves are a type of movement of water). Similarly, a 'shadow' is a [concept] reification of the absence of light. A shadow is not a thing itself.

If there are relational facts, then relations must constituents of some facts [propositional be statements] about objects in the real world. If someone (consciousness) can see (with eyes, a sense) that the dog is on the mat, is it not [the case] that evidence that someone is seeing a 'fact', and not just a dog and a mat, because that information can be used to take more accurately aligned decisions with a given direction of action (such as, acting to move the dog off the mat before it is trampled, or otherwise, for the dog to move itself consciously off the mat before that location is trampled by some larger unstoppable object.

The sentenced claim, "the dog is on the mat", is not just 'true'; it is true because of something external to it. What is external to the sentence (as conception)? That which is external can't be the dog by itself, or the mat by itself, or the pair of the two; because, the pair [data] would exist if the sentence were 'false'. "The dog is not on the mat" is about (carries the meaning) the dog and the mat, and requires their existence just as much as "The dog is on the mat". The truth-maker (Read: subjective consciousness when sharing and taking decisions), then, must have a proposition-like structure, and the natural candidate is the 'fact' of the dog's being (existing, commonly experienced as) on the mat. Therefore, facts exist as a category of information (a categorical inventory) of that which exists (or has existed).

Logic, in its broadest sense, means correspondence with reason or generally accepted principles of rational thought and action; logic is universal. That which does not correspond is illogical. Fallacy is a collective term for arguments that have logical flaws or are invalid. As a branch of knowledge, logic deals with the principles and application of universalizable rational. Through logic, environments can be planned. Causality and probability are two essential principles that underlie the analysis and assessments of rationality (flowcharts of causal reasoning).

If someone sees the dog and the mat, why can't "I" see the relation[ship], assuming that "I" am seeing a 'fact' and that a fact is composed of its constituents, one of them being a relation? As Butch asks, rhetorically, "If you supposed that the relational fact is visible, but the relation is not, is the relation hidden? Or too small to see?".

The above analysis is logically undeniable, and to deny it is enter a subjective (non-socialized) space, where there is likely to be little common ground (or common orientation) over salient problems with commonly optimizable solutions.

If there are no 'facts', then a social population of individuals cannot, together, make sense (conceive, model) the world in which they interact together.

To orient a society, wherein individual consciousness takes subjective decisions therein, in a useful, optimized direction, the question of "how information was determined" (i.e., all claims are determined, "how did you determine x?") must relate back, sooner or later

(i.e., through information flow *tracing* to the source of the flow) to [an appeal to, or claim to] direct sensing. To resolve situations where evaluations and decisions are required

If there are no facts, then there is only opinion, and a society that organizes itself on opinion is unlikely to configure what is available toward the optimal fulfillment of human requirements [for the expression of each individuals highest potential expression in a physicalized/-able state.

3.4.12.2 [Risk] Assuming facts and results

Logic and set theory can be used to "prove" facts. Logic set theory start with:

- 1. $\neg (A \cap B) \equiv \neg A \cup \neg B$
- 2. 2. $\neg(A \cup B) \equiv \neg A \cap \neg B$
- 3. $A \Longrightarrow B$, $\neg A \Longrightarrow \neg B$

If there is a desired result (an outcome), then there must be facts.

- 1. If facts, then result.
 - facts \Rightarrow result
- 2. It is impossible that there are *facts* and no *result*.
 ¬(facts∧¬result)
- 3. There are no *facts* or there is *result*.
 ¬factsVresult

Thus,

- 1. Ultimate facts \Rightarrow result
 - Ultimate facts ⊂ result

If there is no result (no set outcome), then there are no facts.

- 1. If there are no *facts*, then there is no *result*.
 - ¬facts⇒¬result
- 2. It is impossible that there are not *facts* but *result*.
 - ¬(¬ facts∧result)
- 3. There are *facts* or there is no *result*.
 factsV ¬ result

Thus,

- 1. If there are *facts* and only then there is *result*.
 - facts⇔result

All engineered systems have a result (or, are a result), and therefore, there must be facts to inform the result. Solutions to real world problems are based on real world knowledge (facts). It is from this knowledge ("facts") database that technical (engineering, InterSystem Team) solutions are developed and applied at the level of the local habitat service [city] system.

3.4.12.3 [Risk] Assuming no facts.

If there are no facts, then everything is subjective-

interpretation (opinion), upon which no thing can be safely engineered. If there are no facts, then there is no possibility of accounting for real world events. If there are no facts, then what anybody says is as valuable/ useful as what anybody else says. If there are no facts, then when organizing society, humans are likely to fall back on "might makes right".

3.4.12.4 [Risk] Assuming truth

- 1. Truth is that which best matches external reality.
- 2. People experience the same reality and only interpret it differently.
- 3. Truth depends on the opinions and beliefs of people.
- 4. People create words and define their meaning.
- 5. Something is true if everyone agrees to it.
- 6. Strong belief, even without action, can change external reality.

3.4.12.5 [Risk] Assuming what to believe?

- 1. Some beliefs should not be questioned.
- 2. Someone can be certain of something yet still be mistaken.
- 3. It is bad when someone doubts their beliefs.
- 4. If all members of a society share a belief, they are justified to hold that belief.
- 5. Believing something that is false feels just like believing something that is true.
- 6. Feelings are a reliable way to discover truth.

3.4.12.6 [Risk] Assuming when to believe?

- 1. Believing something without evidence is admirable.
- 2. It is important to know where we came from and what happens after death.
- 3. Believing something that is false is okay if it gives you comfort.
- 4. I give all claims the benefit of the doubt when I first encounter them.
- 5. Someone is justified in their beliefs until they are proven wrong.
- 6. The most important criteria for my beliefs is that they match reality.

3.4.12.7 [Risk] Assuming authority

- 7. I often investigate beliefs that do not match my own.
- 8. I am comfortable with saying: "I don't know".
- 9. It is beneficial to find out when I am wrong about something.
- 10. It is beneficial to find out when I am wrong about

something.

- 11. I look for more information before I accept something as true.
- 12. It is possible that some of my beliefs are not true.

3.4.12.8 [Risk] Lack of coherent thought

A.k.a., Lack of systems language, systems thinking, systems syntax, systems science, precision of language, rational thought.

Dismissive, categorically polarized, and oversimplified thinking and world-views plague us as a civilization. We do think in language, and if you can control peoples language about certain subjects, then you can control their thought process by association. Today, unlike in the past, there is the discovery of 'systems' language that allows for a different (than past) and more unified (integrated, holistic) way of thinking. Systems thinking is the known means of aligning the syntax of linguistics, as the part of communication that logically composes the structure and formation of sentence structures (of arguments), with natural [cosmo-logical] form. More simply, systems thinking is a language, not previously used (or at least, widely used), that allows for making and communicating a coherent sense of the world. In more recent decades, systems language has been formalized so that it can be used by teams (by anyone who desires to share and contribute).

Asentence could make no sense [when communicated], and still be correct from the syntax point of view, as long as words are in their appropriate spots and agree with each other. Similarly, a syntax whose logic isn't aligned with the structure of the real world, can still form a societal configuration which has people believing in its appropriateness for their lives, even though it observably causes suffering. In other words, a syntax can have a logic that does not align with real-world [service] systems for [fulfilling] human need; and, although that type of societal configuration is highly likely to express an unfulfilling state of current well-being, the people who use that language [of limitation] are not likely to realize the degree of their suffering or how to re-align their lives with their higher need fulfillment potentials.

It is the information system, working groups, and the InterSystem team, not the State or the market, that provides a unifying scaffolding to minimize the risks of working together while access is scaled to global population size.

There is a requirement for an up-to-date language to reflect the real systems-based operation of a real-world existence, so that humanity can think, design, and build in alignment with individual's highest potential state of human need fulfillment.

Societal problems, <u>all of which</u> are complex, require a 'unified' societal language solution to resolve, for the population and its alignment:

- For the whole population
 - 'Unified' means everyone uses it [socio-logic].

- For alignment of the whole population (with a commonly informational and spatial real world existence)
 - ('Unified', in that it coherently and logically represents, the real world [simulation-logic]).

Systems thinking is increasingly being thought of as a "new" (discovered, recognized, remembered, constructed) way of thinking to coordinate and resolve ("manage") complex problems.

INSIGHT: Thought processing on the part of conscious systems can and cannot align that consciousness with its optimal embodied well-being, given an informationally material environment. Some thought processing leads to coherent conceptions and decision that align consciousness with fulfillment, and other though processing structures, methods, objects lead to incoherent conceptions and decisions that dis-align consciousness from what it could socially achieve in fulfillment given that which is available.

3.4.12.9 [Risk] De-contextualizing hypotheticals

Impossible hypothetical scenarios (i.e., de-contextualized hypotheticals) and dilemmas are just that, impossible to rationally resolve, because they are de-contextualized from the real world where there is:

- 1. Human feeling
- 2. Cause and effect
- 3. Memory and past cause

For example, there is a train track hypothetical known as the "Trolley Problem". A systems engineering, or someone in community, would likely answer the problem with a question pertaining to why the system was designed with the potential for such a multivariate safety problem. The presence of the "Trolley Problem" itself likely says more about the society someone is from than how someone from another society might answer the problem.

3.4.12.10 [Risk] Complex ideas

Often, in early 21st century society, attempts to communicate relatively complex thought are stifled by wilful ignorance and ego. Complex ideas require complex explanations, and the reason languages have vast vocabularies. Words generally represent ideas, and more nuanced ideas require more nuanced and detailed organization of language. Understanding more words effectively means understanding more concepts.

Someone can have an "immature" drive toward wanting everything to be simple; though such an "attitude" is "immature" to understanding. The psychological disposition associated with falsifiability helps avoid cognitive bias. The first principle of the logic of a learning system is that there can be selfmis-understanding, which may be corrected to reveal growth, further capability, and overall progress.

INSIGHT: There is another stage to human "development" that hasn't been accomplished, neither in the US, nor in Russia, nor in China, and that is what the project is proposing.

Some people will say dismissively that good ideas should be easy to communicate. While it is a good strategy to simply the language as best as possible, any attempt to describe and explain real world phenomena is going to be inherently complex. Most facets of the lives of those in early 21st century society are governed by simplistic thinking and over simplification, propagated by a simplistic language. For example, there is presently a judicial practice that believes in total free-will selfownership that puts people in cages, as opposed to examining the causality behind their behavior and work to correct sociological (social system structural) preconditions.

Today, humanity is expressing behavior that could be easily changed if not for cultural customs (social constructs), which are cyclically and socially reinforced and enforced by market-State structures. Organizing a economic system where everyone is enforced into trading themselves into for currency or credit or trade to survive and thrive deliberately amplifies the most base tendencies for humanity to continue a state of perpetual competitive survival against one another, brining out the worst and most destructive aspect of a more complex whole human nature. There are sociotechnical structures that come from mental models that limit humanity's ability to evolve to a higher plane of compassion and support for collaborative community and by human unity.

The confusion of other forms of societal organization (other than those applied in community) can often times be confused with community-based societal organizations. People may confuse:

- 1. Politics with science.
- 2. Politics with global objective agreement.
- 3. Markets with global cooperation.
- 4. Govern[-ance/-ment] with global accountability.

3.4.12.11 [Risk] Network effects

Network effects (network affects, network consequences) refers to the logical flow of information indicating a "suffering" of negative (fulfilling) network effects because of behaviors (e.g., eating obesely). There are network effects to behaviors, which propagate throughout a network from a source to a 2nd network entity, then 3rd, and so on. There are degrees of connection to every influential behavior; there are downstream network consequences.

The most important question in concern to network

affects is:

• How will a failure (in one or more areas) affect the network?

3.4.13 [Risk] Assuming pre-existing belief

Human beings are a social animal with a social life that requires rules under which good work for others is rewarded and bad work against others (torts/cries) should be punished. Through this process of rewarding and punishing a "trust" relationship is built among members of the society. Therefore, Law is the social rule to maintain peace and order through reward and punishment.

The Law has two functions in this type of society:

- 1. To resolve disputes (by judging punishments and rewards).
- 2. To prevent disputes (by exposing the process of law to the public to determine how to resolve disputes).

The process of resolving disputes under the Law involves:

- 1. The judge "finds" facts (by listening to the assertions of the disputing parties (e.g., plaintiff and defendant) without "prejudice".
- 2. The judge discovers the most appropriate law and applies it, using argumentation (against/for), to the facts.
- 3. The judge holds the judgement (an argued conclusion) according to the law and it will be enforced by authority.

3.4.13.1 [Risk] Belief risks

Beliefs can "hijack" almost the entirety of thinking and behavior [away from real and optimal fulfillment of human requirements]. There are concepts which may be encoded that obscure the objective world, some of which generate minds that are too "open" (I.e., lack sufficient critical thinking) and too closed (i.e., belief disallows the integration of evidence). Often, the quickest way to upset someone (generate aggression in them) is to be seen as attacking or perceived as negating their beliefs, because they feel that what they believe is who they are.

3.4.13.2 [Risk] Attachment (belief and fear)

After being introduced to more accurate information, why don't people rapidly update their thoughts and behaviors? Generally, these people don't rapidly update their lives for a number of reasons, including (but not limited to):

1. Their belief systems won't let them. In other words, their attachment to prior perceptions, integrations, mental models, behaviors are too fixed by their egoic self.

2. Fear of what other people will think of them.

3.4.13.3 [Risk] Harmful views of humanity

One of the most common harmful views of humanity is: "People are tribal, they are different, they have different likes and wants, they have different beliefs, and therefore, war. I don't think it is possible to have not built the nuclear bomb. Why, because people are tribal, they speak different languages, they have different desires and needs, and then, we are in war."

 So, if all these engineers were working towards it, it was not possible to not build it, and even if it may have not been possible to build it once, once built, it is not possible for humanity not to build more of them."

3.4.13.4 [Risk] Limiting societal system-beliefs

Humans in a belief-limiting social system will share a distinct concept of their environment, and limited by belief, they are likely to have little understanding of how other social systems perceive their environment differently.

3.4.13.5 [Risk] Doctrines

Innumerable doctrines disconnect individuals from the highest expression of their fulfillment by limiting their understanding of what could be.

3.4.13.6 [Risk] Cognitive bias

What about today, in government school, where children are taught a model democracy in the following way: Imagine that you are an absolute dictator, and how would you envision your country being (in every aspect), and then, vote your way accordingly. These people are taught at a very early age to think of that as the basis of your approach to society. You have to envision yourself as in complete control, and then, individuals argue, and then there are coalitions and a final vote. And, it is not far to go from here to accepting someone else to be your dictator.

The instinct to want things to be better without the work of trying to understand how they have come to be as they are is guaranteed to keep you where you are.

3.4.13.7 [Risk] Dichotomous thinking

Humans must move past the dichotomous responses of, comply or they defy.

Indoctrination or desperation leads easily to the uncritical adoption of and persistent attachment to belief.

Risk dichotomies language and conformed thought (polarity or dualism mask unity). For example, good and evil, electromagnetic North and South, positive and negative, chemistry acid and base, politics right wing and left wing,

Dividing the world into sacred and profane leads easily to a semantic trap that conforms one's world view to a subset of that which is necessary for the solution.

3.4.13.8 [Risk] Cognitive blocking (bias): Specialized division exclude life-value

One major cognitive block against understanding has been the slogan. Multiplied disciplinary divisions into fields and areas of specialty exclude any unifying principle of value, a major incapacity of thought has evolved. Even connected life and life-support systems' collapse across the world cannot be detected in its causal mechanism or life-value resolution.

3.4.13.9 [Risk] Co-dependency

There is a big difference in something be given freely today by an entity in the market, and a group of people organizing for an abundance in access an opportunities for discover and growth. In the market, when something is given to someone else for free, then a co-dependent relationship is likely to form - the receiver of the gift becomes dependent on the giver. That feeling of sufficiency in being able to accomplish something and meet your own needs is missing. Dependency produces a lack of sufficiency. Cooperation means true security in access. When there is dependency their insecurity in access because access is dependent upon the will of another. In community, access is dependent [in part] on a transparent and common decision process which coordinates fulfillment. In community, a feeling of sufficiency comes from participating in the fulfillment common human needs and from being able to observe the operation of the entire fulfillment system as well as reference documentation which explains the reasoning for its current state of operation. Here, sufficiency arises from being able to view at any time the system which facilitates the fulfillment of all, from being able to see what efforts are necessary and from being able to participate whether you skills are appropriate and needed. An open society where everyone has access to what they need and can participate in anyone's fulfillment. In this type of society, we know we have access/will continue to have access to that which fulfills our needs, and so, our behavior becomes calmer and our actions more aligned with our purpose.

3.4.13.10 [Risk] Blame / meritocracy

If someone isn't succeeding in today's economy, it is their fault. The blame is on the person who is still poor given all the opportunity available. Ignoring, the larger socio-economic structure, conditions and conditioning, including luck to which any given person arrives at a particular state of socio-economic access.

3.4.13.11 [Risk] Truth

What a group of humans determines to be true and correct can be objectively inaccurate, and the humans may continue to believe that which is false due to social forces (influence) they may not detect or even know exist. Professional bias It is difficult to get someone to understand something when one's/her salary depends on him/her not understanding it.

3.4.13.12 [Risk] Enemy imagery

They focus very much on enemies and enemy imagery, and constant reminders to the tribe that the enemy is just outside the gates, or just over the hill, and "I" am the guy who is making sense of this situation for you. And, the more you talk about the out-group, the more it strengthens the in-group around the leader. And, people will through money, time, and attention at people who say, "these are your enemies, these are the rocks you throw at them, you have done nothing wrong, and your problems are a results of your enemies actions, and lets throw rocks at them together.

3.4.13.13 [Risk] Slogans

Internalization of the slogan conforms the mind to a ruling syntax of thought that is life-blind at a global scale. Slogans can lock out of cognition a more life-grounded perception of what is and what is possible. And therein, it can be challenging to effectively present conceptions that have effectively been locked out of someone's thought process due to slogans. There is a cognitive stupefaction that comes with the internalization of a slogan in a persons mind.

3.4.13.14 [Risk] Sophisticated behavioral conditioning

Edward Bernay's (the nephew of Sigmund Freud and author of "Propaganda") codified for corporations (for the first time), and then governments, how they could make people want things they didn't need by linking mass produced goods to their unconscious desires. The colleague and public relations advisor to Edward Bernay's, Pat Jackson, once said, "What Eddie [Edward Bernay's] got from Freud was indeed this idea that there is a lot more going on in human decision making -- not only among individuals, but even more importantly, among groups. So, Eddie began to formulate this idea that to modify behavior for profit you had to look at things that will play to people's irrational emotions." Today, the marketing and social engineering of feeling and opinion has become its own normalized industry embedded into the conceptual fabric of early 21st century society, and it filters individuals' perceptions of reality. In other words, people in early 21st century society are already accustomed and actively encouraged to behave irrationally -- it is just an aspect of how businesses sell things -- it is an accepted narrative.

Indicate and manipulate the sense of the possible; one of the most profound and powerful ways of keeping people in the box, keeping people in a perceptual prison . It is that simple. For instance if your sense of the possible does not at least encompass the possibility that. All the time collectively and individually our sense of the possible is being squeezed. What one has at any point in time is a perception of how things are. But I know that whatever I know there is always vastly more to know to push the cutting edge of my understanding. Rather than have a belief system, you have an informed and verified sense of perception of how things are up until now. Up until this point in time. Take a step back and look at it again. Loop up at the into space. Loop up into the infinity of forever and your telling met that all I need to know is between the covers of this book or that book, written by who knows who, who knows when, and under what circumstances.

APHORISM: When in a chaotic information environment, the critically discerning mind must be on active duty continuously.

3.4.13.15 [Risk] Aberrant environmental conditioning

With experience we become tuned in to the environment and the environment shapes our mental conceptions and representations of the world. What if someone grows up in an aberrant environment? What if their representation of the world are inaccurate?

3.4.13.16 [Risk] Lack of connection with natural (required) cycles

For example, in early 21st century society, many people are have become dis-connected from the sun cycle, and have instead become connected to the market clock. Some people in early 21st century society don't even recognize the sun's radiation as a nutriment (that provides the fulfillment of a category of required human existence). Others in early 21st century society recognize it as a human need, but are unable to organize their lifestyles by it because of their market-State imposed requirements.

3.4.13.17 [Risk] Confusion about needs

The belief that humanity needs an authority (e.g., government, etc.) to make humanity "good" is a commonly repeated narrative throughout books and other works by those who believe in authority and work for authority.

The belief that we need a government or deity to make us good; the story that government repeats is all through their books, is once upon a time people had too much freedom and not enough government, but then the government realized that there wasn't enough government and made more government and omg the people took more freedom and things got worse.

Abstracting the economy from,

- The natural field of life support upon which it depends (*the ecology*).
- The complex field of society upon which it depends (*the society*).

Growth can be seen,

- As abstraction (e.g., money-value expansion). This orientation is likely to form *competitive dynamics*.
- As self and social expansion of life function. This orientation is likely to form *cooperative dynamics*.

3.4.13.18 [Risk] Lack of self-esteem

There are two general types of people:

- 1. The rational or empirical who will look at the evidence and if it is convincing will change their minds.
- 2. The other people who are, by degree, more dogmatic (i.e., those who are convinced by belief).

3.4.13.19 [Risk] Assuming loss of trust

The integrated project delivery approach is built on collaboration, which in turn is built on trust. Effectively structured, trust-based collaboration encourages parties to focus on project outcomes rather than their individual, personal goals. Without trust-based collaboration, a unified project delivery approach will falter and participants will remain in the adverse and antagonistic relationships that plague disciplines in early 21st century society.

3.4.14 [Risk] Assuming idols

A.k.a., Idolization.

Idolization implies the creation of a static image of someone or some organization's success and perfection. that is unlikely to resemble the messy reality that most people's lives consist of. Statements, such as, "The primary source of RBE knowledge, which is timeless and unrelated to technology or design, is such and such organization; it's closer to Tao Te Ching than robotics and automation."

It is inevitable that society will learn more and idolization reduces adaptation to new information. Idolization clouds critical thought on the part of the idolizer for the idol and the current situation.

Common idols include,

- 1. Starchitects
- 2. Authorities
- 3. Experts

3.4.14.20 [Risk] Emulation

NOTE: Those in fear are notoriously unconcerned with morality.

There is a risk when morality (ethics) is assumed to come from the emulation of a good person. Therein, ethics is often mis-understood in early 21st century society. When the world is conceptualized as different agents, and "yourself" as one of them, and you share purposes with the other agents, but you have conflicts of interest. If you think that "you" are in competition with others, or that "you" don't share purpose(s), then there is no reason for ethics [at the social level] - "you" look for the consequences of your behavior for yourself with respect to your own rewards functions, only. Morality (ethics) represents a shared system of [mutual] agreement [upon access].

QUESTION: *Ethics is a way for politically savvy people to get power other people (through a protection racket). When "you" (or anyone) is able to change the direction (Read: the human reward function), then how do you define ethics? "You", or anyone, defines it subjectively.*

3.4.15 [Risk] Assuming competing projects

When there are idols, there are likely to be fewer cooperators. Organizations (with workers that require money to survive and thrive) that are working toward and promoting this direction, have their own brand and may have no interest (or incentive) to collaborate, which will:

- Result in the duplication of efforts.
- Increase the likelihood for conflict by pitting people working on the same direction against one another.

People who idolize a particular project advancing this common direction is more likely to spread hate toward others and toward critiques of their idol.

3.4.15.1 [Risk] Spreading hate within the population that develops this direction

The spreading of hate amongst those who share this common direction is hurtful to the direction. For example, it is inappropriate to spread hate when someone, for instance, leaves an organization working on this direction or is critical of an organization working on this direction. Hate-filled types of behaviors harm social integration (as social cohesion), they harm individual well-being (as belonging), and harm their own organization through the negation of (ignoring of) feedback. These individuals/behaviors cut what would otherwise be avenues for communication, cooperation, sharing, adaptation and evolution, and ultimately, the experience of togetherness (over separateness). Division amongst any of us is the potential downfall of any of us.

Social well-being is not sustained through structures that enable social division, but instead, from social integration. It is clear to see the egoic belief in [the] authority of one organization (or individual) over others who support and are working toward a common direction. The one spreading the hurt and disconnection is the first poster. The individual who left the organization after/before a critical review of the organization is poster number three. These behaviors are an expression of social anger and disharmony, instead of social restoration of harmony.

3.4.16 [Risk] Assuming trade

Differing views on the conception of economics:

- <u>The monetary, competitive view</u> economics is the problem of the [optimal] supply and demand of goods via the method of trade.
- <u>The community, cooperative view</u> economics is the problem of the [optimal] fulfillment of human requirements via the method of modeling.

3.4.16.1 [Risk] Ownership

The individual[istic] gathering and storage of resources leads to power over others, and is naturally a dangerous situation. Ownership separations and disputes hinder the ability to plan.

Ownership can be sub-divided into that which is being owned:

- Resource ownership
- Land ownership
- Object ownership
- Information ownership

3.4.16.2 [Risk] Land ownership

It is not possible to plan an integrated city system when the land (etc.) is privately owned. More than likely only societies without property divisioning are capable of successfully building such a city.

3.4.16.3 [Risk] Information ownership

A.k.a., The digital market.

The "digital market" represents the partitioned ownership of all information. This environment can easily lead to a state where every word and image online, or in digital format, will be regulated by the State.

The consequential result is:

- Online copyright directives.
- Online regulatory directives
- Digital upload filters.

3.4.16.4 [Risk] Reduction in a free Internet

The concern is that where, at one point in time, some used to be able to search the Internet. Now someone is only allowed to search what an owner specifically allows to be shared, and then, what the owner of the search engine itself deems searchable. The greatest risk comes from the viewpoint that all information is own-able (commodifiable, privatisable, property, etc.).

3.4.17 [Risk] Assuming pre-existing investment

In a capitalist economy, people therein are invested in the capitalist economy. People are (and have become over time) *invested*, in both a financial (material) and psychological (perceptual) sense.

'Exchange value' is capitalism, is expressed as a 'market' in which competition is 'valued', possibly controlled by a central authority neutral to all competing entities, a 'government'.

Some societal systems are, because of their structure, life-blind:

• Does the societal system account for the requirements of [human and other ecological] life?

In a market there is, generally, a money-sequence function in operation (i.e., a market). The construction of that market overlays the necessity for exchange, a social construct, upon the direct and most optimized, given what is available, fulfillment of human needs. Those real human needs become "wants in the 'market", which has its own set of needs to continue functioning, its own structuring, which could be viewed as necessarily taking priority currently take priority over human needs.

The market syntax:

- 1. Self-maximizing strategies in
- 2. conditions of scarcity or conflict over
- 3. desired trade (payoff or profit) at
- 4. minimum costs for the self to
- 5. win/gain more.
- [encode property] > [encode currency as private money-value, \$1] >\$2>\$3>\$n (money multiplication sequence, transactional sequence).

There is money-demand element to a market-based society.

3.4.17.5 [Risk] Psychological investment in the market

People don't "have to have" careers in the market; the market forces people into 'careers' (as labor for money) in order to live (versus sharing common access). A 'career', often, though not always, becomes someone's socio-economic, egoic identity. Some human-manual tasks (jobs) are [f]actually necessary, and the people who do those jobs often find purpose and meaning through their work.

The existence of necessary, purposeful jobs in the market can confuse the issue of there not being the need of an exchange for money in order to live. The market, in terms of the conception of 'to live', does not differentiate between tasks necessary to meet human needed fulfillment (i.e., to live) and those tasks unnecessary to meet human needs (e.g., all financial tasks).

INSIGHT: Conscious can become embedded in a structure of limitation of potential, and to reorient beyond the limitation requires conscious separation of one's egoic identity from that that is composing its own [mental] limitation.

3.4.17.6 [Risk] Class

The classism (socio-economic) mental model blinds an encoder to the presence of what is actually need for a fulfilling relationship and not market-drama. The encoding of classism into thinking "blinkers" human needs out in principle.

3.4.17.7 [Risk] Markets

Where human need depends on market access, social life activity becomes structured as a series of zero sum competitions over the rewards the existing social structure provides. That which has real life value includes: healthy children and adults, the free development of cognitive and imaginative capabilities across educational levels, meaningful and life-valuable work, beauty open to the experience of all, democratic political systems, free time experienced as an open matrix of possibilities for life-valuable self-expression.

Market rationality states that what is optimal is selfmaximizing choice, which always equates to, more money value for the 'self' is good. For example, higher wages for someone is good because the best of all possible worlds is a money price gain for the exchanges. In total, it equals, self-multiplying money sequences to feed even more money to the top. The multiplication of money sequences is the ruling growth system, with no committed life functions, generating as is observable things which are disposable.

As an information set, the 'market' category can include several information sets:

- The 'ecology' (ecosystems and organisms, including humans).
- The 'economy' (profits and the drive to accumulate capital).
- The 'social economy' (paid and unpaid labour, human and social resources and relationships).
- The 'social authority' (political, States, governance, and, power over others).

3.4.17.8 [Risk] Trade

In community, humankind can automatically dump money out of the definition of need, as well as value and approach, since there is no money in the real world (i.e., it is not an actualized or actualizable existent entity). Everything is free of money, free of trade, in actual existence. Nothing has a monetary value attached to it; and there is no need for trade when there is cooperation. In a community-type society, the concept of 'value' refers to an orientation to life, or a dis-orientation to life fulfillment, wherein measurement values (numbers and then logical mathematics) produce efficient services. Hence, in community, all services (and products therein) 0 in the encoding of the concept of trade (i.e., are 0\$, 0 dollars). Among community, there is no way to define wealth in the context of a currency since everyone's possessions are essentially \$0.

Technically speaking, everyone has access to the same amount of everything; it is just whether or not they are using it or in possession of it at a certain time, and thus, access becomes the new definition of 'wealth'. If someone has access to everything, just as much as everyone else, someone would not likely say "I'm wealthy" (as an identification), because then everyone could say the same thing. If everyone has access to everything, then if one person can say they are wealthy, so can everyone, and thus the defining line between wealth and poverty is nullified. Hence, the terms wealth and poverty as material fulfillment [through the market and State] are obsolete and unusable (i.e., will cause instability in fulfillment when encoded).

3.4.17.9 [Risk] Competitive advantage

In competition, every major competitor manoeuvres to a position of relative advantage (over other human beings). Take any State military, and they are manoeuvring across all six (or seven) known domains of operations (land, sea, air, space, cyber, human, and ethericbiophysics) in order position themselves such that they have advantages over the other humans organized into States. Multi-domain operations. This type of behavior, seeking and taking competitive advantage over others is innately antagonistic against our common human fulfillment and is likely to perpetuate conflict (aggressive division). Not joint interdependence, but join integration toward something that is meaningful for all of humanity. In the conflict between States (and highly organized dogmatic belief systems) all of humanity are pawns (fodder) for the actions of the State actors. They do this in order to dominate their "adversaries", who are just other common humans. In this type of environment, anything and everything can be used as a weapon, which makes maintaining a state of human fulfillment difficult, because of the unpredictability of behaviors and objects, and thus, unpredictability of fulfillment. In part, the reason for going to war has never changed, and the maintaining of competitive advantage over others naturally produces conflict (war) because people are not cooperating for mutual benefit. Therein, humans with commonality are trying to undermine one another. Those who are the generators of these types of conflict often say, "The most important deception is to convince you that you are not in conflict" [with State actors, who are based upon conflict]. What actually divides us is acting toward competitive advantage over others and not acting toward our common unity.

3.4.17.10 [Risk] Capital

A.k.a., Assuming capitalism, risks due to assuming the belief that "capital" as the means by which a society is built.

The problem, however, is that utility functions and the relations established between the agents who pursue them in a free market are abstractions that cannot tell us what the consequences are for the natural field of life support and the social field of life development which in reality the capitalist market presupposes.

Capitalism makes a variety of definitional and factual claims, one of the most significantly impactful being the following:

- Without *capitalists* there would be no *jobs*.
 - Nothing would get done; wanted goods and services would not get delivered.

One question to this claim, that reveals the belief encoding, may be: What exactly are capitalists doing at their jobs that could not be done without the capitalists? The honest answer is everything, because the workers do the actual work [of fulfillment, the tangible], and the capitalists manage the finances (the intangible resources).

The problem with capitalism is that it comes with the illusion that productive work is being done (when, that work which is being done by capitalists, or some of their employees, has no benefit to real human fulfillment). Of course, in some cases, the capitalist is also the worker. The power dynamic is obfuscated in capitalism, because decisions that affect everyone are made in secret (i.e., via a closed source approach). Actions can easily turn away from the trajectory of mutual human fulfillment when secrecy and competition is incentivized.

Entrepreneurs and other capitalists are heavily invested (financially and psychologically) in the market-State system. They are invested financially by definition of them being active capitalists. They are invested financially and psychologically in the State in the hopes that it (the State) will protect their access to their property.

In the financial sense, a financial investment is an asset (object of claimed existence) that someone (or some group) puts money (or, property) into with the hope (attached expectation) that it will grow (or, appreciate) into a larger quantity of money. More simply, an 'investment' is the hoped growth of an intangible, and in a market-based societal system, it is the hoped growth of an abstract reification (Read: money) upon which real, material human requirements depend.

NOTE: The fallacists fallacy - Just spotting a fallacy doesn't make an argument automatically wrong, "well I see a fallacy therefore it is wrong", may be a false statement about the claim. The presence of a fallacy simply means that further fact check and examination are required.

Working class people, by definition, work in the capitalist economy. Not everyone who works in the capitalist economy may define work through capital, but people brought up in the capitalist economy without experiencing a societal system that doesn't encode 'capital' may have a challenging time visualizing a society that works without 'capital'. This perceptual filter (that of 'capitalism') through which "working class" people are likely to see society is likely to obscure the understanding of a society where everyone is "respected" by having their human requirements met optimally without the presence of the socio-economic requirement to work for an exchange.

People who care about the work they do will try to do it better than specification. People who are forced to do work or otherwise aren't interested in the work will generally do the work below specification (because it is easier and they don't care about the final product). Do something because it is good for you and for others, not because it is good enough.

The capitalist State is more than a collections of leaders, it is an institution with rank upon rank of underlings waiting for their chance to lead and maximize their individual profit, and it is woven it to the fabric of early 21st century society.

NOTE: Capitalists and stock holders are financial investors.

3.4.17.1 [Risk] Labor

Labor is the renting [out] your a subject's physical body in order to acquire an artificial intangible which must be used to access fulfillment services and products. Working to fulfill dictated requirements for access. Therein, a labor market is a place where people exchange and compete for exchange (buy and sell) their labor "value". Historically (in the market), a portion of that sale goes to the seller, and a portion goes to the labor market owner/judge (i.e., the State or land-lord). Then, when the laborer works, a portion of each workday goes toward the market owner, for which their is a hierarchy (the employer and then the State). The capitalist takes the surplus profit of the labor.

In part, the job of 'police' (as a labor-market position) is to keep the jurisdiction a safe place for the competing market-players to trade and do other commerce.

Note here that Adam smith also conceived of "work" as dis-utility - what someone has to sell into another's property in order to survive. Whereas, cooperative work is utility (i.e., enabling of fulfillment).

3.4.17.2 [Risk] Scarcity

It is important to state clearly that the nature of any economic structure is to manage scarcity, and generally speaking, scarcity will always exist to one degree or another regardless of any economic approach. In other words, one could argue that solar power (the sun) is a scarce resource when thought about in a "cosmic" time relationship. In an NLRBE, the goal is to employ efficiency in order to minimize "relevant" scarcity to such an extent that within the general functioning of society, no shortage of anything is noticed by the population and all needs are met. So, scarcity is indeed always within the realm of possibility, though its reality can be difficult to discern depending on the context in which it's viewed. In the market system, since scarcity is preferred by the economic structure on various levels, deciphering what our true technical potential is can be challenging.

This is not a post-scarcity system; it is a post artificial scarcity system.

Scarcity was addressed we can get rid of most of the artificial forms of scarcity that we see today and that are imposed on us by authority and competitive market conditions.

Life necessity itself and depends on producing scarcity to extract private profit, this system is a-priori structured against sufficient life goods provision for society.

3.4.17.3 [Risk] Wealth

A.k.a., Assuming wealth out of nothing.

Wealth (extant fulfillment) comes out of fulfilling relationships, whereas wealth out of nothing (ex nihilo) is a Latin phrase meaning "out of nothing", which is an encoding likely to produce discontinuity and misalignment with fulfillment (because its foundation isn't grounded by that which is extant to living organisms). Thus, 'wealth' out [fulfilling] relationships could be contrasted with "wealth" out of nothing (but mental abstraction):

Wealth out of nothing involves the encoding of:

1. The market-based definition

A. Wealth is material accumulation out of <u>nothing</u>, but, the abstract intangible mental construct called "debt" and its common operational named encoding, "currency" or "money" (transactional relationships also seen as use in exchange value, and one of its institutional operationalizations is Advertising (also, from the less dystopic to the very dystopic named categories: Marketing, Social Engineering, Cultural Engineering/Conditioning, Mental Programming, Ministry of Truth and Propaganda).

2. The State-based definitions

A. Wealth is material accumulation out of nothing, but, the belief that to exist one must control another through causing suffering, providing reward, or secrecy all of which are disturbed mental strategies that increase entropy humankind's commonly communicated information system, making it more difficult to fulfill the requirements of actual living systems. B. <u>Wealth is power out of nothing but through</u> force (power-over-other relationships) or coercion (rewarding with access and secrecy).

Wealth out of real [cooperative] relationships:

- 1. Wealth is material resources and the operative ability to use them for the creation and regeneration of life fulfilling relationships (toward ever greater life fulfillment, and together, life capacity). *Can there be wealth if there is no access and ability to construct therein?*
- 2. Wealth is fulfilling human relationships with one another, and with a deeper and universal, environmental nature. *Can there be wealth if there is no significance to human relationships?*
- 3. Wealth is sustainable and abundant outputs of life serving ecological processes (common heritage) that access [to services] common to all individuals in relationship, and are [in part] coordinated by humankind (within a network of integrated city systems) to serve the processes required to generate and sustain fulfilling human relationships amongst one another, and with a natural[ly wild] ecology. *Can there be wealth if there is no certainty of access to resources, services and products required for human survival and flourishing?*
- 4. Wealth is an active deep sense of emotive connection, by recognition of similarity and universal nature, as experienced by each individual for the other in a common[ly thought responsive] and shared environment. Can there be wealth if there is no emotion connection experienced by the individual encoding the concept?
- 5. Wealth is a measure of what one individual in the population has access to compared to any other individual (i.e., lack of, access to resources and services for, desired fulfillment). *Can there be wealth if it is only measured against a state of lack?*

In a society where emergence is recognized a principle of the societal system, there can be no [structurally encoded] ability to accumulate "wealth" as material resources [at the expense of another]. Instead, 'wealth' is viewed as a common heritage, wherein one individual's 'wealth' is everyone's wealth (cooperative ephemeralization). A societal system that advocates for individual accumulation of "wealth" must have power structures, and those structures can be abused, will be abused.

DEFINITION: 'Relative wealth' refers to how individuals compare to each other in concern to access to potential (but not recognized) fulfillment services. 'Absolute wealth' refers to how much access every individual has. The term, relative wealth, refers to how every individual compares to the other in access to all available services and potentially available services.

3.4.17.4 [Risk] Irrational demands

There is a risk during the transition phase (and also each individual's orientation phase) that objective need weightings (for demand) may fluctuate irrationally as a result of intentional, as well as unconscious, manipulation by individuals due to their own fluctuating value orientations (from the past market-State to community values).

Irrational demands include demands for systems that meet needs that are not rational, given a set of objectives. For example, the inaccurate association of freedom with ownership of a car, when in a given population density, that which would be experienced as most freeing would be some other system of transportation, and not the ownership of a car.

3.4.17.5 [Risk] Authority

Somebody who believes that using the power of government (and its enforcement sub-structure, law enforcement) to address problems in society (e.g., drug abuse), even if they are well intentioned and operating from a sense of personal honor and morals, and they are in no ostensible way crooked, they are nevertheless doing enormous damage. Government (with the core function to monopolize violence) should not be used to victimize (structurally or otherwise) people for someone else's benefit. There should never be a lack of skepticism of authority, since the only true authority to a selfintegrating human being is self-verification.

3.4.17.6 [Risk] Democracy

'Democratic' societies can tend toward mistaking involvement for participation. They seem to think that, because they get to vote, that they are involved in government, when, all the while, someone else gets to choose (or, at the very least, significantly influence) who gets to run, what they can do when they get into office, and whether they can get re-elected. Socioeconomic status should not be a deciding factor in the volume of one's voice in a society- the strength of one's ideas should. Citizens should be able to participate in the solutionmaking business, not just delegate their power to a representative that then becomes part of a professional political class that has so much stake in the system that they can't afford to change (or fix!) it. Further, on the voting end, weighing in on issues one knows nothing about is detrimental - most organizations know this, but apparently we throw this idea out the window when it comes to governance! This turns legitimate issues into shouting matches and popularity contests.

The democratic perception mistakes participation for representation and contribution for employment.

Adopt one side or the other in sustained elaboration of the one or the other position in decisioning, frequently leads to an ignoring of the common life-ground that lifevalue that all understanding begins with - that is, that life is good, and is better the more coherently inclusive its life-fields and ranges in thought, felt being, and action.

Here they incorporate in their unity opposing life values only by conceptually constructed reification of a non-person as a person—a metaphysical inversion that has oppressed the world at different levels.

What is morally deranged is that the rights of nonpersons and their interests override the life interests of real persons in the name of life. The life-value onto-ethic recognizes the disorder, and grounds in human life as coherently conceived.

Instituted exclusion of the common life ground and interest follows logically from the atomic division of interests into competing rights in automaton selfmaximization—the life-blind value syntax of the age.

Slogans of "individual and consumer differences and choice" and "what is a need to some is a want to others," the absence of any ground of understanding of humanity's ultimate directive meaning defines the age. Postmodern, relativist and sceptical theories of all kinds explicitly or tacitly refuse to accept any universal good or necessity at all.

In the background, for over 2500 years philosophers have largely avoided the issue of universal life needs and any common life-ground of moral meaning. Economists in particular have systematically conflated needs and desires with no recognition of their ultimate distinction by life necessity itself.

Some societies recognize the life ground and human needs as an alternative, and just select differently, and others do not even recognize an alternative to their nonlife-grounded approach.

Humanity has been a long time without its most basic life-value bearings:

- The reigning economic theory everywhere since Adam Smith has confused necessity with market demand.
- In Anglo-American justice theory as well as economics and studied philosophy in general, no standard of life need ever arises. The concept in principled form might as well be outlawed.
- John Rawls' famous "primary goods," for example, is decoupled from life needs altogether. Rawls also claims that their elders must choose for youngers.
- The socially constructed conception of money "income", profit, debt, substitutes for human need and necessity, even in the twentieth century's reputedly leading work on "social justice".
- A political economy, expressed through capitalistsystem mechanics with no ground of meaning in life necessity itself.
 - The capitalist narrative (story) of the private market's invisible hand necessitating the best of all possible results or "optimal" social welfare may be the prototype of the life-blind logic of

rule.

 The statement by Karl Marx, "from each according to one's ability, to each according to one's needs" (i.e., the from-each/to-each principle) has three main problems that preclude it from providing an appropriate solution. Firstly, the concept of "needs" remains without definition and boundary. Second, the "ability" expected from each is not grounded in life. And third, there is no principled linkage between needs and abilities to ensure the coherence of their realization.

Why would people so conditioned become an oppositely-structured force against their conditioning? Without life values regulating steering productive forces, the outcomes are not magically arranged by an invisible hand or dialectical laws to be optimal.

NOTE: Whatever doctrine is believed, only lifecoherent technological development can resolve the problem in principle, and that requires regulating life standards at both human and ecological levels.

In part, there is a pathological block against the lifevalue meaning of needs in early 21st century society. It is essential to be able to distinguish between vital human need and an extinguishable attachment (most well described by Vedanta and Zen Buddhism).

Unsatisfied life needs are left as a problem of the lower classes, while the decorum of the rich gives the illusion they are above them. The labour of appearances takes their place.

To resolve the marketing of life toward human fulfillment, one must be able to distinguish between:

- Human fulfillment (necessity and development) and market demand: Some societal systems do not encode (or do not encode effectively) a standard [criterion] of life need (human fulfillment). Therein, some socio-decisioning systems may even "outlaw", actual need fulfillment (given the circumstances). For example, money ("income") substitutes for human needs.
- A [vital] human need and a belief (an extinguishable attachment):
 - Are unsatisfied life needs are left as a problem of the lower classes (i.e., less accessible socioeconomic categories), while the solutions of the rich give the illusion they (the rich) are above them?
 - Confucianism prioritizes propriety to superiors over the life needs of anyone. Authority-based (i.e., power-over-other) relationships -versus- the bonding and cultivating of fulfilling human and ecological relationships (i.e., community).

The great exceptions to those who do not distinguish is,

• Lao Tzu and the recorded Jesus from the Euro-Asia continent, speak of "feeding the hungry, clothing the naked, and giving shelter to the homeless."

Certain societal configurations generate a pathological mental block against socially deciding a materialized life of ever greater potential. To fulfill society, an economic system must integrate and comprehend the production and distribution of otherwise scarce resource into services and goods for humankind to develop fully, which requires the distinction and correct selection (for encoding) between life fulfillment ("goods") and less than life fulfillment ("bads").

3.4.18 [Risk] Assuming the right to protection

Once you show something that is information to the world, it's not "yours" [to control the access of] anymore. In other words, once others have seen it, it is not your right, privilege, or anything else to restrict others use or modification or evolution of that information.

Rights, in the context of the State, are not objective values. Rights are requests, demands, instructions to government as to when and where to use violence. Consider, for example, the human right to clean water, and thus, a corresponding obligation to provide for it at both social and individual levels; and if it is not provided for, then to use force to provide it. Private rights to exclude all others from whatever is held through government force.

3.4.18.1 [Risk] Privacy

Why would a society not want information about a disease shared both transparently and globally?

In large part, market entities do not want the population sharing, because sharing induces the condition of abundance, which reduces commercialization and profits.

QUESTIONS: Who has the freedom to restrict the freedom of others? Who wants the freedom to restrict the freedom of others? Who would act upon the freedom to restrict the freedom of others?

3.4.18.2 [Risk] Copyright and open source

The socio-economic organization that holds the proposed societal system together is open at its source to inspect and update, otherwise it does not meet the criteria for the proposed type.

Thus, someone else (or, a market organization) could go and post this plan on their website; it doesn't matter to us (or anyone), because it is a distribution (which is desirable) - this is a societal level operating system that is being proposed, and thus, its distribution is by definition to be societal at scale.

It would of course be optimal to distribute the source

of the code (the drawings, the information system) from one source, centrally, but in the market (competition and not global cooperation), and given what is known as technically possible at the moment (parallel processing, and not quantum), then distributed processing is the eventual optimum (as 'dispersion' and 'convection' lead to optimal expression of molecules through a bounded medium). And if they made adaptations, then we use those adaptations, for we, internally are not participating global competition, but global cooperation. in Remember, we have technically and informationally had the opportunity to live without money and in optimal, global technologically-automotive fulfillment, since something like at the earliest, the 1919's with the founding of "a small group of people without great influence" known as the Technical Alliance. Around the same time Thorstein Veblen produced the book "The Engineers and the Price System" describing more of the real world, extant problem, widening the inquiry into a human societal-level, global fulfillment "access" system. Of course, the efficiency value came into greater clarity in 1932 with Betrand Russel wrote "in praise of idleness". The technocracy market-State-based organization called "Technocracy Inc. was formed to redirect society individual and State actors toward implementing the equivalent of "credits" for an equal part in everything that which is optimally produced, given what they knew, and then moving to fully optimized toward human fulfillment (or equivalent) and technical automation (where desired; Read: a fully automated, "steady"-state economy. In 1962, the State of Russia attempted the Russian All-State Automated System as the first market-State integration of economic automated management system (i.e., the first open source unified information-social>economic planning system). The systems designers proposed moving the whole Soviet system as into a moneyless socially-environmental condition.

Here, it must be asked what the purpose and function of 'automation' is among society. A highly marketoriented statement, in consideration of automation, might be, "Well, if we are going to take away people's employment in this domain, then we have to at least make them participants in the value creation in some other domain [of the market]." In other words, even though automation is automating away the human labor required for one segment of the total market, workers must find labor employment elsewhere.

3.4.18.3 [Risk] Financial risks to open source projects

Open source revenue models are scant and will eventually fail when their niche market grows with suppliers. And so, the government steps in and says we need to give everyone a basic income.

Free systems are recursively free. It doesn't matter who owns the "rights"; a free system can be used and changed freely, the only requirement is that when it is changed, that initial requirement is sustained and the system cam be used and changed freely (because, the same "rights" are given). In such a system, the same rights a developer gives are the same rights all other developers give also. No individual has more rights than anyone else to an free system.

3.4.19 [Risk] Assuming fear, uncertainty, and doubt (FUD)

A.k.a., Lack of trust, and of knowledge, of self.

Fear, uncertainty, and doubt (FUD) naturally emerges from humanity's nature; they are survival characteristics of organisms in an uncertain life environment. When working together, the result of fear, uncertainty (high), and doubt (high) is less efficiency and effectiveness, and more probability of conflict. FUD can arise in various ways, depending upon a person's life experiences.

3.4.19.1 [Risk] Fear of technology

Humans have tasks to carry out most days, including eating, move around, working, and communicating. Some of these tasks individual humans are able to do without the help of machines. Among society, however, there are a significant number of tasks that humans are only able to compete by using machines. In this sense, the tasks that machines carry out are human tasks and not machine task. Machines do not have to be designed to carry out tasks for their own sake. Machines intentionally designed by humans for human benefit will carry out human tasks, as extensions of humankind.

Computers will eventually take over mundane technical computational tasks that previously would have required an engineering expert, such that users can easily determine optimal technical solutions (given what is known) and a direction of issue inquiry.

There is no human need to make AI (general artificial intelligence, algorithmic decision support) alive. It is likely that, eventually, AI will take over portions of decisioning operation(s) for the Habitat Service System.

It has happened in the past, and is still possible today, for laborers in a market to see advances in technology as competing with them for labor market share.

3.4.19.2 [Risk] Fear of continuous data collection

A continuous information system means continuous data collection. Constant data collection via users and sensors can make life and habitat services smoother, for everything from transit to garbage. However, nonstop data looks a lot like tracking and surveillance—opening big questions about privacy, control, and authority. The "smarter" a city is, the easier it is to manage well—from streets pre-built for automated transport, to a self-sorting trash stream, to lawn chairs or whole activity areas that can tell you if they're free (i.e., occupied).

3.4.19.3 [Risk] Fear of lack of contribution

QUESTION: *Do not all healthy members of society wish to contribute in whatever way is appropriate.*

There is a fear that people will not contribute. When artificial cooperation limitations (trade-relationships and non-automation) is reduced among a group through a common access model that identifies all aspects of human need fulfillment, then that fear that individuals will not contribute is perceptible as being unfounded, and becomes increasingly so over time given our level of progress to date. We are visualizing together, cooperation in a common direction, oriented by our common values that guide our experience of a common environment, refined to a set of standards specifications that determine the next iteration of the society, as one societal systems model.

Significant technical advances (e.g., in computation and automation) may enable enormous personal freedom and a release from the necessity to have to physically work at anything. However, societies do not thrive on being purposeless.

With all this automation, what will we do? We have the opportunity to live life to its fullest, together in peace. As you largely know, algorithms and robotics will be putting a lot of people out of jobs... There are many societal progressions, among them a universal societal wage, from the government, or this proposed societal system configuration. There is a disruption that happens when societal systems reconfigure (peaceful, or not). In the material environment, and through sociodecisioning, "we" determine which "jobs" are best for us as individuals, now.

APHORISM: If you spend more of your time noticing what you actually are, you will rediscover what you are creating. At that same moment, you will be able to choose what you are creating. Try not to get lost in fantasies in the process. But, you will be at least pauses the fantasies.

3.4.19.4 [Risk] Fear of loss of choice

A cooperatively organized habitat service system is a necessity of [a healthy and well] sociological life, and it admits endless degrees of choice within its objective principle of human determined fulfillment. Whether recognized or not, the objective criterion of life-value always remains a constant, and so too the life-value ground of values (i.e., "rights") and [social] justice.

NOTE: *People go from denial to despair very quickly. When this is possible, the best approach is what is achievable, and not what the current problems are.*

3.4.19.5 [Risk] Fear of homogenization

It is possible to have plenty of different opinions on subjective matters, but little difference on objective factual matters. In principle, and over long generations of time, this could dilute everyone's individuality. To retain their individuality, members of society may make a conscious effort to exert their unique differences, especially in becoming the most capable and compassionate human they could be.

NOTE: The idea of social homogenization is also discussed in the overview.

3.4.19.6 [Risk] Fear over the loss of competition altogether

Competition is a struggle for success, the outcome of which is uncertain; and, it can be very entertaining for an individual. Pleasure and growth may be found in the adoption of a structure of mutual limitation (i.e., in competition). It is possible to compete with one another for entertainment, while remaining in the central directional goal (principle) of advancing every individual as the common good. In other words, while a healthy society is organized together cooperatively (core value), a healthy society may also entertain itself through individual and group competition (entertainment value). Determining life-relevant (survival) solutions, together, is a lot easier when there is a cooperative [common] model for decisioning and coordinating action.

NOTE: The values of 'cooperation' and 'competition' are significantly addressed in the Social System Specification; while, they are addressed to a lesser extent in all other societal specifications. They are addressed in all societal specifications, because they are the proposed society's core value of 'cooperation', and its [value circumflex] opposite, 'competition'. While 'cooperation' is applied to organize all of society, 'competition' is a[n artificially limited conditional] type of recreation.

3.4.19.7 [Risk] Fear of negativity

Fear of perceiving the "negativity" can dull the optimal resolution of conflict, and more fundamentally, human societal organization. When designing material environments it is essential to perceive the who situation so that data calculations are optimal. More simply, for consciousness, in the design of its material socio-technical environment, it is essential to know what it humanity "deal" with it (i.e., to know knowledge of the situation so as to take an optimally unified and integrated next decision.

3.4.19.8 [Risk] Materialism

There is a risk that some who advocate this direction only perceive the material, technological side of the system and ignore, or otherwise, disregard the design of its information base. Since any society, and all of its materializations, are first and foremost information, the ignoring of this fact could lead to gaps in its materialization.

3.4.19.9 [Risk] Resource guarding

What we need must be available and accessible to all otherwise "resource guarding" (a.k.a., "possessive aggression") behavior is likely to occur. "Resource guarding" is behavior that discourages another to take, or get too close to, an object or valued area in an animals possession (Read: current access). Resource guarding is the defensive/aggressive desire to maintain access to something, and it is often accompanied by the thought that what is wanted will be taken (or, threatened). Usually, the target of desire refers to food, personal objects, or sleeping areas, but it may also apply to selfego, as well as other animals, such as guarding loved ones (Read: protectiveness). Resource guarding is a well understood behavior trait in other animals. In dogs, it can range from a quiet head turn and stare to a deafening growl (signals), forward charge or an actual bite. We stop resource guarding behavior by ensuring that there is sufficient visibility to all resources, and by maintaining access to all that is needed, wanted, and preferred. In other words, we change behavior by changing the environment to one of visibility/transparency and availability/access. In community, when others modify the design of the environmental "living" system, then good things will happen (because alignment with fulfillment is structurally maintained), and so, no one needs to be "possessive". Note that animal behaviorists condition resource guarding behavior out of an animal through "treating and training". In community, we don't "treat and train" other humans; instead, we modify the environment so that the known behavior, which arises due to environmental conditions, is unlikely to be present. It is important to recognize here that there is a difference in "training and treating" the desire/ability to fend for one's needs (i.e., the behaviorist approach to possessive aggression) versus shifting the environment so that we are all fulfilled and we don't lose the ability/ desire to sense that which we need. By treating and training an animal can become disconnected from sensing that which it needs to survive and thrive (i.e., becoming "domesticated"). And finally, trading (i.e., "I want that which you have, what do you want for it?") is not a sufficient environmental change to produce the abundance in visibility and access required to reduce resource guarding behavior. Certainly, it is a more complex form of behaviorism, but it does not sufficiently restructure the core environmental. And in fact, trading (i.e., the establishment of a "market") generates a number of downstream negative consequences, such as "competitive advantage" thinking an behavior (e.g., concealing information and information manipulation). In community, we remain aware of the environment in which behaviors are expressed. In behaviorism, "shaping" is the reinforcement of successive approximations of an extrinsically desired behavior. By "shaping" an individual organism through behavior modification techniques (to create to a desired behavior) we may be missing out on real fulfillment through re-shaping the real world environment.

4 [Plan] Risk coordination and control

A.k.a., Negative coordination and control, risk management, plan risk management, disaster recovery, business continuity, disaster recovery.

Risk coordination is an organizational (e.g., business, societal) process that all projects must undergo to protect their objectives from threats and facilitate actualization of opportunities to ease the efficiency and/ or effectiveness of achieving objectives.

Plan risk coordination is identical in naming for both project coordination (project management) and systems engineering. Both information sets define the risk method/strategy for determining how to conduct risk activities.

There are engineering technical risks, as well as project coordination ("oversight of the technical") risks [as all disciplines are critical to the participation in risks operations & maintenance.

The idea of 'risk' exists in a relationship between project management, systems engineering, and a dynamic environment:

- The SEHBK suggests Analyze Risks includes "identification and definition of risk situations", which equates to the PMBoK Identify Risks.
- The PMBoK's Identify Risks and Plan Risk Responses equate to the SEHBK, "Define a treatment scheme and resources for each risk...", and is included in the SEHBK Analyze Risks activities.
- The SEHBK adds an iteration activity, Evaluate the Risk Management Process; which should be true of all processes and activities.

To plan for risks requires to following procedure:

- 1. Identify what could go wrong (i.e., get the list of risks).
- 2. Assign likelihood and impact to each risk.
- 3. Develop mitigation techniques for risks.
- 4. Quantify impact of active mitigation techniques and responses.
- 5. Qualify mitigation solution.

risks become issues to respond to once they actually occur. A risk list (risk register):

- 1. Records identified risks with a reference number for each risk.
 - A. Describes the risk
 - A. Links to a team or working group accountability for each risk
- 2. Identifies the likely severity of impact of each risk (likelihood).

- 3. Identifies the probability of occurrence of each risk (probability).
- 4. Identifies mitigation activities.
 - A. Identify requirements for each mitigation activity.
 - B. Identify probability of occurrence with each mitigation activity.
- 5. Identifies response procedures should the risk occur.
 - A. Identify requirements for each response activity.
 - B. Identify estimate of recoverability after each active response activity.

A complete risk plan includes mitigation activities and response procedures for each risk.

4.1 Plan for risk

A risk is uncertainty that affects objectives. In general, risk includes both opportunities and threats. The PMBok (2013) definition of risk makes this most clear with the words, "positive or negative effect on an objective". In common parlance, however, the term risk is generally intended to mean a negatively impactful probability. Uncertainties can affect the achievement of a project's objectives either positively or negatively. Often, the term, "risk event" is applied to both uncertainties that could hinder the project (threats, negative impacts) and uncertainties that could help the project (opportunities, positive impacts). A risk is an unplanned event that could result in harm or benefit; what unplanned event could happen that would result in harm or benefit? Risk involves future events/things that may not happen, but if they do happen, they would effect an objective. Risks matter because the effect the objectives. Risk could be viewed as uncertainty on the achievement of objectives. Risk-taking is the process of accepting risk.

Planning for risk involves thinking and acting to reduce the likelihood of harm preventative and in the case a risk incident occurs. One way to reduce risk is to increase the margin of safety. For example, having a store of some product provides a margin of safety in case the production of that product fails for some reason.

There are two core dimensions to risk:

- 1. Uncertainty
 - In a project, this is called **probability**.
- 2. Effect on objectives
 - In a project, this is called impact (consequence).

Risks are uncertain 'events' or 'conditions'. Risk connects uncertainty with objectives. Uncertainty must always be connected with objectives in order to find the risks. Risk does not mean the same thing as uncertainty. All risks are uncertain, but not all uncertainties are risks. There are some uncertainties that are not risks, such that not every uncertainty in the world will be added to a risk list (or risk register). Risk is a subset of uncertainty that someone (or some population) deem of sufficient importance that they must take preparedness or mitigatory action on. More simplistically, risk is uncertainty that matters, and that likely some action may or will need to be taken upon, often, to prevent a negative impact (result or response).

In any practical dynamic environment, risks may be identified and added to a risks list, but risks are also emergent such that new risks may occur and old risks may no longer be risks. Knowable risks are exposed and listed. Risks are negative deviations from expected; wherein, an effect is a deviation from the expected positive and/or negative. (ISO 31000:2009)

ISO 31000:2009 defines risk as:

• *Risk is the effect of uncertainty on objectives.*

Association for Project Management (APM, UK) Body of Knowledge, 2012 defines risk as:

 Risk is an uncertain event or set of circumstances that, should it occur, will have an effect on achievement of objectives. [risk is uncertainty that matters]

Project Management (PMBoK) Body of Knowledge, 2013, defines risk as:

• An uncertain event or condition that, if it occurs, has positive or negative effect an objective.

Significant risk (as, risk to objectives) determination questions include:

- 1. Which objective would be affected if this thing happened?
- 2. How uncertain is it?
- 3. How much does it matter?
- All three combined determine how significant a risk is.

Fundamentally, there are two types of risk-based impacts, as assessed against objectives, that matter (and should be identified and addressed):

- 1. <u>Uncertainties that could hurt</u> the project.
 - Uncertain changes or events that could harm; threats. Bad risks.
 - In navigation, look out for, avoid, prevent, and protect against traps. What could cause us to deviate from a track or course?
- 2. Uncertainties that could help the project.
 - Uncertain changes or events that could be of benefit; opportunities. Good risks.
 - In navigation, look out for, seek, and proactively make happen efficiencies and opportunities.
 What could help us stay on track or on course?

There are events that could happen that could be good, and there are events that happen that could be bad, and both need to be proactively identified and addressed. Events that could hurt need to be prepared for and mitigated against. Simultaneously, events that could help need to be identified and action taken to make them happen. Note that this is equally true in the personal lives of humans as it is at the societal level.

When designing systems, there are three principal design objectives that account for risk:

- The potential to negate optimal re-solution of the design's requirements (i.e., the design requirements of the human fulfillment system).
- The potential to hurt a human or fulfillment system.
- The potential to cause an accident, and thus, unnecessary problems in, a human fulfillment system.

NOTE: For every assumption, there is a corresponding constraint (i.e., probability for a problem). Similarly, for every lack of definition in an argument there is the probable creation of a space for additional error.

4.1.1 The composition of an risk entry

A risk entry is most useful when it is contained within a structured description that separates cause, risk, and effect.

Risk can be described in three stages (Read: salient categories of meaning in relation to the achievement of a goal):

As a result of <existing condition>, uncertain event> may occur, which would lead to <affect condition> on objectives.

Simplified view of the three stages:

- 1. As a result of <some cause>, then
 - A. a <risk> may occur, which would
 - 1. <affect> an objective.

4.1.2 Semantic temporality

In the English language, there are words that can be used in communication to identify the different stages or parts of a risk entry (linguistics):

- 1. Definite words to describe facts (to describe the present condition; existing condition).
 - Is, do, has, has not ...
- 2. Uncertain words to describe the risk (to describe the <u>uncertain future; uncertain event</u>).
 - May, might, possibly, ...

- 3. Conditional words that say, this would follow if the risk occurred (to describe the <u>conditional future;</u> <u>effect</u>).
 - Would, could ...

4.1.3 The structure of a risk

A risk-based information set contains information on:

- Risks have an individual basis:
 - Their likelihood of occurrence.
 - Their likelihood of impact (on all objectives).

4.1.4 Population risk types: Personal and social risk

One challenge faced by any society is when one segment of the population does not experience a problem that another segment does experience. In more individualistic societies, when one segment of the population does not experience a problem that another segment does experience, potentially, the segment of the population that does not experience the problem will not perceive social risk, and individuals therein are likely to govern their behavior only based on what they perceive their personal risk to be (i.e., they will only perceive personal risk and ignore social risk). Alternatively, individuals in a holistic society (and not individualistic society) think in terms of social risk as well as personal risk. For instance, a younger individual in an individualistic society could be generally healthy and not concerned about their personal risk after acquiring symptoms of a viral infection. This person may feel well enough to go to their job where there co-workers are present. This person may shake hands with an older colleague who has a chronic medical condition, who may become infected by the virus carried by the young co-worker who felt well enough to go to work. In such a case, the young co-worker could be responsible for that colleagues death.

In a healthy and cooperative society, it is wise for all individuals to think about their responsibility to each other when deciding their behavior. Society at large should not be thought about in terms of individuals' personal risk; instead, individuals should act collectively in a cooperative manner to reduce societal-level risks.

4.1.5 Negative deviation: Negative risks

A.k.a., Threats, detriments, losses, negatives.

In its negative context, a risk is a situation and probability involving exposure to danger (Read: harm, injury, loss, suffering, etc.), or any other negative occurrence that is caused by external or internal environment, and that may be avoided through pre-emptive action (Read: through controls on preparedness, operations, and responses). For any intentionally living system, in an uncertain environment, there is the conception of risk. In the real world, for a social populations, there are a multitude of risks. To navigate safely together, risks must be identified, prepared for, and mitigated against (i.e., protected against the danger or reduce/eliminate the danger). A negative risk is the likelihood that a loss will occur.

In the context of negative impacts, risks are potential events that could happen during the course of a project, that if they happened, they could (note: these are effects, not risks):

- 1. Kill or injure
- 2. Lose resources, assets, or access
- 3. Waste time
- 4. Waste effort and energy
- 5. Damage reputation
- 6. Damage natural ecological cycles
- 7. Harm performance
- 8. Waste money (market-State only)

There are many types of negative risks, including but not limited to:

- 1. Human life risks
- 2. Project risks
- 3. Personnel risks
- 4. Operational risks
- 5. Technical risks
- 6. Social risks
- 7. Environmental risks
- 8. Ecological risks
- 9. Financial/business risks (market-State only)

4.1.6 Not a risk (non-risk)

Items that are certain and do not belong in a risk list include, because they are certain (and not uncertain):

- 1. Problems a problem has been identified (and there are solutions to resolve the problem).
- Issues an issue has been acknowledge (and a process is engaged to resolve it). Issues require resolution. Issues have occurred or will imminently occur. A negative event can turn into an issue.
- 3. Constraints a known limitation placed on a project/system.
- 4. Requirements a known expectation from a project/system.

Risks are neither causes nor effects. However, it is easy to confuse risk with non-risk, especially cause or effect. There is a real-world, dynamic system in which risk occurs:

 Cause (fact) - causes are not risks because they are occurring now. Causes are facts, issues, problems. Causes are not risks, because they are not uncertain.

• Something true today.

2. Risk (uncertainty)

• Something that may, or may not, happen

- 3. Effect (possible result) If the risk has occurred, then it is an effect.
 - Why something matters to the objective.

It is most useful when risk descriptions have a description of not only the risk, but also cause and effect.

4.2 [Plan] Risk coordination process

A.k.a. The risk management process.

The risk process may be simplified to:

- 1. Identify objectives.
- 2. Identify uncertainties that matter to objectives.
 - A. Include in the identification threats, negative uncertainties.
 - B. Include in the identification opportunities, positive uncertainties.
- 3. Prioritize the risks by asking, How uncertain? How much would it matter?
 - A. What are the worst threats?
 - B. What are the best opportunities?
- 4. Identify (or construct) responses appropriate to each risk.
 - A. What can be done to stop threats, or continue and recover if threat occurs?
 - B. What can be done to cause an opportunity to be actualized.
- 5. Execute the response.
 - A. Preparedness and pro-active action for opportunities.
 - B. Preparedness, mitigation, and operational actions for threat event.
- 6. Risk control.
 - A. Monitor the results of all actions.
 - B. Review for new risks, and repeat.

The most significant risk process questions that can be used for any project (or even any decision) include:

- 1. What are we trying to achieve?
 - Set objectives.
- 2. What could affect us achieving it?
 - · Identifying risks.
- 3. Which are the most important risks on the list?Assess and prioritize risks.
- 4. What can be done about the risks?
 - Planning responses.
- 5. When should it be done?
 - Schedule responses and update cycle.
- 6. Did it work, and what has changed?

4.2.1 Organizational planning for risks

Systems engineering coordinates ("manages") technical risks within a project[-based structure].

At the project-level, the principal risk is (managing organizational risk):

• Delivering a system (Read: new system state) that does not meet organizational, orientational standards.

A the engineering-level, the principal risk is (managing technical risk):

• Delivering a system that does, or does not, meet user requirements.

In practice, a risk coordination and control system (team or working group) should account for threats and opportunities together in a single unified process, because they are both uncertainties that matter. Both threats and opportunities are types of events that may or may not happen that are likely to impact the objective. Both threats and opportunities can both be accounted for and pro-actively acted upon.

4.2.2 The risk plan (information set)

What might go wrong with the plan, and how to limit that risk with contingency planning:

- 1. Description of problem (risk)
- 2. Probability and impact of risk
- 3. Workaround of problem
- 4. Scope of contingency

System safety is the accounting for observations that accidents can result "from dysfunctional interactions among system components" (e.g., bottlenecking to incident, or overshooting carrying capacity).

System 'safety' is influenced not only by the reliability and failure behavior of various subsystems and components, but also by the nature of interactions between these components, as well as their interactions with external factors (i.e., environmental conditions).

- Safety includes human-caused incidents.
- Safety includes environmentally-caused incidents.

4.2.3 Risk resolution coordination

The coordinated resolution of probable risk entails the analysis of risk as an information process, and the mitigation of risk as a [engineered] construction process.

Risk coordination control (risk management) refers to systematically addressing risk throughout the life cycle of a system, product, or service. Project risk coordination (management) includes the processes of conducting risk coordination planning, identification, analysis, response planning, and controlling risk on a project.

4.2.3.10 Taking proactive action as opposed to being forced to rely on reaction

In common definition:

- Pro-active action refers to a complex of interactions, including but not limited to planning and monitoring in order to reduce the probability of negative consequences (i.e., reduce the likelihood or results being mis-aligned with objectives).
- Reactive action refers to responding to a consequence without planning.

For example, the athlete gets hurt before they need "therapy", versus providing "therapy" during the athletics life cycle so they are less likely to get hurt in the future.

In a world where supermarkets are food carnivals (falsely flavored and highly palatable foods and foodlike substances), filled with biologically "addictive" combinations, then the socio-economic reality is that decisions and behavior are not solved solely by personal choice, but they also necessitate as part of the solution, modifying the food environment (i.e., fixing the food environment so that it doesn't seemingly "naturally" in close proximity and access these foods, and move through environments that don't "naturally" drive individual organisms to).

Indicators and pro-active versus reactive action

Lagging indicators are used to evaluate current conditions. In order to act pro-actively, it is necessary to explore future projections in order to better guide an organization toward greater success at, or achievement of, a goal. Leading indicators give an organization the [informed] ability to think and act pro-actively, instead of reactively, which can reduce the time required to meet the goal, and in the market "save" money.

4.3 [Plan] Organizational exposure

Tracking organizational exposure through an assessment tool helps in understanding a project's exposure to a risk. The following assessment aims to support decisioning and is a definitional tool, no an explanatory one.

Table 42. <u>Execution > Risk</u>: Exposure assessment including statements about aspects that may be directly or indirectly impacted by a risk.

#	Organizational exposure	Disagree (0); Neutral (2); Agree (4); Strongly Agree (5)
1	The country and regional exposure to the understandings and operation of a community-type society.	
2	The organization operates in a country or region that is not of the societal type, community.	

#	Organizational exposure	Disagree (0); Neutral (2); Agree (4); Strongly Agree (5)
3	The organization operates a societal interface.	
4	The organization is facing challenges regarding access to resources.	
5	The organization contributors are pessimist about the impact of an event.	
6	The organization is based or has a strong presence in production of required resources.	
7	The event will cause an unrecoverable loss.	
8	The long-term organization can be directly and negatively impacted by the event in socio-technical (micro- and macro-economic) factors.	
9	The work is located in an environment that is not of the societal type, community.	
10	The project or initiative has a large number of people working in the same location.	
11	The project or initiative has a strong need for human interaction.	
12	There will be a large negative impact if the work is reduced or ceased.	
13	Disruption to the supply chain will have a severe impact on the development of the work.	
14	The initiative or project is heavily dependent on an external societal supply chain.	
15	A member of the team is incapacitated.	
-	If combined numerical result is low, then there is low risk; if middle, then moderate risk; if high, then high risk: [1] If the assessed risk is low, then continue monitoring the situation and re-evaluate if results change. [2] If the risk is moderate, take moderate action. [3] If the risk is high, take rapid action.	Combined numerical result from calculating: count x weight (of each statement)

- A harm reduction approach acknowledges that laws/protocols may be broken, and this can be tolerated in favor or reducing risk and increasing safety.
- Risk review board (a.k.a., ethics review board, ERB)
 when is an action decidedly available (i.e., "OK")
 that risks psychological and/or physical harm [in
 the name of science and social safety).

4.4 [Plan] Risk mitigation and remediation

Risk mitigation planning is the process of developing options and actions to enhance opportunities and reduce threats to project objectives. Risk mitigation implementation is the process of executing risk mitigation actions. Risk mitigation progress monitoring includes:

- 1. Tracking identified risks.
- 2. Identifying new risks.
- 3. Evaluating risk process effectiveness throughout the project.

4.4.3.1 [Mitigation] Narrative role model advocacy

A.k.a., Behavioral economics.

Narrative role model advocacy is the use of a storyline in media (e.g., radio, television, film) to affect change across an entire society. A storyline, for example, may have middle of the road characters designed to represent segments of the audience and be aspirational for them, but also be very similar to them. Those characters sort out conflicting advice from the positive and negative characters one finds in all melodrama, and over many episodes they gradually evolve into positive role models for the audience, and they show the audience the benefits of the new behavior and they deal with the pushback that one gets when they try anything unusual or innovative in any society's, so they show the audience how to deal with that pushback. The storyline characters ultimately become outspoken advocates for that new behavior, thus role modeling behavioral change and advocacy for the audience population. It is possible for researchers to actually to measure changes among the audience members in self-reported interpersonal communication about the issues being addressed in the storyline. Common themes in storylines include violence against one another, human issues, and family planning. The fundamental goal is to change the perception of what is normal and/or possible.

Keltner and Piff (2010, 2014) in laboratory research have found that small psychological interventions, small changes to peoples values, small nudges in certain directions can restore levels of egalitarianism and empathy. For instance, reminding people of the benefits of cooperation or the advantages of community caused wealthier individuals to be just as egalitarian as poor people.

4.4.3.2 [Mitigation] Understanding advocacy

Achieving full interoperability of socio-technical data is both complex and fraught with pitfalls. Users of environmental data and may be uncomfortable with geodesy, geometric transforms, dynamics modeling, and logical reasoning. It is strongly thought that an adequate education is a necessary prerequisite to success in that endeavour. There has been a fair amount of misunderstanding when practitioners from different disciplines talk to each other about location, condition, and decision information.

There are also unspoken, and all but forgotten, assumptions made within specific disciplines that are opaque to non-specialists, and either result in

miscommunication or are simply no longer appropriate assumptions to make. These problems are not unique to specialists -- they are rife within the general systems engineering and resource-based economy (RBE) organizations as well.

Given these considerations, the application of interoperability, necessarily includes significant didactic material, and generally covers four major areas, as follows (which may be seen as objectives for a learning contributor):

- Concept development: This includes the reference model (RM), the scope of the reference model (RM), as well as the design criteria. It also includes the development of the concept of "pure" coordinate systems and their associated transformations from basic concepts in a database to solid and analytic geometry. Subsequently, isometric ("real world") geometry and coordinate systems are developed and extended to define the basic isometric socio-technical reference frames. Concepts associated with directions (vectors), and the corresponding orientation representations, are defined. The complexities of real-world terrain surfaces (as opposed to mathematical "smooth" approximations) are addressed.
- Conceptual reference frame specifications and formulations: This covers the complete specification of the conceptual reference model (CRM) and each of the included conceptual reference frameworks (CRFs).
- Spatial Reference Frame Specifications and Formulations: This covers the complete specification of the spatial reference model (SRM) and each of the included spatial reference frameworks (SRFs). Error specification and algorithmic development: This addresses how to define error specifications in reasoning and visualization (2D and 3D), and the development of efficient and accurate coordinate operations algorithms among the reference frameworks (RFs) included in the unified reference model (RM). Also included is a discussion of transitivity and chaining when converting between reference frameworks (RFs), which may use a sequence of operation steps rather than a single optimized direct conversion.
- **Implementation, testing and application:** This involves the reduction of the developed algorithms to efficient, accurate, portable implementations that maintain the stated operation accuracies and performance. The methods used to test and verify the implementations are developed, and the results of extensive testing, are presented and reviewed. The information and material interface specification is defined, and guidelines for its use

are documented.

4.5 [Plan] Risk response

NOTE: *Ignorance exist in contrast to planning for risks.*

When mitigation isn't successful, then response occurs. In order to most effectively respond to risks, a series of planned questions must be asked and answered:

- 1. What should be done, based on?
 - A. Type and nature of risk
 - B. Controllability
 - C. Impact severity
 - D. Resource availability
 - E. Efficiency/cost-effectiveness
- 2. Who, when, where, and with what tools, should it be done.

The most common categories of response to negative risks (i.e., threats) include:

- 1. Eliminate uncertainty eliminate risk, kill risk, avoid risk. Note: by avoiding one risk, the solution may lead to the exposure to other risks.
 - An avoid strategy.
- 2. Reduce uncertainty reduce risk to acceptable/ controllable levels; reduce the impact or exposure of the risk; mitigate the risk. Reduce risks by reducing probability and/or impact.
 - A reduce strategy.
- 3. Transfer responsibility, liability, ownership give risk to another entity. Have an outside authority handle the risk for you. (e.g., use anti-virus software on a software operating system, use insurance use insurance; note that the presence of this type of risk is indicative of poor/non-optimal design). The asset is still being protected, it's just that you are not the one doing it.

• A transfer strategy.

- 4. Accept residual risk accept the risk and control it as best as possible.
 - An accept strategy.
- 5. Ignore risk do nothing.
 - An ignoring strategy.

The most common categories of response to positive risks (i.e., opportunities) include:

- 1. Cause the opportunity to happen. Exploit some connection.
- 2. Share responsibility for making some event happen with another or others.
- 3. Enhance some connection to make the event more likely to occur.

Table 43. <u>Execution > Risk</u>: Methodical responses for the presence of risk.

Threat	Generic Strategy	Opportunity
Avoid (eliminate)	Eliminate uncertainty	Cause (exploit)
Transfer	Allocate ownership	Share
Reduce	Modify exposure	Enhance
Accept	Include in baseline	-

4.5.1 Risk coordination process elements

A.k.a., Risk control elements, risk coordination and control elements.

The phases of the risk coordination cycle include four main elements:

- 1. Risk identification identify all potential risks.
 - Deliver a list of risks.
- Risk assessment prioritize the likelihood of this risk occurring and the severity/damage impact if it occurs.
 - Deliver a risk assessment matrix.
- 3. Risk control
 - A. Risk mitigation Deliver a plan, procedure, technique, tool, or process to mitigate threat.
 - B. Risk accentuation Deliver a plan, procedure, technique, tool, or process to actualize opportunity.
- 4. Risk monitoring and control

Alternatively, the phases of the risk coordination cycle could be viewed as:

- 1. Identify probable risks.
- 2. Determine probability of each risk.
- 3. Evaluate potential impact of each risk.
- 4. Develop controls and plans as responses to each risk.
- 5. Document responses to each risk.
- 6. Act on next steps (i.e., next tasks) for each risk.

The common risk coordination elements include (note that risk-coordination is a sub-type of issue-coordination, see sub-bullets):

- 1. **Risk planning** planning for the avoidance of danger, or an avoidable reduction in fulfillment.
 - Risk-type issue planning
- 2. Risk identification
 - Risk-type issue identification
- 3. Risk analysis (clarifying, categorizing, and prioritizing risks, and developing controls for risks)
 Risk-type issue analysis
- 4. Risk mitigation (design, select, and applying/

implement controls to mitigate risks)

- Risk-type issue mitigation
- 5. **Risk monitoring** (assess and monitor active controls)
 - Risk-type issue monitoring

At a societal-level, risk coordination feeds into a societies Effectiveness Inquiry [decision system] process.

4.6 [Plan] Continuous risk analysis, coordination, and control

QUESTION: *Is it possible to engineer a system that does not posses the risk? Is it possible to analyze and design a system that is highly less likely to express the risk?*

Continuous risk analysis, coordination and control is a project engineering category with processes, methods, and tools for predicting risk-related problems and resolving them such that the project is safe, effective, and efficient.

Any useful risk inquiry identifies, what are the social mechanisms that are driving people to maintain these fixed and limiting behaviors and/or beliefs.

Risk mitigation processes include:

- Assessing continuously what could go wrong (risks).
- Determining the significant prioritization of risks.
- Acting to resolve the risks:
 - Identifying uncertainties.
 - Identifying assumptions.
 - Identifying problems and inquiries.
 - Resolving the probability risk space.
 - Resolving the decision space.
- Changing the system to have engineered a risk out of the system.

*All processes may occur in parallel and/or series.

Risk analysis and mitigation involves the analysis, design, and operation of systems without the risk [to humanity and ecology]:

- The identification of [probable] risks within:
 - The current system.
 - A new system state change.
- The resolution of [probable] risks within:
 - The current system.
 - A new system state change.

In community, to minimize reliance on error-prone and time-intensive human or procedural controls, the primary means of risk mitigation involves the designing of risk out of a system (e.g., fail-safe redundancy, fault tolerance, load margins, inherent reliability, and test verification). In practice, risk reduction depends on advance knowledge of environmental conditions, performance of engineered products/systems, accurate testing, and human [response] capabilities.

Materialized systems throughout the community's habitat service system have different levels of fault tolerance. For example, locations where human safety is a critical function, normal design criteria require two-fault tolerance levels. All critical systems essential for human and ecological safety (survival) shall be designed to be two-fault tolerant [at least]. When this is not practical, systems shall be designed so that no single failure shall cause loss of the Team (or city). This requirement, as a component of [operational] maintenance, can be considered as a third level of fault tolerance (i.e., of redundancy). In community, however, functional roles are they are unified under open source engineering.

The risk analysis and mitigation sub-processes categories are (function/operation):

- **Identify** search for and locate risks before they become problems.
- **Analyze** transform risk data into decisioning information.
 - Evaluate impact, probability, and timeframe, classify risks, and prioritize risks.
- **Plan** Translate risk information into decisions and mitigation actions (both present and future) and implement those actions.
- **Track** Monitor risk indicators and mitigation actions.
- **Control** Correct for deviations from the risk mitigation plans.
- **Communicate** Provide information and feedback internal and external to the project on the risk activities, current risks, and emerging risks. Note: Communication happens throughout all the functions of risk mitigation.

Continuous risk analysis requires answers to the following questions:

- 1. What proximity is required for this risk to apply?
- 2. How localized are the effects posed by this risk?
- 3. What is the recovery time if the risk was detected?
- 4. What are the recovery and restoration requirements if the risk is detected?
- 5. Impact How serious an impact?
- 6. Prior Is there evidence of this risk prior?

4.6.1 Identify

The principles applicable during the Identify function are:

· Risks are identified as part of a continuous process,

not a one-time only activity at the start of the project.

- Risk identification must be open source to sufficiently bring forward new risks and to look beyond immediate problems.
- Although individual contributions play a role in risk management, teamwork improves the identification of new risks by allowing individuals to combine their efforts, knowledge and understandings.

4.6.2 Analyze (Assessment)

The principles applicable during the Analyze function are:

- Conditions and priorities often change on a project and can affect the important risks to a project—risk analysis must be a continuous process.
- Analysis requires open communication so that prioritization and evaluation is accomplished using all known information (safety protocol, open source protocol).
- A probabilistic-oriented view enables teams to consider long-range impacts of risks.
- A global perspective and a shared societal vision allows an analysis of risks to account for the overall societal system, human needs and goals.

4.6.3 Plan

The principles applicable during the Plan function are:

- Planning risks is a continuous process of determining what to do with new risks as they are identified, to enable efficient use of resources.
- Integrated coordination is needed to ensure mitigation actions do not conflict with project or team plans and goals.
- A shared product vision and global perspective are needed to create mitigation actions that ultimately benefit humankind and the ecology.
- The focus of risk planning is to be probabilistic, to efficiently prevent risks from becoming problems.
- Teamwork and open communication enhance the planning process by increasing the amount of knowledge and expertise that can be applied to the development of mitigation actions.

4.6.4 Track

The principles applicable during the Track function are:

- Open communication about a risk's status stimulates the project and risk management processes.
- Tracking is a continuous process—current

information about a risk's status is conveyed periodically to the rest of the project.

- When project personnel review tracking data with a forward-looking view and a global perspective, they can interpret the data to reveal adverse trends and potential risks.
- Integrated management combines risk tracking with routine project monitoring processes, creating a synergy that better predicts and identifies new issues.

4.6.5 Control

The principles applicable during the Control function are:

- Open communication is essential for effective feedback and decisioning, a critical aspect of Control.
- Risk control is also enhanced through integrated coordination—combining it with routine project coordination activities enables comprehensive project decisioning.
- Shared project vision and a global perspective support control decisions that are effective for the long-term success of the project and [societal] organization.

5 [Plan] Inter-societal market coordination

A.k.a., The business plan, the financial plan.

In the market, finance dictates choice. If you don't have the finances, you don't have the choice. For any interaction with the market there is the requirement for multiple financial-type relationships and interfaces.

A market coordination interface plan includes, but is not limited to:

- 1. A purchasing interface.
- 2. A contracts interface.
- 3. A budget interface.
- 4. The financials interface.
- 5. The State interfaces
- 6. The relationship interface.

Note that in the market, management level personnel have some relative degree of authority to reward tasks (their completion or relative degree of). Coordination is the result of motivation and the integration of self (intrinsic) to social (Commons) to scientific (science without profit motive). In the market-State, money and power can significantly lessen social consequent for harmful action.

5.1 [Plan] Purchasing interface

A.k.a., Market acquisitions.

Purchasing is the primary interface for the market. When purchasing something from the market, the total cost of purchase and ownership must be considered. The total cost of ownership includes the following:

- Original cost of the computer and software
- Hardware and software upgrades
- Maintenance
- Technical support
- Training

Many factors must be taken into account when purchasing a product, and basing a choice only on initial investment may prove more costly in the long run. Upgrades, maintenance, technical support, and training can have direct costs, and upgrades and maintenance can be disruptive, causing indirect costs.

5.1.1 Breakage of purchased service

What if the purchased service breaks, and you do not have the source code from which the system was created, you can:

1. Wait until the original vendor decides to fix it, which may very well be the best solution for non-critical

items,

- 2. Find a work-around, that is, another way of doing what you wanted, or
- 3. Switch to an entirely different application that does not have the problem. There can be many kinds of problems, but security and data corruption ones are especially serious.

If you had access to the source code for the software, could you fix it yourself? Maybe, or you might be able to find or pay someone to do it for you. Are you concerned that the provider of your software might not be in business forever and so you want the extra insurance of having the source code in case you need it eventually?

5.2 [Plan] Contracts interface

PRINCIPLE: The contract is the only thing that matters.

The contract is a description of the respective responsibilities and allocation of risk between the two (or more parties). This contract documents the requirements for the solution and documents the agreement. A contract is defined initially, and then secondarily based on obligation(s):

- Initially, defined (explicated) agreement of obligation by two (or more) competing agents.
- Secondarily, defined by a judge who rules (decides, determines) whether or not everyone met their obligation(s). The judge asks:
 - A. Was there a breach?
 - B. Who benefited and who suffered?

5.2.1 The escrow account

Escrow is a legal arrangement in which a third party temporarily holds large sums money or property until a particular condition has been met. Escrow generally refers to money held by a third party on behalf of transacting parties.

5.3 [Plan] Budget interface

QUESTION: How much is available to spend?

All elements of a project attached to the market are likely to have a cost attribution. A project may require elements from the market, which may or may not have a cost attribution. The community has a budgeting interface to account for market costs.

5.3.1 The budgeting interface

A budget is a pre-set allotment of some resource or currency. If the set-allotment isn't used, then it returns to a common pool. In the market, there is the incentive to use the whole budget, otherwise the budgeted items will return to the common pool, and next time the entity is budgeted, it may be budgeted less. In community, there is no budget, per say. Instead, the is a unified information system within which unified decision occurs, making budgets (Read: pre-allocation of some useful item) unnecessary and inefficient in most cases. In the market-State, budgets are generally associated with currency as purchasing power (e.g., how much money has the project been budgeted?). In community, service systems are designed for optimality, given what is known; therefore, budgeting of resources does not normally occur, except in rare cases, often involving ongoing incidents/emergency-related situations, where resource budgeting (i.e., pre-allocating) becomes necessary.

5.3.2 Budgeting

A budget is a pre-set allotment of some resource or currency. If the set-allotment isn't used, then it returns to a common pool. In the market, there is the incentive to use the whole budget, otherwise the budgeted items will return to the common pool, and next time the entity is budgeted, it may be budgeted less. In community, there is no budget, per say. Instead, the is a unified information system within which unified decision occurs, making budgets (Read: pre-allocation of some useful item) unnecessary and inefficient in most cases. In the market-State, budgets are generally associated with currency as purchasing power (e.g., how much money has the project been budgeted?). In community, service systems are designed for optimality, given what is known; therefore, budgeting of resources does not normally occur, except in rare cases, often involving ongoing incidents/emergency-related situations, where resource budgeting (i.e., pre-allocating) becomes necessary.

A plan of finances is related to a budget; within a Project Proposal that involves the market, the issue is expected to carry a plan of finances. This would include a budget and a breakdown of how the money is expected it to be spent over the one year that the project will be in operation.

5.4 [Plan] Financial viability

A.k.a., Business plan (more strategically oriented - how goal money+product will be completed), money plan, currency plan, funding plan, profit plan.

The primary purpose of any financial plan in the market-State is to:

• Create a plan to attract the resources to where you are.

A financial plan is a plan for acquiring currency (monetary "funding", financial input) in order to develop and duplicate the specified and standardized community across the planetary population, under conditions of market price. Here, the business plan is not to extract value from individuals, but rather to enhance the fulfillment of individuals through interfacing with the market, but not participating in the market.

There are two primary [market] funding inputs:

- 1. Owners with high current financial status.
 - A. Find high net worth individuals with a value system alignment.
- 2. Crowds with value system alignment.
 - A. Find groups of individuals with a value system alignment.
- 3. Business with a desire to conduct data analytics on a planned interoperable societal system.
 - A. Find market-State organizations who would fund the production of a planned, integrated network of city systems.

To sustain existence as an entity in the market, and succeed, the following questions are necessary:

- 1. Can the organization make money?
 - A. What is the current and future market for consumption of the output of the organization?1. Growth of market and size.
 - Drafitability of market
 - 2. Profitability of market.
 - 3. Price sensitivity of market
- 2. Can the organization hold a competitive advantage in the market?
 - A. Are there ways to differentiate?
 - B. Are there ways to be more efficient?
 - C. Are there barriers to entry?
- 3. Can the organization build a customer and/or patronage base?
 - A. Ease of acquiring traffic, customers and/or patrons?
 - B. Customer/patron loyalty?
- 4. What are the operational demands/requirements of the organization?
 - A. Are the demands feasible to carry out (is there the effort)?
 - B. Are the demands viable to carry out (are there the resources)?

5.4.1 Financial statements

A.k.a., Financials.

Financial statements (or financial reports) are formal records of the financial (money) activities and position of a business, person, or other entity. Financial statements facilitate the financial organization of businesses and hold information the State uses to tax businesses.

5.4.1.1 Incomes statements

An income statement shows the revenue (how much money came in), expenses (what you paid for), and profits (what is left over) for a specific time period.

5.4.1.2 Revenue, profit and loss statements

The profit and loss (P&L) statement is a principal financial statement that summarizes the revenues, costs and expenses incurred during a specified period, usually a fiscal quarter or year.

- **Revenue** is the total amount of income generated by the sale of goods or services related to the company's primary operations.
- **Cost** is an amount that has to be paid or spent to buy or obtain something.
 - Cost can be for the purchase of anything in the market, "What's the cost of that car?"
 - Cost can be for the State, a penalty, "What's the penalty for violating that law/rule."
- **Expenses** are business expenditures over time [in order to "do business"]. Expenses are used to produce revenue [for the business].

The primary equation for a profit-loss statement is that of the profit equation:

- **Profit** = revenue expenses (Read: Profit equals revenue minus expenses)
 - Profit(s) is what money is left over after money in is subtracted from money out.

5.4.1.3 Cost statements

A.k.a., Currency expense, cost basis.

There are three potential types of cost (a.k.a., currency expense, financial cost, etc.) to project's in the [capitalist] market:

- **Fixed cost** *of capital* a one-time setup cost of project (or system).
- **Marginal cost** *of capital* cost of producing additional units of a good or service produced by the project or system.
- **Operating (running)** *cost of capital* continued cost of operating the project (or system).
- **Cost of labor** *of capital* cost of human [psychophysiological] effort.
- **Cost of materials** *of capital* cost of materials for operating/running the project.

5.4.1.4 Balance sheet

There are three types of information showed on a balance sheet:

1. **Assets** - what is owned (e.g., cash, inventory, receivables, etc.)

- 2. **Liabilities** what is being payed out (e.g., accounts payable, etc.)
- 3. **Owners equity** the initial amount of money invested in a business.

5.5 [Plan] Financial funding

A.k.a., Funding plan.

Financial funding can come from multiple market-State sources:

- 1. **State funding** (e.g., grants, direct funding) acquire funding from State entities.
- 2. Crowdfunding sources (many low amount inputs) acquire funding from the public.
- 3. Philanthropist sources (high net worth sources) acquire funding from high-net worth individuals
- 4. **Buy-in (purchase agreements)** establish purchase agreements with members of the public who would like to buy into (i.e., purchase) the city. These purchasers would become the city's inhabitants (or members). It is feasible that once the project is complete up to site selection and preparation, that a large number of people who presently reside in the market-State would pay for the materials, tools, and effort, to acquire a place in the city.
- 5. **Business plan interface** this proposed society maintains a business [plan] interface with the market, wherein products produced within the habitat service system are sold into the market-State (when required).

5.6 [Plan] Market economic interfacing

NOTE: The market-State is easily observed to prioritize market services at the expense of community, aesthetics, open spaces, etc. To those who believe in the market, the market becomes the priority.

The planned societal design categories of a market-State societal system do not correlate with those of a community-type societal system. The general notion of economic 'planning' in the market-State has no unified [life] orientation. As seen below, the community's plan only somewhat fits into the market-State categories of economic planning:

- The highest-level market-State category of plan
 Macro-economic Plan the breakdown of total production (i.e., the breakdown of total labour time) between various highly aggregated categories of end use.
 - A market/State-based macro-economic plan
 must answer the following: How much to the provision of social goods such as health,

education or socialised child-care? How much to the accumulation of means of production to augment the future productive capacity of the economy? How much (if any) to the repayment of debt or the acquisition of assets? How intensively the economy's given productive capacity should be exploited?

 A community-based "macro-economic plan"

 involves the transparent prioritization of material state reconfigurations (i.e., modifications to the material environment) from a life-grounded base of needs, which become engineering requirements. It must answer the following: What material configuration is required (for humans to flourish)? When is "it" required? In what condition is "it" required? What resources are available? How will those accessible resources flow into an optimized material state-dynamic consisting of aggregated services and objects of end use, prioritized by life need, and oriented through a value set?

<u>Middle-level market-State category of plan</u> · Strategic Plan

- A market/State-based strategic plan concerns the changing industrial structure of the economy. Given that so much of the available labour-time is to be devoted to public provision, so much to consumer goods and so much to producer goods, which particular sectors should be developed, exploiting which technologies? Which types of goods should be imported, because they can be produced more cheaply elsewhere? Which industries should be phased out over the long run?
- A community-based "strategic plan" concerns the service support structure of the material system. This is the model for the habitat service system structure (i.e., life, technical, facility, etc.). How much of each individual service or object must be produced? When must it be produced? How must it be produced?

Lowest-level market-State category of plan

Detailed production plan

- A market/State-based detailed production plan -the precise allocation of resources: Which specific types of goods are to be produced in what quantities, using how much labour, and in which locations? Which productive units are to receive inputs from which others?
- A community-based "detailed production plan"
 a habitat service system (city) engineering plan.

5.7 [Plan] Market-State interface

The required sub-plans for existence in the Market-State (additional to nominal habitat plans) include, but are not limited to:

- A geopolitical-jurisdictional continuous analysis plan
- A business interface plan
- A State interface plan
- A marketing relationship development plan
- A 'crowd' relationship development plan

5.7.1 The market perspective

In order to engage effectively with the market, it is essential to understand the composition and affects of the market. It is essential to characterize the system in order to design an interface with the system that functions well.

The market perspective is highly characterized by:

- **Competition [at the societal level]** Actions take reflect a state of competition (in the market); hence, a lack of recognition of the common resource base, and common human needs, of all individuals on the planet.
- Trade There is a mandatory exchange of the self or of objects owned by the self (in the market); hence, competition [between individuals] is an incentive.
- **Profit** This is a mandatory requirement for income as individuals and services (in the market); hence, gaining income [between individuals] is an incentive.
- Security of future profit Actions taken reflect a state that competition will continue and future requirements will be met by taking more profit; hence competitive advantage and hoarding [between individuals] is an incentive. Personal resource acquisition facilitates the security of future profit.

5.7.2 The money functions

Money (as a commodity) has three functions:

- 1. **Liquidity** the currency, or cash (its presence with the ability to buy some thing).
 - How quickly (in time) can some current item of property (digital or physical asset) be converted into cash?
 - How quickly (in time) the item be bought or sold in the market?
- 2. **Exchange "value"** (i.e., exchangeable for value) item produce to be sold in the market for a price

(abstract value, not life value)

- Was it produced to be sold in the market? Can it be sold in the market?
- What quantity of something else will it exchange for?
- 3. **Store of "value"** value is labor. Note here that hoarding is the result of money (or a commodity) as a "store of value".

Money is intrinsically linked the power of the authority. For example, a viable currency is a currency that can be used to pay taxes to the state. Thus, the State (as the "supreme authority of the land" has a interest in perpetuating the State money cycle:

- 1. When the competing players do commerce, money changes hands.
- 2. When money changes hands, taxes are paid.
- 3. When taxes are paid, the State party gets funded.
- 4. When the State party gets funded, "our utopia gets strong and everyone is better off for it".

5.7.3 Decisioning through ownership, governance

A.k.a., Decisioning via corporate governance.

Corporate governance is the system by which business corporations are directed and controlled. The corporate governance structure specifies the distribution of rights and responsibilities among different participants in the corporation, such as, the board, managers, shareholders and other stakeholders, and spells out the rules and procedures for making decisions on corporate affairs. By doing this, it also provides the structure through which the company objectives are set, and the means of attaining those objectives and monitoring performance.

INSIGHT: *People don't run corporations; corporations run people.*

5.7.4 The market mechanism under observation

Alternatively, the market is observed to behave like what it produces; the market observably produces the exploitation of scarcity, not overcoming it through design (abundance). Socio-economic inequality is a defining characteristic of the market model, which inevitably deprives some cross-section of society (obviously, because it isn't unified).

NOTE: If there is no such thing as 'stealing', then 'money' doesn't mean anything; there has to be a rule-of-law to "steal from" in order for that 'money' to be meaningful.

5.7.5 Market pareto rule

A.k.a., Market pareto rule.

The "pareto rule" is especially relevant in business and government. The pareto rule that says that these structures (market-State) are likely to form organizations of people in the ratio of 80 to 20 (80:20). The pareto rule is more often seen with larger organizations, with larger populations of people.

In the non-pejorative sense, eighty percent of the people in the organization will be dedicated to one type of issue (e.g., the survival of the organization), and twenty percent will be dedicated to the actual mission of the organization (e.g., making a product). In the pejorative sense, twenty percent of people are doing the actual work (or 20% of everyone's time is dedicated to actually useful work), and eighty percent of people are working to support the management/owners of the organization (80% of everyone's time is dedicated to non-useful work).

In the market-State, because of its structure and incentive system, the primary objective of any organization is the perpetuation of the organization itself. Here, the question that makes the organization need to perpetuate itself is: if the organization that allows people to earn money doesn't survive, then how will the people survive in the market?

5.7.6 Community versus the market perspective

Community and the market maintain two fundamentally different perspectives:

- 1. In the market, resources, services, and assets can be bought and sold, measured and organized.
- In community, resources, services, and assets cannot be bought and sold, but they are still measured and organized. Things are produced for the purpose of being used, and not sold and used.

As a type-of society, relative to other potential organizations of society, community is:

- 1. A system that is *decoupled* from the market, and hence, market economic growth -- not a societal system that contains a market/transactional system of societal relations.
- 2. A system that is *coupled* to real-time life and cooperative iteration; itself, coupled with a discoverable, affective (i.e., influential) real-world information-material environment. Community accounts for life and actions in an environment that may rapidly affect the life of all.
- 3. A societal system capable of coordinating a healthy habitat, as opposed to a societal system that incentivizes the mismanagement of the habitat.

5.7.7 Land assessment and the market

Land must be contracted, and significant contractual elements of land include, but are not limited to:

- A. Eminent domain law
- B. Freehold land versus leasehold land, and taxable land.

5.8 [Plan] Business sales

A business sale is an income stream for the continuation and/or duplication of a system. Although there are many potential income steams open to an integrated city system, regenerative agriculture provides a useful example. Regenerative agriculture income streams include, but are not limited to:

- 1. Cash crops
- 2. Cover crops
- 3. Vegetables and vegetable concentrates
- 4. Bees and bee concentrates
- 5. Circular symbiotic animals (e.g., Fish, Lamb, Beef, Poultry, Pork)
- 6. Agritourism (education, hunting, cuisine, etc.)

6 [Plan] Inter-societal State coordination

A.k.a., The governmental plan.

In the government, authority dictates choice. If you don't have the authority, you don't have the choice. For any interaction with the State there is the requirement for multiple authority-type relationships and interfaces.

A State coordination interface plan includes, but is not limited to:

- 1. A government interface.
- 2. A contracts interface.
- 3. A budget interface.
- 4. The financials interface.
- 5. The State interfaces
- 6. The relationship interface.

Note that in the market, management level personnel have some relative degree of authority to reward tasks (their completion or relative degree of). Coordination is the result of motivation and the integration of self (intrinsic) to social (Commons) to scientific (science without profit motive). In the market-State, money and power can significantly lessen social consequent for harmful action.

APHORISM: Under the State, authority dictates choice. If you don't have the permission of authority (or, authority itself), you don't have the choice.

6.1 [Plan] Government interface

A.k.a., Political plan, jurisdictional plan, legal plan regulatory plan.

There are [at least] two types of power in social control systems:

- Explicit power (accountability) you know who has the power, who is accountable, and responsible for failures in exercising the power.
- Implicit power (politics) -

Effectively, there are only two forms of government (all other forms of government are just variations on democracy and monarchy):

- Democracy rule by the majority, wherein a dictatorship is just an unstable democracy. Implicit power and explicit politics. Those in power become renters of the State apparatus.
- Monarchy an anarchy is just an unstable monarchy. Explicit power and implicit politics. Those in power have ownership of the State

apparatus.

6.2 [Plan] Jurisdictional-geopolitical viability

A.k.a., Jurisdictional plan, geopolitical plan.

The primary purpose of any geopolitical plan in the market-State is to:

• Create a plan to sustain peace (reduced violence) where you are.

A geopolitical plan is a plan for acquiring authority (relationships with political currency) in order to operate and duplicate a standardized societal system across the planetary population, under conditions of authoritarian rule [of law]. Here, the geopolitical plan is not to gain authority from others, but rather to enhance the fulfillment of individuals through interfacing with the State, but not participating in the State.

A jurisdictional and geopolitical analysis will determine possible locations for placement of the first experimental community city on this planet. It will also determine the possible rise in uncertainty of a city due to geopolitical changes in the location. The analysis will compare between locations. It will provide (given current trends) a feasibility/viability determination for the experimental city for each location. What is 'risk', and how much 'risk' is acceptable?

NOTE: *The purpose of evidence in the market-State is persuade, not to explain.*

6.3 [Plan] Contractual agreements

A.k.a., Plan contracts, legal agreement plan, legal declaration plan.

In a non-corrupt market-State jurisdiction, all that matters is <u>what was in the contract</u>, because the State will use what is in the contract to reason its final opinion. Agreements are made between competing entities, for which a 3rd party (e.g., the government) holds the parties accountable. Contractual agreements include legal, regulatory, etc. Entities in the market-State may have to make contractual agreements with other market-State entities in order to access resources. These agreements may be made with any of the following organization, or mixture of organizations:

- 1. Local government
- 2. State government
- 3. Global government
- 4. Business contracts

6.3.1 State [access] deliverable

- 1. Operating jurisdictional compliance
 - The operational community will need to maintain compliance with required State regulatory bodies, requiring an operating jurisdictional compliance plan.

6.3.2 Financial [access] deliverable

- 1. Relationship development
 - 1-3 High Net Worth individuals (or equivalent) for funding initial operations.
 - 3-10 High Net Worth individuals (or equivalent) for funding comprehensive operations. Develop relationships with those with the resources to see the project through to completion.
 - Relationship development in the geojurisdictional area where the community network is planned and/or under construction or operation.
- 2. Financial escrow account
 - Finances for the construction and operation of the societal system will be maintained in escrow.
- 3. Cost budgeting
 - The market cost to construct and/or operate a given state of the societal system.
 - · Calculated cost of living

6.3.3 Market [access] deliverable

- 1. The Business Plan (Market-Interface Strategic Plan)
 - A market-interface business plan (sub-project plan) and accompanying analysis to ensure the continued financial viability of the community within the larger monetary market. The first version of the community [at least] will require significant resources from the market, and hence, the community will require some balance of [angel] donations and business interaction. The Community will have to interact with the market [to some degree], and this will have to be planned and accounted for.

6.4 InterSocietal agreements

There are a host of agreements available that propose a transition of many relationships from that of competition to that of cooperation and empathy.

6.4.1 The Free World Charter

The Free World Charter is available:

• *The Charter*. The Free world Charter. Accessed: March, 20 2020. [interstellarnewdeal.global]

The Free World Charter is a statement of principles that align intent with the eradication poverty and greed, and the advance of human progress. The number of signatories is counted and the charter with all of its signatories is capable of being downloaded and printed from the website.

The principles of the Free World Charter are:

- 1. The highest concern of humanity is the combined common good of all living species and biosphere.
- 2. Life is precious in all its forms, and free to flourish in the combined common good.
- 3. Earth's natural resources are the birthright of all its inhabitants, and free to share in the combined common good.
- 4. Every human being is an equal part of a worldwide community of humans, and a free citizen of Earth.
- 5. Our community is founded on the spirit of cooperation and an understanding of nature, provided through basic education.
- 6. Our community provides for all its members the necessities of a healthy, fulfilling and sustainable life, freely and without obligation.
- 7. Our community respects the limits of nature and its resources, ensuring minimal consumption and waste.
- 8. Our community derives its solutions and advances progress primarily through the application of logic and best available knowledge.
- 9. Our community acknowledges its duty of care and compassion for members who are unable to contribute.
- 10. Our community acknowledges its responsibility to maintain a diverse and sustainable biosphere for all future life to enjoy.

6.4.2 Governmental Declaration of the Unified Rights of Humanity (DURH)

The declaration of unified human rights is a legal [governmental] reform measure. It is a contractual declaration between a citizenry and the government to constitute governmental encoding of a unified and mutually beneficial set of human rights given by government.

This declaration is a "living" list of the inalienable rights and protections inherent to all of Humanity never fully being complete as long as Humanity exists for we never stop growing, evolving, learning, and expanding. As new rights become apparent and need to be protected or for governmental powers to be limited in order to protect those rights in specific ways, then they should be added to this document.

The Universal Declaration of Human Rights as set forth by the United Nations (which should have been created as a binding document) embodies the freedoms and dignities owed to all Humanity no matter where they are, and they form the basis for the articles in this document. Text and ideals for this chapter were also pulled from: Theodore Roosevelt's Economic Bill of Rights, and The United State's various Constitutional Amendments, as well as text added to address other cultural, political, and societal failings since those documents were drafted.

Humanity should also consider the following universal declarations of rights owed to all of Humanity in their respective spheres:

- Universal Declaration of Linguistic Rights
- Universal Declaration on the Human Genome and Human Rights
- Universal Declaration on Bioethics and Human Rights

The declaration is built upon a set of philosophical pillars for peace among humanity. The eight pillars of peace are:

- 1. Interdependence
- 2. Humanity
- 3. Natural World
- 4. Sustainability
- 5. Education
- 6. Equity
- 7. Justice and Compassion
- 8. Science and Technology

The following declaration of unified human rights originates from:

• The 8 Philosophical Pillars For Peace Within Humanity. The Interstellar New Deal. Accessed: March 20, 2020. [interstellarnewdeal.global]

6.4.3 A – Fundamental Articles

6.4.3.1 Article 1

Everyone is entitled to all the rights and freedoms set forth in this DURH, without distinction of any kind, such as:

- Gender identity, sexual orientation, sexual identity, romantic identity, familial or other similar close interpersonal arrangements, or any expression thereof;
- Race, color, gender, language, religion, ethnic, political or other opinion, national or social origin, property, birth or other status;
- 3. Health, medical, physical, mental, psychological, physiological, or disability status; or
- 4. Other similar traits, status, and distinctions.

Furthermore, no distinction shall be made on the basis of the political, jurisdictional or international status

of the country or territory to which a person belongs, whether it be independent, trust, non-self-governing or under any other limitation of sovereignty.

6.4.3.2 Article 2

- 1. No one shall be held in slavery or servitude.
- 2. Human trafficking and enslavement in all forms whether overt, hidden, or institutional shall be prohibited.

6.4.3.3 Article 3

All natural resources on our planet of origin, Earth, and all throughout the universe are declared as a common heritage to ALL of Humanity. Such resources should be used for the betterment of all Humanity and not just a chosen FEW.

6.4.3.4 Article 4

- 1. Everyone has the right to take part in the government, directly or through freely chosen representatives.
- 2. Everyone has the right of equal access to public service.
- The will of the people shall be the basis of the authority of government; this will shall be expressed in periodic and genuine elections which shall be by universal and equal suffrage and shall be held by secret vote or by equivalent free voting procedures.

6.4.3.5 Article 5

Everyone has the right to access to information about the activities of governmental bodies and to openly and freely monitor them. Governmental processes should be as open and transparent as possible for the information of its citizens and so it may be held accountable.

6.4.3.6 Article 6

Everyone has the right to petition for a governmental redress of grievances.

6.4.3.7 Article 7

Everyone is entitled to a social and international order in which the rights and freedoms set forth in this DURH can be fully realized.

6.4.3.8 Article 8

Nothing in this DURH may be interpreted as implying for any nation, entity, group or person any right to engage in any activity or to perform any act aimed at the destruction of any of the rights and freedoms set forth herein.

6.4.4 B - Limitations of Government

As a part of the protected rights established herein in this DURH, the Government shall have additional explicit limitations related to those protected rights:

6.4.4.1 Article 1

The Government, in all forms, shall be prohibited from:

- Making any law establishing an official religion or belief in or for a nation or peoples, or granting preferential treatment to one religion or belief over others;
- 2. Restricting the free practice of religion unless it conflicts with the rights and protections established in this DURH.

6.4.4.2 Article 2

The right to vote is inalienable. The Government, in all forms, shall be prohibited:

- 1. From preventing a citizen from voting due to nonpayment of a poll tax or any other tax, fee, fine, or compensation, or any other means;
- 2. From engaging in any activity or creating a policy in order to prevent or limit a citizen's ability to vote.

6.4.4.3 Article 3

The Government, in all forms, shall never pass a law granting businesses, organizations, or other artificial entities status equal or near equal to humans, nor shall they gain the rights or qualities of such, for this is an anathema to equality, freedom, and democracy. The Government represents the people and not artificial legal or social entities.

6.4.4.4 Article 4

The Government, in all forms, shall never pass a law to which they are not also accountable and shall NOT be immune from prosecution of any kind in a court of law. A Government that cannot be held accountable is an anathema to open and ethical society.

6.4.4.5 Article 5

The Government, in all forms, shall never pass a law which insulates themselves from their Citizens, for an insulated political body is antithetical to equity and humanity.

6.4.4.6 Article 6

The Government, in all forms, shall never pass a law which purposefully demands, requires, or suggests the ending the life of any human.

6.4.4.7 Article 7

The Government, in all forms, shall never pass a law which purposefully intercedes itself between a doctor

and their patients, nor shall it attempt to legislate care.

6.4.5 C – Interdependence and Sustainability

6.4.5.1 Article 1

- 1. Everyone has the right to a nationality.
- 2. No one shall be arbitrarily deprived of one's nationality nor denied the right to change one's nationality.

6.4.5.2 Article 2

- 1. Everyone has the right to freedom of movement and residence within the borders of each nation.
- 2. Everyone has the right to leave any country, including one's own, and to return to one's nation.

6.4.5.3 Article 3

- 1. Everyone has the right to seek and to enjoy in other nations asylum from persecution.
- 2. This right may not be invoked in the case of prosecutions genuinely arising from non-political crimes or from acts contrary to the purposes and principles of this DURH.

6.4.5.4 Article 4

- 1. Everyone has a right to enjoy access to the holistic, clean, and protected natural world including air, water, plants, animals, and green spaces ,etc.
- 2. Everyone has the right to clean air, clean water, and unadulterated and healthy food.

6.4.6 D – Humanity and Equity

6.4.6.1 Article 1

All human beings are born free and equal in dignity and rights. They are endowed with reason and conscience and should act towards one another in a spirit of brotherhood.

6.4.6.2 Article 2

Everyone has the right to life, liberty and security of person.

6.4.6.3 Article 3

Everyone has the right to recognition everywhere as a person before the law.

6.4.6.4 Article 4

Everyone of the Consensual Age, without any limitation due to race, gender expression, sexual orientation, nationality, religion, or socioeconomic status, have the right to marry and to found a family. They are entitled to equal rights as to marriage, during marriage and at its dissolution.

- 1. Marriage must be entered into only with the free and full consent of all of the intending spouses.
- 2. The family is the natural and fundamental unit of society and is entitled to protection by society and the Government.
- 3. Each family may choose the definition of their familial arrangement within the constraints of consent and the rights contained within this DURH.

6.4.6.5 Article 5

- 1. Everyone has the right to own property alone as well as in association with others.
- 2. No one shall be arbitrarily deprived of one's property.

6.4.6.6 Article 6

- Everyone has the right to freedom of thought, conscience and religion; this right includes freedom to change one's religion or belief, and freedom, either alone or in community with others and in public or private, to manifest one's religion or belief in teaching, practice, worship and observance.
- 2. No one may be compelled to religious belief or non-belief, nor to think or believe that which they do not.

6.4.6.7 Article 7

Everyone has the right to freedom of opinion and expression; this right includes freedom to hold opinions without interference and to seek, receive and impart information and ideas through any media and regardless of frontiers.

6.4.6.8 Article 8

- 1. Everyone has the right to freedom of peaceful assembly and association.
- 2. No one may be compelled to belong to an association.

6.4.6.9 Article 9

No one shall be subjected to arbitrary interference with one's privacy, family, home or correspondence, nor to attacks upon one's honor and reputation. Everyone has the right to the protection of the law against such interference or attacks.

6.4.6.10 Article 10

Everyone, as a member of society, has the right to social security and is entitled to realization, through national effort and international cooperation and in accordance with the organization and resources of each nation, of the economic, social and cultural rights indispensable for one's dignity and the free development of one's personality.

6.4.6.11 Article 11

Everyone has the right to rest and leisure, including reasonable limitation of working hours and periodic holidays (with pay as long as economic systems exist).

6.4.6.12 Article 12

- 1. Everyone has the right to a standard of living adequate for the health and well-being of himself and of one's family, including food, clothing, housing, education, medical care and necessary social services, and the right to security in the event of unemployment, sickness, disability, widowhood, old age or other lack of livelihood in circumstances beyond one's control.
- 2. Parenthood and childhood are entitled to special care and assistance. All children, regardless of birth circumstances, shall enjoy the same social protection.

6.4.6.13 Article 13

Universal access to healthcare and related technologies and innovations is human right and should be free for all.

6.4.6.14 Article 14

- 1. Everyone has the right freely to participate in the cultural life of the community, to enjoy the arts, creative expression, and to share in scientific and technological advancement and its benefits.
- 2. Everyone has the right to the protection of the interests and rights resulting from any scientific, literary or artistic production of which they are the author.

6.4.6.15 Article 15

- 1. Everyone has duties to the community in which alone the free and full development of one's personality is possible.
- 2. In the exercise of one's rights and freedoms, everyone shall be subject only to such limitations as are determined by law solely for the purpose of securing due recognition and respect for the rights and freedoms of others and of meeting the just requirements of ethics, public order, and the general welfare in a democratic society.
- 3. These rights and freedoms may be, in no case, exercised contrary to the 7 Philosophical Pillars for Peace within Humanity.

6.4.6.16 Article 16

- Everyone has the right to form and to join trade unions for the protection of one's interests.
- Everyone has the right to form cooperatives so that all may work and share in the benefit from such work together.
- Everyone has the right to work, to free choice of employment, to just, favorable, and safe conditions of work

6.4.6.17 Article 17

As long as economic systems plague Humanity:

- 1. Everyone, without any discrimination, has the right to equal pay for equal work;
- 2. Everyone who works has the right to just and favorable remuneration ensuring for himself and one's family an existence worthy of human dignity, and supplemented, if necessary, by other means of social protection;
- 3. Everyone who works has the right to protection against unemployment.

6.4.6.18 Article 18

Every person or organization of business, large and small, has the right to trade and pursue business in an atmosphere of freedom from unfair competition and domination by monopolies at home or abroad.

6.4.7 E – Justice and Compassion

6.4.7.1 Article 1

No one shall be subjected to torture or to cruel, inhuman or degrading treatment or punishment.

6.4.7.2 Article 2

All are equal before the law and are entitled without any discrimination to equal protection of the law. All are entitled to equal protection against any discrimination in violation of this DURH and against any incitement to such discrimination.

6.4.7.3 Article 3

Everyone has the right to an effective remedy by the competent national tribunals for acts violating the fundamental rights granted him by the constitution, law, or this DURH.

6.4.7.4 Article 4

No one shall be subjected to arbitrary arrest, detention, punishment, or exile.

6.4.7.5 Article 5

- Everyone is entitled in full equality to a fair and public hearing by an independent and impartial tribunal, in the determination of one's rights and obligations and of any criminal charge against him.
- 2. Everyone charged with a penal offense has the right to examine all evidence and witnesses without prejudice.

6.4.7.6 Article 6

- 1. Everyone charged with a penal offense has the right to be presumed innocent until proven guilty according to law in a public trial at which they have had all the guarantees necessary for one's defense.
- 2. No one shall be held guilty of any penal offense on account of any act or omission which did not constitute a penal offense, under national or international law, at the time when it was committed. Nor shall a heavier penalty be imposed than the one that was applicable at the time the penal offense was committed.

6.4.7.7 Article 7

- 1. Everyone shall be protected against selfincrimination and double jeopardy.
- 2. Everyone has the right to a speedy public trial by jury, including the rights to be notified of the accusations, to confront the accuser, to obtain witnesses and to retain counsel.
- 3. Everyone has the right to be protected against excessive fines and excessive bail, as well as cruel and unusual punishment.

6.4.7.8 Article 8

Everyone shall have the right to competent counsel. In the event a defendant cannot obtain competent council by one's/her own efforts then appropriate legal representative shall appointed as counsel for one's/her use.

6.4.7.9 Article 9

Everyone shall have the right to appeal decisions handed down at trial by a process defined by law.

6.4.7.10 Article 10

Actions which are consensual in nature should not be construed or named as crimes for there is no victim (such a sex work and personal drug use).

6.4.7.11 Article 11

1. The right to life is just as important as the right to death. In a society filled with compassion, justice, and support, a person should not desire to end

their existence. For such things to happen lays bare a failure of society.

2. However, a person who is set on ending their existence, especially in cases of suffering due to disease and other malady, shall not be impeded. It shall be supported and protected as wholly as all other actions within Humanity are.

6.4.8 F – Education

6.4.8.12 Article 1

- 1. Education is a human right in all its various forms.
- 2. All education shall be universally free including preelementary, elementary, high school, university/ college, technical and professional schools and apprenticeships to maximize the growth and realized potential of each individual, their happiness and enlightenment, and therefore an equivalent benefit to all of Humanity.

6.4.8.13 Article 2

Education shall be directed to the full development of the human ability and to the strengthening of respect for human rights and fundamental freedoms as lain forth in the 8 Philosophical Pillars for Peace within Humanity and this Declaration of Unified Rights of Humanity. It shall promote understanding, tolerance and friendship among all nations, ethnic, and religious groups, and shall further the activities of Humanity for the maintenance of peace.

6.4.8.14 Article 3

Everyone has a right to have universal, unfettered, and unadulterated access to scientific information about space and all other knowledge areas known to Humanity.

6.4.8.15 Article 4

- 1. The freedom of the press shall be inalienable because a free press is responsible for holding a corrupt person, organization, or government accountable; and is a powerful tool for educating the populace.
- A free press shall be open, informed, fair, ethical, and balanced in all ways otherwise it may become a tool for propaganda or manipulation against public interest.

6.4.8.16 Article 5

Everyone has the right to freely engage is science, research, art, and the various humanities subject to this DURH, the 8 Philosophical Pillars for Peace within Humanity, as well as ethical standards.

7 [Plan] Relationship development

The two primary relationship plan strategies are:

- 1. <u>Get a group of people together who understand</u> and agree with the system so much that they will complete the tasks necessary to create it.
- 2. <u>Start creating the environment so that other people</u> <u>can witness</u> how it is doing something that they like and want, and now they can see it, and now they want to join. Show "me" a simulation to visually understand the situation.

When developing project-oriented relationships, the question is, What type of relationship is to be developed and sustained:

- Global social awareness (the public)
- Social contributors (those people who are contributing directly to the project)
- Market-based relationship development for financial/property acquisition (those people who will contribute financially)
- State-based relationship development for Statecontrolled access (those people who have authority to take decisions)

In order for individuals to trust a proposed reorientation, there is a need for a plan and set of materials to increase certainty:

- 1. A plan for orienting people from dis-similar societal backgrounds to the operational state of the community-based societal system.
- 2. A set of materials for facilitating orientation tailored to unique societal backgrounds.

7.1 [Plan] Human reorientation

It is necessary to plan social re-orientation:

- 1. How to shift values at the individual scale?
 - Simulate the experience of a desirable life in a community-type society and describe how it is possible at the global level.
- 2. How to shift values at a global scale?
 - Simulate society so that it may be understood how cooperation is possible at the global level.
- 3. A shift to what priorities?
 - More human, more compassionate, more empathy, more sensitive to the well-being of others and the ecological condition of the earth. Less interested in materialism and owning things to achieve happiness. Less limiting beliefs. Less lazy thinking and more objectivity. More concern about people and other animals. More interest

in commonalities. More interest in cooperation. More sharing.

For some people, it won't make sense until they visit it and spend time their.

7.1 [Plan] Audience engagement

It is essential to identify the specific other party with which a relationship is to be developed. In relationship development, it is important to know the audience (interlocutor) so it is known how to talk to them about this project.

NOTE: In the market, there is also the marketing and sales phase. In community, once a new service (or service asset) is developed, it is used by people by people that have previously communicated a desire for its use, and those who have been communicated to about its use.

7.2 [Plan] Public engagement points

While "public"-engagement activities should be tailored to meet the needs of individual audiences, they should also be designed to encourage partnerships that connect one group to another – i.e., industry to schools, museums to universities, media to civic organizations, and all manner of networks – to provide the richest interactions, the sharing of knowledge, enhanced technical literacy, and a connection to others.

A detailed plan for public engagement must be created that is based on formative analyses of the ways in which the national and global public would like to participate in the Community. Without this public input, it is premature to select definitively an action plan for public engagement. At the same time, what likely binds humans is a central organizing theme that is both immediate and compelling in human terms: survival and sustainability. Already, that theme is likely to dominate public life in considering conditions on Earth over the next decades. It provides an important opportunity to engage the public in improving life and well-being here on Earth.

Public engagement activities in each of the three topical strands of science, technology, and society will deepen and expand in concert with further development Public engagement outcome

By the time construction is started on the first habitat service system, the desired public engagement outcome is that the public would gain new knowledge and use technology for sustainable living and personal exploration as members of a community-type society.

These three strands are directly correlated with the desired public engagement outcome: citizen scientists who are gaining new knowledge (science) and using technology for sustainable living and personal exploration (technology) as members of a human society (society).

7.3 [Plan] Promotional marketing

The role of promotional marketing is to:

 Initiate information flow through marketplace conversation to raise awareness and credibility, and to produce useful leads and tangible increases in those who desire Community to be a materialized reality within the near future at the planetary scale.

Produce a sufficient increase in:

- Those who understandably agree with this direction.
- Those who contribute to this direction.
- Those who live in a societal system expressing this direction.

7.4 [Plan] Active participation

Raising awareness and credibility through active participation:

- It is possible to raise credibility within industry, the marketplace, and politics (etc.) by actively participating in industry, marketplace, and political conversations; thereby raising awareness of the presence of a Community-type of society and the services it offers.
- Within the community, a way of raising awareness is by asking and answering questions in for a, such as mailing lists, wikis, and discussion groups.
- Social media (e.g., twitter) and other online content distribution platforms (e.g., YouTube) are useful for word-of-mouth marketing (WOMM).
- Awareness and credibility may be raised by publishing educational content via online platforms (e.g., YouTube, podcasts, etc.).

Raising awareness in the market requires money and market know-how. Organizing events such as conferences and workshops, participating in fairs, sending out marketing emails, and advertising are typical marketing activities that can be undertaken to raise the projects profile and build credibility.

A key way of communicating to industry is to use case studies, white papers, and brochures. These materials allow for specific targeting to different audience segments. For example, a technical white paper for system administrators and a case study for case study for a CEO.

8 [Plan] Inter-project coordination

A.k.a., Similar societal project plans by other projects.

These are plans from other organizations of humans, regardless of time or space (but, known of), and their relationship, if appropriate to the community 10 year plan of the now.

The following are external project plans in some degree of alignment with this plan, and are produced by other organizations. The following are references to the societal project plans of other human socio-economic organization's) of humans (within and without the market state) project effect, themselves. The test is always whether or not you can understand it for yourself and notice how it integrates together with others in common where and when similar observation and creation occur. The test is always whether or not 'you' can see them for your conscious self, and for which no less should be asked among a society of conscious contributors:

The following are references to the societal project plans of other human socio-economic organization's) of humans (within and without the market state) project effect, themselves. The test is always whether or not you can understand it for yourself and notice how it integrates together with others in common where and when similar observation and creation occur. The test is always whether or not 'you' can see them for your conscious self, and for which no less should be asked among a society of conscious contributors.

There are several other organizations that promote, and work on (to various degrees), the same general societal conception laid out by The Auravana Project. Please withhold judgement if you are familiar with these organizations. There are significant differences between these different organizations and The Auravana Project: in approach; access to resources; the type-of-information each organization is dealing with; and, the personalities of the individuals participating therein.

Sometimes, when people look at this common direction of ours they mistake what they are seeing as a context for the whole thing. Their context is often revealed in the name they give to that which they perceive as a better way of living. They might call that which we (i.e., The Auravana Project) refer to as 'community', by a host of other names, which reveals a context for their perception.

Here, it is important to list some of the names, we think, are similarly representative to that which we are proposing, and refer to as 'community'. Our current reasoning, however, has led us to the understanding that at the top-level, the word 'community' is the most accurate term for that which we all appear to proposing and developing. We aren't just trying to create a new social system, or a new economic system, or simply define a new lifestyle, or set of technologies and architecture; instead, we are working toward the emergent creation of a comprehensive [societal] living system for human fulfillment and ecological sustainability. The name we have given to this system is 'community'.

Other related society proposed names include, but are not limited to:

- A Resource-Based Economy (RBE) as defined by The Venus Project Corporation. Jacque Fresco, the founder of Sociocyberneering, Inc., now known as The Venus Project Inc., has stated that the system he describes may also be called an Access-Based Economy. Note: socio-cyberengineering was (likely) the original technique Fresco imagined to bring about the creation this new economic design. Notice how the terms Resource/Access-Based Economy reveal the context through which The Venus Project views the system. These two names do not inform an observer about the other aspects of the total system, such as its social structuring. Further, it is somewhat imprecise to refer to the total system as a "resource-based economy", because before we consider resources and access (from a design perspective), we must have an understanding of systems. So, the economic model is really a systems-based model (first) that appropriately accounts for resources and for access (second). Of course, in early 21st century society, the term 'systems-based economy' would be even more broad than the term 'resource-based economy', which Fresco attempted to trademark in 2010, but was denied after a review found it to be too generic. At the top-level, the economic system is part of the unified information system's decision sub-system.
- A Natural Law/Resource-Based Economy (NL/RBE) as defined by works published under The Zeitgeist Movement. The Zeitgeist Movement is primarily a movement of awareness building activists and developers. After splitting with The Venus Project (in terms of communication and cooperation) those who published under The Zeitgeist Movement added NL for natural law, as the supra-system of which the RBE is it's economic expression.
- A Zero-Marginal Cost Society as defined from a market-based terminological perspective by Jeremy Rifkin in the 2014 book "The Zero Marginal Cost Society: The internet of things, the collaborative commons, and the eclipse of capitalism".
- The One Community project, as well as many others, refers to the system as 'community'.

8.1 Open and closed source projects

Among externally relevant projects there are a mixture of open and closed source projects working on declared

directives similar to that expressed by The Auravana Project. Some of their societal systems, as well as modules and resources therein, are the property of individuals who have and are restricting the shareable access of their contribution.

8.2 Project phasing

The following is a generalized set of project phases:

- 1. Phase 1: Produce minimum viable design (MVD)
- 2. Phase 2: Develop minimum viable market-State relationships (MV-Relationships)
- 3. Phase 3: Account for minimum viable resources (MV-Resources)
- 4. Phase 4: Build out system in minimum viable construction phases
- 5. Phase 6: Full duplication

The goals of a project to develop a community-type society:

- 1. An experimental total city system and integrated societal information system is proposed that will pursue the following goals.
 - A. Conserving all the world's resources as the common heritage of all of the Earth's people.
 - B. Transcending all of the artificial boundaries that separate people through development of a unified information system.
 - C. Evolving from a market-State society to a community-type society (design out trade and the authority of power over others)
 - D. Evolving from a money-based economy to a system in which a community can provide for itself by growing or making the things it needs.
 - E. Re-wilding, caretaking and restoring the natural environment to the best of ability.
- 2. Develop a cybernated society that can gradually outgrow the need for all political local, national, and supra-national governments as a means of social management. Cybernetics applied to improve human fulfillment. Computers are a tool that frees people up from labor.
- 3. Share and integrate new technologies for the benefit of all humanity.
- 4. Use clean and/or renewable sources to power energy systems.
- 5. Use the highest quality designs and productions for the benefit of all the world's people. Quality through continuous improvement.
- 6. Develop a common approach to action informed by an objective decision resolution process composed of inquires. Fulfillment through optimal decision inquiry resolution dynamics.
- 7. Encourage the widest range of contribution and

incentive toward useful contribution.

8. Provide the necessities of life fulfillment, including stimulating challenges and preparation for the intellectual and emotional experience of flow.

Task timeline for project:

- 1. Work-Funding approaches
 - F. Funding influential working group conference attendance: Funding to send the published specifications to the following list of categorized influencers in order to bring them together for a working group conference, where we separate into teams and work on updating relevant articles. Invite influential people to working group conference through shipment and messaging about the standards to them
- 2. Working Group Conferences
 - A. The conference will be streamed for free and recorded as required.
 - B. The conferences will have chat with the outside public. Sub-working groups will organize the relay and usage of this communication by their own methods.
- 3. Interactive whitepapers
 - A. For Auravana
 - B. For Societal System
 - C. For Societal standard
- 4. Transition city
 - A. Look at it as one integrated system that can be assembled and disassembled just as easily.
 - B. Everyone puts their money in an one additional building is to be acquired, and this building will be our rental.
 - C. If you want to sell, then you can move your buildings. If you want them left there and do not want to sell, then you need the permission of the other inhabitants to sign off on the sale to the next part. The rental remains for the purpose...
- 5. Theme park
 - A. A theme park of the future where people come and see the operation and advantages of such a societal system.

8.3 Alternative societal project plans

The following are alternative project plans for what is considered to be a similar, or the same, direction.

8.3.1 The Venus Project (TVP) and its Resource-Based Economy (RBE) Plan

The Venus Project Plan is available from:

• What is the plan? The Venus Project. Accessed:

March 20, 2020. [thevenusproject.com]

The function of The Venus Project is to design, develop, and prepare plans for the construction of an experimental city based upon a set of mutually rational, socio-technical principles.

The following is a simplified version of The Venus Project plan (*What is the plan*, 2020):

- 1. Phase 1: Raise awareness through things like books, documentaries, videos and the TVP research center in Florida.
- 2. Phase 2: Raise more awareness through a major motion picture.
- 3. Phase 3: Build an experimental research city. Build a "Center for Resource Management" and eventually build more and more technologically advanced and mostly self-sustainable experimental cities.
- 4. Phase 4: Build a theme park to raise more awareness.

Note here that most of the plan has to do with raising awareness, and educating people about Fresco's work and the idea of an RBE.

The Venus Project more details in the four phase plan:

- 1. **The first phase** of The Venus Project's long-term plan is to bring awareness to Jacque Fresco and The Venus Project by establishing a physical location for the presentation of the content.
- 2. **The second phase:** The production of a full-length feature film depicting how a world embracing the proposals advanced by The Venus Project would work.
- 3. The third phase: To test its designs and proposals, The Venus Project is working toward putting its ideals into practice with the construction of an experimental research city. Blueprints for most of the initial technologies and buildings have begun. Fund-raising efforts are currently underway to help support the construction of this first experimental city. This new experimental research city would be devoted to working toward the aims and goals of The Venus Project which are:
 - A. Recognizing the world's resources as the common heritage of all Earth's people.
 - B. Transcending the artificial boundaries that separate people.
 - C. Evolving from a money-based, nationalistic economies to a resource-based world economy.
 - D. Assisting in stabilizing the world's population through education and voluntary birth control in order to conform to the carrying capacity of

Earth's resources.

- E. Reclaiming and restoring the natural environment to the best of our ability.
- F. Redesigning our cities, transportation systems, agricultural industries, and industrial plants so that they are energy efficient, clean, and able to conveniently serve the needs of all people.
- G. Sharing and applying new technologies for the benefit of all nations.
- H. Developing and using clean and renewable energy sources.
- I. Manufacturing the highest quality products for the benefit of the world's people.
- J. Requiring environmental impact studies prior to construction of any mega projects.
- K. Encouraging the widest range of creativity and incentive toward constructive endeavour.
- L. Outgrowing nationalism, bigotry, and prejudice through education.
- M. Outgrowing any type of elitism, technical or otherwise.
- N. Arriving at methodologies through careful research, rather than from mere opinions.
- O. Enhancing communication in schools so that our language corresponds to the actual physical nature of the world.
- P. Providing not only the necessities of life, but also offering challenges that stimulate the mind while emphasizing individuality over uniformity.
- Q. Finally, preparing people intellectually and emotionally for the changes and challenges that lie ahead.
- 4. The fourth phase: After the experimental research city is built, a theme park is planned that will entertain and inform visitors about humane and environmentally friendly lifestyles. It will feature intelligently designed cities; houses, high-efficiency, non-polluting transportation systems; advanced computer technology; and many other innovations that can add value to the lives of all people in the shortest possible time.

In support of this research TVP is creating blueprints, renderings, and models, holding seminars, producing books, videos, and other written material to introduce people to the aims of The Venus Project. Redesigning our cities, transportation systems, and agricultural and industrial plants so that they are energy efficient, clean, and conveniently serve the needs of all people.

The Venus Project may identify avenues of sale of the specifications - because the Venus Project has protected its intellectual property and restrictively copywritten its designs, it can sell and control the distribution of its city plans. The Venus Project could sell the plans to governments or high net worth individuals, whereupon, it could be paid to consult and otherwise advise proceedings.

8.3.1.1 Resource-Based Economy 501(c)(3)

The Center for Resource Management plan is available from:

1. *The Center for Resource Management Masterplan*. The Venus Project. Accessed: March 16, 2020. [thevenusproject.com]

Resource Based Economy is a 501(c)(3) Non-Profit Organization [resourcebasedeconomy.org] that works on designing, testing and implementing a new socioeconomic system called a Global Resource Based Economy.

The first instantiation of a Global Resource Based Economy will be The Venus Project's "Center for Resource Management", which is being developed by Resource Based Economy 501(c)(3) for The Venus Project.

The purpose of the center for resource management will be:

- 1. A living lab for global solutions.
- 2. A living space for sustainable housing, food, energy, and other human requirements.
- 3. An environment within which to develop future cities.

The center for resource management will provide the following functions:

- 1. Tourism
- 2. Food and agriculture service
- 3. Water service
- 4. Energy service
- 5. Sharing of products and services
- 6. Media production and outreach platform
- 7. Medical care, recreation, and more, platform

The Center for Resource Management's circular shape can be divided into 8 equal sections. To reduce the required upfront costs and operational complexity, we plan to build the whole complex in stages, starting with 1/8th of the circle. Because of the systems approach to laying out the site plan, each element is included even when at 1/8th of the scale: agriculture, energy, living premises, amenities, tourism. In the ideal scenario, once the 1/8th section is in operation, the revenue it generates will be sufficient to build and develop the other 7 sections.

The Venus Project will apply a scaling up procedure/ strategy:

When the Center for Resource Management reaches the maximum population it was

designed to support, half of its residents will transfer and initiate a first city, while the other half will stay and continue operating the Center for Resource Management. Both of these will then continue taking in people from the outside who choose to join, until they both reach maximum population capacity, upon which they will again split, now forming a total of four. Each of the four will then repeat the same process.

Employing such an exponential process means that after 15 divisions, there can be 16,000 cities. The cities will likely vary in size depending on local conditions and needs. As a thought experiment, we estimate that somewhere between 15,000 and 30,000 cities will be sufficient to house all people on the planet. The worldwide interest we've already had indicates that, by having tourism and open information about the cities, people will choose to visit and eventually live in them.

The Venus Project's goals for its sub-project to create the Center for Resource Management include:

- 1. Plan and initiate the Center for Resource Management project. [Done]
- 2. Start the volunteer team of architects, engineers and technicians to develop the project. [Done]
- 3. Develop conceptual site plan. [Done]
- 4. Develop buildings, infrastructure and operations for the center. [In Progress]
- 5. Populate the team with experts from disciplines that we are currently missing. *[In Progress]*
- 6. Estimate land requirements for the whole complex and the cost of building 1/8th of it. [In Progress]
- 7. Acquire land. [In Progress]
- 8. Raise funds for the construction of 1/8th. [In Progress]
- 9. Physical construction.

The following is a list of deliverables for the buildings, infrastructure, and operations of the Center For Resource Management:

- 1. Agriculture and meal plans
- 2. Energy production
- 3. Water resource management
- 4. Landscaping
- 5. IT/Telecommunications network
- 6. Transportation
- 7. District energy
- 8. Business mode
- 9. Exhibition of the future
- 10. Access center
- 11. Restaurant
- 12. Living premises

Team members of The Venus Project and Resource Based Economy are completing the documentation for these categories deliverable as required for the complete delivery the Center For Resource Management.

8.3.1.2 The Center for Resource Management technical description

The work for the Center for Resource Management is broken down into three phases:

- 1. Phase 1: Architectural programming and schematic design
- 2. Phase 2: Land acquisition and detailed engineering blueprints
- 3. Phase 3: Physical construction of the center for resource management

Assistance from a wide variety of specialists is needed at this time in order to proceed with Phase 1 and Phase 2.

The project requires the following technical contributions:

- 1. Access center: Inventory managers, 3d printing specialists
- Agriculture & food: Agricultural specialists, fish farming and aquaponics experts, nutritionists & dietitians, restaurant managers, cooking automation experts
- Building design: Architects, structural engineers, mechanical/hvac engineers, electrical engineers, fire suppression engineers, hydraulics engineers, interior designers
- 4. Business model: Business plan developers, agribusiness specialists, tourism experts, strategic partnership managers
- 5. Cost analysis: Quantity surveyors
- 6. Energy generation & distribution: Electrical engineers, renewable energy experts, battery storage experts, district energy geothermal engineers
- 7. Facilities management: Facilities managers, environmental health and safety managers
- 8. Fundraising: See our fundraising team
- 9. Land acquisition: See our land acquisition team
- 10. Landscaping: Landscape designers, irrigation designers, lighting designers
- 11. Medical care: Healthcare facilities managers, healthcare professionals
- 12. Exhibition of the future: Museum directors, museum planners, exhibition designers, curators
- 13. Project management: Bim managers
- 14. Telecommunications: lt/telecommunications engineers
- 15. Transportation: Transportation engineers, traffic engineers
- 16. Urban planning: Urban planners, architects, environmental planners
- 17. Waste: Experts on zero waste, cradle-to-cradle

principles, upcycling, life cycle anaylists

18. Water management: Water management engineers, hydraulics engineers

8.3.1.3 Venus Project sub-teams

The Venus Project has a number of collaborating subteams:

- 1. Academia team
- 2. Architectural, engineering, & construction team
- 3. Communications team
- 4. Data-driven decisions team
- 5. Digital technologies team
- 6. Editorial team
- 7. Fundraising team
- 8. Graphics team
- 9. Human resources team
- 10. Land acquisition team
- 11. Marketing team
- 12. Organizational structure & project management team
- 13. Public speaking team
- 14. Social media team
- 15. Sociocyberneering education project
- 16. Transcription team
- 17. Virtual reality team
- 18. Video team
- 19. Vision team
- 20. Website team

8.3.2 Open Source Ecology roadmap(s)

The OSE roadmap is available from:

1. *Roadmap*. Open Source Ecology. Accessed: March 20, 2020. [wiki.opensourceecology.org]

Open Source Ecology (OSE) uses several roadmaps (Roadmap, 2020):

- 1. An overall roadmap to 2035.
- 2. Another is the 10 year plan from 2008-2018.
- 3. Third is a roadmap for each of the 50 machines.

Roadmaps focus around product releases, with explicit intent to engage widespread replication as opposed to remaining in a project state.

8.3.3 One Community roadmap(s)

The One Community invitation to contribute is available:

- 1. One Community Invitation. One Community. Accessed: March 20, 2020. [onecommunityglobal. org]
- 2. Global sustainability strategy. One Community.

Accessed: March 20, 2020. [onecommunityglobal. org]

A sustainable living group that wishes to make opensource, eco-friendly buildings components, up to and including a duplicable city center, for a more sustainable, close-night and environmentally conscious civilization. To a large extent, because the One Community solution is extremely sustainable, low tech, and openly licensed, it is likely to function appropriately within a sufficiently stable market-State jurisdiction.

- 1. **Phase 0:** Provide CAD files, spreadsheets dealing with monetary and resource costs of the buildings, electricity and water, for everything required and with multiple variants.
- 2. **Phase 1:** Demonstrating a better way build demonstration villages.
- 3. Phase 2: Open source project-launch blueprinting.
- 4. Phase 3: Inviting the world to participate.
- 5. **Phase 4:** Universal appeal and global expansion.

8.3.3.1 One Community membership

Membership grants the ability to contribute and potentially live in one of the sustainably duplicable villages within 21st century society. In order to accomplish this, One Community has a dedicated team and a detailed membership application:

- 1. One Community Invitation/Application Form Template. One Community. Accessed: March 19, 2020. [docs. google.com]
- 2. One Community Invitation. One Community. Accessed: March 19, 2020. [onecommunityglobal.org]

8.3.3.2 One Community and Venus Project comparison

One community identifies differences in apporach toward materialization:

 Moving toward the venus project. One Community. Accessed: March 19, 2020. [onecommunityglobal. org]

8.3.4 Whitepapers and similar plans

Organizations that produce relevant whitepapers include:

- 1. *ASIMPAC Transition.* ASIMPAC. Accessed: March 20, 2020. [facebook.com]
- 2. Boauwens, Michael. *A commons transition plan*. Commons Transition. Accessed: May 5, 2020. [commonstransition.org]
- 3. *Except Projects*. Except Integrated Sustainability. Accessed: March 20, 2020. [except.nl]
- 4. Krueger, M. (1999). Towards a Moneyless World?

International Atlantic Economic Conference. Vienna. [pdfs.semanticscholar.org]

- 5. Koto coop vision of the first unit. Koto Coop Project. Accessed: March 20, 2020. [cryptpad.fr] [facebook.com]
- 6. *Metabolic Projects*. Metabolic. Accessed: March 20, 2020. [metabolic.nl]
- 7. *Sacred Earth Enterprises*. CircularCity.us. Accessed: March 20, 2020. [circularcity.us]
- 8. Subhendu, D. (2012). *Moneyless economy*. Munich Personal RePEc Archive. [mpra.ub.uni-muenchen. <u>de</u>]
- 9. *The ALL-in-ONE document an introduction to Huemanix*. Huemanix: A global brain trust and collective intelligence engine. Accessed: March 20, 2020.
- 10. The Brazil Project Information. The Brazil Project. Accessed: March 20, 2020. [brazilproject.org/info]

8.3.5 The full potential GAIA Master Plan

A.k.a., Green Earth Vision.

This is one of many projects of its kind to seek to reestablish the participatory commons for human need fulfillment by means of self-organizing teams based around alignment and agreement. The GAIA plan uses a solution-based consent decisioning process consisting of: a master plan, decision iteration (sense making), and a method for decision resolution. As part of its master plan, GAIA seeks the complete explication of these agreements. In this system, certification of skills and knowledge is done through "badges", which provide access.

The GAIA Master Plan is available:

• *Full Potential GAIA Master Plan*. (2019). GAIAA. Accessed: March 20, 2020. [gaiaa.solutions]

The product of the GAIA Master Plan is to produce, "A full new paradigm lifestyle and experience".

The GAIA Master Plan has several phases:

- 1. Phase 0: Initial funding.
- 2. Phase 1: Getting ready for funding, getting funded, and launching.
- 3. Phase 2: 144 other organizations in operation [planetsolutions.org].

8.3.5.1 Green Earth Vision

The Green Earth Vision declaration of agreements is available:

1. Invite Declaration of Agreements. Green Earth Vision.

Accessed: March 20, 2020. [drive.google.com]

Green Earth Vision has people sign their agreement to a declaration of agreement. Much like the Declaration of Independence, every society, organization, group, and any venture is always started with a set of Agreements. At some point in history it was decided that it was okay to force others into "agreement". These became laws. The agreements presented by Green Earth Vision both protect and support all involved.

Every society, socio-technical organization or activity group that includes human beings is always started with a set of agreements. At some point in history it was decided that it was okay to force others into your agreements. These became laws. It is possible to notice that agreement is all that is necessary between people for operating together in coordination of their mutual fulfillment. Agreement between individuals working toward a common direction is necessarily for mutual benefit (more simplistically, agreements protect and support all involved). A universal agreement chart identifies to what, when, and how "you" agree to be accountable for "your" contributions.

There are four categories of agreement (note the following agreements are slightly modified from those identified by the GAIA Master Plan - Invite Declaration of Agreements):

- 1. Universal agreements agreement between individuals of a common vision and plan for society that ensures reliability and optimization of mutual well-being. There are only universal agreements in a community-type society.
 - A. Organizational agreements (because society requires accountable individuals to contribute effort as part of teams and working groups)

 agreements that allow for the contributed modification and operation of societal service systems. Agreements between people contributing to (i.e., working on) a societal team or working group.

As part of the organization, it is expected that contributors have:

- 1. *Agreement over data* collection and processing procedures.
- 2. Agreement over priorities, values, and objectives.
- 3. *Agreement over a decisioning* resolution procedures.

As part of working team it is expected that contributors have knowledge and skills around (i.e., these are basic agreement competencies to be part of any team):

- i. <u>Work education process:</u> How does someone become an accountable member of a team or working group? There is agreement of the procedure.
- ii. <u>Work exit process</u>: What is the exit process from a team or working group? There is agreement of the procedure.
- Work investigation process: What happens when someone does not follow agreements? There is agreement of the investigation procedure.
- iv. <u>Work intention process</u>: How does the work align with community/user intention? There is agreement that the work will align rationally with community/user intention.
- v. <u>Work time process</u>: Is the work complete in a timely process? There is agreement that the work will be complete as required on a time scheduled basis.
- vi. <u>Work space communication:</u> How effectively and efficiently is work being communicated within and between teams and groups? There is agreement that the work will be communicated both effectively and efficiently.
- vii. <u>Work space process</u>: Is the use of the space and general situation occurring as agreed? There is agreement that the use of the space and orientation of the general situation will occur as procedurally agreed.
- B. **Space/access agreements** (because activities happen in physicality and necessitates individuals interfacing) agreements between individuals accessing some physical object or volume of space/matter.
- C. Personal agreements (because individuals make personal agreements with one another)

 agreements between individuals that are not part of the societal decisioning system (i.e., "non-regulated" agreements).

8.3.5.2 The Green Earth Village creation plan

Green Earth Vision envisions funding a Green Earth Village, and then, a Green Earth City ("Full Potential Action Club"). The concept of operation of a full potential activation center is available:

1. *Pasmore, J. Full potential activation center: Brazil* 2018. Green Earth City. Accessed: March 20, 2020. [greenearthvision.com]

The idea of a "Full Potential Activation Center" is to

construct and operate a successful Resort that Includes a World Summit Headquarters combined with an Orientation Program to help birth Villages and Cities of the Future.

Scholarly references

- Chadwick, E. (1842). Edwin Chadwick's Report on the sanitary conditions of the labouring population of Great Britain. The Health Foundation, Policy Navigator. [navigator.health.org.uk]
- Piff, P.K., Kraus, M.W., Côté, S., Cheng, B.H., & Keltner, D. (2010). *Having less, giving more: The influence* of social class on prosocial behavior. Journal of Personality and Social Psychology, 99(5), 771–784. https://doi.org/10.1037/a0020092
- Piff, P.K. (2014). Wealth and the Inflated Self: Class, Entitlement, and Narcissism. Personality and Social Psychology Bulletin, 40(1), 34–43. https://doi. org/10.1177/0146167213501699

Book references

 Dorofee, A.J., Walker, J.A., et al. (1996). Continuous Risk Management Guidebook. Carnegie Melon University. SEI Joint Program Office. [jodypaul.com]

Online references

- *Declaration of agreements*. Green Earth Vision. Accessed: March 20, 2020. [drive.google.com]
- *Full Potential GAIA Master Plan*. GAIAA. Accessed: March 20, 2020. [gaiaa.solutions]
- Help:Editing. Fedora Wiki. Accessed 2019, December. [fedoraproject.org]
- One Community Invitation. One Community. Accessed: March 20, 2020. [onecommunityglobal.org]
- One Small Town Manifesto. Ubuntu. Accessed: March 20, 2020. [onesmalltown.org]
- Global sustainability strategy. One Community. Accessed: March 20, 2020. [onecommunityglobal. org]
- Moving toward the venus project. One Community. Accessed: March 19, 2020. [onecommunityglobal. org]
- Pasmore, J. Full potential activation center: Brazil 2018. Green Earth City. Accessed: March 20, 2020. [greenearthvision.com]
- Roadmap. Open Source Ecology. Accessed: March 20, 2020. [wiki.opensourceecology.org]
- *Teams*. Ubuntu Wiki. Accessed 2019, December. [wiki. ubuntu.com]
- The Center for Resource Management Masterplan. The Venus Project. Accessed: March 16, 2020. [thevenusproject.com]
- *What is the plan?*. The Venus Project. Accessed: March 20, 2020. [thevenusproject.com]

 Table 44. Execution > Project Lists > Team Roles:
 Societal team stability organization (this is an example).^[1]

1. *Teams*. Ubuntu. Accessed: 11 March 2020. [wiki.ubuntu.com]

Team Name	Responsibility	Delivery (common to all)	Accountabliity	Communication Tools	Touch Durations (Meetings: Frequency,Day)
Facilitators Team (internal societal facilitation)	Handle other's tactical socio- technical needs	Provide guidance to support a better space for learners	name	Subscribe, #facilitation	12 days cycle
Orienting Team (facilitation of new arrivals)	Support the readjustment of newcomers	Provide guidance and support to learners from a different societal background	name	Subscribe, #orienteering	15 day cycle
Accessibility & Marketing Team (external societal facilitation)	Improve the socio-technical support available and provide promotional outreach	Deliver more community members	name	Subscribe, #relationship- development	12 days cycle
News Team	Gather and publish news on relevant stories	Deliver a daily report	name	Subscribe, #updates	5 days cycle
InterSystem Communications Service Team	Handle all of the issues that go to core communications	Deliver a synchronous communications system with no downtime	name	Subscribe, #communications	3 days cycle
Forums & Wiki Team	Handle all of the issues that go to the open source collaborations forum	Deliver an asynchronous project communications system with no downtime	name	Subscribe, #design- collaboration	many
Documentation Team	Writes and maintains the core documentation (manuals)	Deliver recorded linguistic and visual informational support	name	Subscribe, #documentation	9 days cycle

Table 45. <u>Execution > market interface</u>: Market-State vendor requests types.

	Request for Information (RFI)	Request for Information Registration of Interest (EOI / ROI)	Request for Proposal or Request for Offer (RFP / RFO)	Request for Tender (RFT)	Request for Quotation (RFQ)
Purpose	Develop strategy or learn more about suppliers capabilities	Develop strategy or learn more about suppliers capabilities	Determine feasibility of each potential supplier's bid	Compare costs between competing vendors	Compare costs between competing vendors
Why	Purchaser does not have sufficient information to write a detailed request	Similar to an RFI	Purchaser seeks solutions-based submissions to meet their requirements	Purchaser has clearly defined criteria or specification	Purchaser has clearly defined criteria or specification
Why	Purchaser is not necessarily committed to buying	Purchaser is not necessarily committed to buying	Possibly no clear specification	Judged on both price and qualitative factors	Judged primarily or solely on price
Why	Likely to involve a further request before final decision	Likely to involve a further request before final decision	Greater flexibility than RFT	Purchaser is committed to buying	Purchaser is committed to buying
Why		Often used as a screening or shortlisting tool	Suited to professional services		

Team Name	Responsibility	Delivery (common to all)	Accountability	Communication Tools	Touch Durations (Meetings: Frequency,Day)	
Information Team	Handle all of the issues that go to informational services and computation	Deliver the core information system (includes decision system kernel)	name	Subscribe, #auravana-devel	10 days cycle	
Kernel Team	Handle the resolution of all kernel issues	Deliver a sustained functional kernel	name	Subscribe, #auravana-kernel	5 days cycle	
Issues Team	Handle the coordination and priority of all issues	Deliver an organized and safe informational-spatial environment	name	Subscribe, #auravana-issue	1 day cycle	
Habitat Service Team	Handle all of the issues that go to habitat global service	Deliver the core spatial system	name	Subscribe, #auravana-habitat	3 days cycle	
Habitat Service Sub-Teams	Handle all of the issues that go to local operations	Deliver the complementary spatial systems	name	many	many cycle	
Market-Interface Team	Handle all of the issues that go to market interface	Deliver access without waste	name	Subscribe, #auravana-market	3 days cycle	
State-Interface Team	Handle all of the issues that go to State interface	Deliver access with peace	name	Subscribe, #auravana-State	3 days cycle	

Table 46. Execution > Project Lists > Team Roles: Societal team organization (team structure).

Table 47. Execution > Project Lists: Project charter list.

Charter (Elements)	Objectives	Source	Description
Title	Intentionality	Life	Community
Mission	Purposivity	Life	Global human fulfillment and ecological well-being.
Vision	Purposivity	Life	Network of integrated city systems operationalized through a unified information system.
Universal Goal	Purposivity	Life	Maximize well-being; maximize fulfillment; maximize flourishing; maximize flow.
Universal Goal	Purposivity	Life	Avoid suffering.
Universal Goal	Purposivity	Life	Design and operate a societal system with the maximum, highest possible state of flourishing from all (as contrast to a state withe the minimum, worst possible misery for all (given what is known).
Directive	Purposivity	Life	The Auravana Project exists to collaboratively develop a global community-type society through the commonly shared design, construction, and operation of a socio- economically unified network of integrated-access city systems. We have come together to optimize the fulfillment and well-being of our beings.
Prime Directive	Purposivity	Life	The prime directive of The Auravana Project is to bring into existence (materialized and encoded reality) a type of society that facilitates the highest potential expression of all of humankind through the synthesis of a "living" societal system specification, which reasons and defines the system's operation.
Description	Purposivity	Life	The executed design, construction, and experimental operation of a community-type societal system: consisting of a fulfilled population of humans, a regenerative ecology, and a network of integrated city systems, as expressed through a unified societal information model (the Specification).

Charter (Elements)	Objectives	Source	Description
Purpose	Purposivity	Life	To continuously and consciously evolve toward our highest potential expression for ourselves and all others through resilient adaptation to a higher potential dynamic of experiential existence.
Aim	Purposivity	Life	The project has been formed to produce the individual [conscious] experience of human fulfillment and ecological well-being, through the operation of a habitat service system structured in alignment with (i.e., through) a specified societal information system.
Sub-aims	Purposivity	Conception through to design aim/goal	Highly automated
Sub-aims	Purposivity	Conception through to design aim/goal	Marketless
Sub-aims	Purposivity	Conception through to design aim/goal	Stateless
Goal(s)	Purposivity	Conception/design goal	The Auravana Project exists to cooperatively create 'community', through a shareable and constructable design specification detailing the logical derivation and visualizing the technical operation of a fulfillment- oriented (i.e., human-requirement) structured society, a community-type societal living system.
Goal(s)	Purposivity	Materialization/action goal	The Auravana Project exists to materialize a living system of experimental (at first) integrated city systems operating through a "living" community-type societal specification for human fulfillment and ecological well- being.
Goal(s)	Purposivity	Conception/design goal	A continuously updated specification of the whole societal system. A commonly shared and coordinated specification detailing the conceptual through to experiential state of the society.
Goal(s)	Purposivity	Materialization/action goal	The design, operation, and coordination of a network of city systems, all based upon a selected information set and material configuration from the unified societal specification.
Goal(s)	Purposivity	Experience/Personalization	The experience of optimized fulfillment and well-being for each and every individual human, based upon the given conditions and criteria.
Goal(s)	Purposivity	Direction and intention for decisioning.	To facilitate the realization of our full potential through the operation of a societal system that fulfills the human needs of every individual in the population.
Goal(s)	Purposivity	Direction and intention for decisioning.	To support each other in progressing toward our highest potential while developing self-knowledge and a deeper understanding and appreciation of our nature and the nature of the world.
Goal(s)	Purposivity	Direction and intention for decisioning.	To continuously improve the effectiveness and efficiency of the community's systems in fulfilling the unifying and life-long needs of everyone.
Goal(s)	Purposivity	Direction and intention for decisioning.	To continuously improve the means and methods, the oriented approach, by which we discover, understand, learn, communicate, and act.
Goal(s)	Purposivity	Direction and intention for decisioning.	To exist in a state of regenerative abundance with our lifeground while maximizing the intelligent use of resources and caretaking the environment (i.e., to sustain material resiliency).
Goal(s)	Purposivity	Direction and intention for decisioning.	To arrive at decisions based upon a commonly "living" purpose, set of needs & values, and approach, and hence, a similar set of understood relationships for arriving at decisions and actions. Note that these similarities are necessary for the effective functioning of [human] social nrelationships wherein a community is a set of similar relationships.
Goal(s)	Purposivity	Direction and intention for decisioning.	To exist in a state of appreciation and compassion for the self and the evolving whole.

THE EXECUTION OF A COMMUNITY-TYPE SOCIETY

Charter (Elements)	Objectives	Source	Description
Goal(s)	Purposivity	Direction and intention for decisioning.	To continuously improve access abundance through a stable 'bio-psycho-social community', a community of need fulfillment, serving as the liberating foundation from which individuals pursue their highest development and apply/contribute (participate in) everyone's evolving potential.
Goal(s) / Objective	Usability	Quantitatively characterize the different components of the human system, and understand how these components relate to each other (in abstractly through to materially).	
Goal(s) / Objective	Usability	Quantitatively fulfil the needs of individual humans in the human system, and understand how the needs are best fulfilled.	
Goal(s) / Objective	Usability	Quantitatively understand location habitability. Access past and present habitability potential of location.	
Goal(s) / Objective	Usability	Develop reliable and robust operational access/service systems; increase self- sufficiency.	
Objective (Strategic)	Purposivity	The continuous development of a global and unified Societal Information System (SIS).	Specification development
Objective (Strategic)	Purposivity	The localized development of habitat service systems (cities) formed from the Societal Information System.	Engineering development
Objective (Strategic)	Purposivity	The recruitment and development of a population of participants who understand the Societal Information System and will populate the first cities.	Human relationship development
Objective (Strategic)	Purposivity	The escrowed acquisition of material and financial resources for development.	Acquisition development
Objective (Strategic)	Purposivity	Re-orient humans globally to a community- type societal system.	Social awareness development
Objective (Strategic)	Parsimony	Ensure the technical, organizational, and contractual coordination (where and when) at a project level.	
Objective (Strategic)	Parsimony	Ensure effective interaction and communication among project participants.	
Objective (Strategic)	Parsimony	Initiate and facilitate the coordination of meetings (particularly, Steering Committee meetings).	
Objective (Strategic)	Parsimony	Ensure active and beneficial collaboration with other relevant projects and organizations to promote collaborative efforts toward the common goal.	
Objective (Strategic)	Parsimony	Ensure the transparent and distributed ability to control the societal system.	Control systems engineering

Table 48.	Execution > Pro	ject Lists : Project list o	of human need	factors (simplified).

Human need factor	Other names for need	Risks to need fulfillment	Location	Use
Self-actualization	Self-growth, self- development, transcending	Desctruction of motivation	Motion	Learning
Ego	Relatedness, affection and connection	Destruction of self- integration	Cognition	Thinking
Social (love, friendship, belonging)	Relatedness, understanding	Destruction of truth	Integration	Building
Safety (freedom from threat and danger) avoid pain	Existence, cooperation	Destruction of trust	Condition	Cooperating
Physiological (air, water, food, warmth)	Existence, subsistence	Destruction of environment	Location	Sustaining
Subsistence need factors	Sub-composition	Risks to need fulfillment	Location	Use
Air	Control temperature, humidity, impurities, quantity, view	Pollution, destruction of natural cycles, and equilibrium	Atmosphere	Atmosphere use
Water	Increasingly supply source (ground, sea); control of supply, termpature and impurity	Pollution, destruction of marine life, sinking of cities, frequent flooding	Storage surface and water use	Water use
Food	Improved cultivation and productivity; control of food quality, variety, and supply	Chemical contaminatios and diseases; distruction of wildlife, forests, and fishing grounds	Cultivation surface and food materials use	food use
Shelter	Improved living and working buildings and materials of construction; better services and land uses	Artificial surroundings and anti-social living and working, destruction of the beauty of nature	Land and infrastructural materials use	Non-human-use transformable materials use
Clothing	Efficeint production of high quality clothing	Exploitation of non-renewable resources, manufactured obselesence and degredation, and manufacturing artificial social demand	Storage and on-person materials use	On person or other animal
Health	Reduction in mortality; increase in health span; increase in life span expectancy; controlled birth; bettern medical care	Population explosion; break in family and friendship structure; dis-ease	A process with centers for medical technologies and procedures	Long-term or critical usage
Subsistence need factors	Sub-composition	Risks to need fulfillment	Location	Use
Environment	Access to nature; a healthy environment	Destruction of environment	-	-
Economy	Access to equal services	Destruction of efficiency	-	-
Work	Meaningful work; productivity; autonomy	Destruction of contribution	-	-

Human need factor	Other names for need	Risks to need fulfillment	Location	Use
Time balance	Flow cycle	Destruction of circadian cycle	-	-
Health	Physical ability, physiological feeling	Destruction of body cycle	-	-
Psychology	Self-acceptance; optimism; meaning	Destruction of mental cycle	-	-
Social support	Care, feeling belonigng and love	Destruction or obfuscation of cooperation	-	-
Safety	Trust	Destruction or obfuscation of abundance	-	-
Learning	Lifelong contribution and exploration opportunities	Destruction or obfuscation of information	-	-
Recreation	Playful game and artistic exploration	Destruction of play	-	-

Table 49. Execution > Relationship Development: Demonstration experience criteria for the facilitation of relationship development

 and understanding.

Role	Measure (destination = city/cities in a community-type society)	
SELECTION		
Selection	The extent to which the destination is chosen over others.	
Identification	The degree of recognition/association of the destination.	
Differentiation	The lack of confusion with other destinations. The lack of confusion with other projects and organizations.	
Anticipation	The extent to which the demonstration/showcase generates a desire to visit the destination. The intensity of the desire to visit that the demonstration/showcase generates.	
Expectation	The nature and importance of the specific benefits the visitor expects to realize from the destination experience.	
Reassurance	The extent to which the project proves a "cloud of comfort" for the visitor - a feeling that all is, or will go well, a the destination.	
RECOLLECTION		
Recollection	on The ease, frequency, and strength of recall of the destination experience (via demonstration/showcase). The extent to which the project/brand helps create memories of the destination and the visitor's experiences. The intensity or warmth of memories elicited. The degree of comfort provided that the future/current choice was/is a sound one.	
Consolidation	The ability of the project to serve as a catalyst to tie together the many "bits" of memory of the destination experience	
REINFORCEMENT		
Reinforcement	The ability of the project to "cement" a consolidated and coherent memory of the destination experience.	
REGENERATION		
Regeneration	The extent to which the project regenerates word-of-mouth enthusiasm and interest from past to potential visitors. The frequency with which word-of-mouth regeneration occurs. The breadth and scope of word-of-mouth among various types of market segments.	

Table 50. Project Approach > Work: Work product classification scheme.

WP ID	Generic work product class	Generic work product description	Generic work product typical characteristics	
1	Object	An entity created to serve a purpose, or created in the course of serving that purpose. Its existence is observable and rationalised by its material or behavioural characteristics. It may exist as a complete, partial or exemplifying realisation of a product, be a subordinate part of a product, be a by-product or be a part of an enabling system	identity, name of object purpose, value that caused its creation ownership and responsibility for object status, state and classification of object distinguishing observable qualities and properties functional and behavioural characteristics dimensional and parametric characteristics relationship with and dependencies on surroundings observable interactions or effects on other objects interfaces, connections to surroundings location, position in surroundings safety, security, privacy and environmental regulations	
2	Description	An account or representation of a proposed or actual object or concept. It may be a textual, pictorial, graphical or mathematical representation. It may be in a standardised form for human or machine interpretation. It may be a static or dynamic model or a simulation representing reality. It may establish order, structure, grouping, or classification.	object, subject or class represented purpose and applicability of description concerned parties, viewpoints, views range of use, and validity of description accuracy, detail and abstraction level model dimensions, degrees of freedom description language, notation, nomenclature applicable standards, formats and styles representations of function, attributes, properties description of architecture, arrangement, interfaces depicition of classification, category, ranking, type	
3	Plan	A proposed scheme or systematic course of action for achieving a declared purpose. It predicts how to successfully accomplish objectives in terms of specific actions, undertaken at defined times and employing defined resources. It may apply to technical, project or enterprise actions. At a high level of abstraction it may be a policy or, with reference to assets and their disposition, a strategy.	definition of undertaking, purpose and objectives of plan strategy and policy guiding plan plan owner, stakeholders, responsible parties and their authorities plan status, version, reviews and modifications proposed events, actions and tasks predicted timescales, durations, dates of actions assumed dependencies, conditions, constraints, risks allocated resources, labour, facilities, materials planned budget, cost, expenditures defined milestones, results and progress targets decision points and authorisation gates options and contingency actions	
4	Procedure	A declared way of formally conducting a customary course of action. It defines an established and approved way or mode of conducting business in an organisation. It may detail permissible or recommended method in order to achieve technical or managerial goals or outcomes.	purpose, outcomes and results of performing actions issuing authority and controls roles, responsibilities and duties actors, their competence and proficiency dependency on requirements, standards and directives achievement, goals, completion criteria definition of transformations and their products work definitions, instructions to act progression and dependencies of action guiding method and practices enabling tools and infrastructure	
5	Record	A permanent, readable form of data, information or knowledge. Accessible and maintained evidence of the existence or occurrence of facts, events or transactions. It may take the form of a journal chronicle, register or archive. It may contain the information to confirm achievement of performance, fiscal or legal conditions or obligations.	record identity or title content, description and reason for record ownership, origin and authorship practices, agreements, commitments and regulations applying to record authorities and condition of storage, retrieval, replication and deletion medium and format of record location, conditions and periods of storage applicable information privacy, security and integrity declaration of status, configuration and baseline information information on audit, validity and history	

THE EXECUTION OF A COMMUNITY-TYPE SOCIETY

WP ID	Generic work product class	Generic work product description	Generic work product typical characteristics	
6	Report	An account prepared for interested parties in order to communicate status, results or outcomes. It is a result of information gathering, observation, investigation or assessments, and it may impart situation, affects, progress or achievement. It serves to inform so that decisions or subsequent actions can be taken.	purpose or benefit of repot source, author and authority to report interested parties, recipients, distribution knowledge, understanding communicated information, data, facts and evidence contained analysis, inspections and audits employed timing, validity, condition of information use dependence on circumstances, constraints and assumptions reported status, results, achievements, conformance, compliance or outcomes identified faults, failings or errors inferred patterns, trends or predications conclusions, recommendations, rationale	
7	Request	A communication that initiates a defined course of action or change in order to fulfil a need. This may originate or control on-going action based on an agreed plan or procedure. It may result in a proposal or plan of action. It may take the form of a solicitation, requisition, instruction or demand for a resource, product, service or an approval to act.	objective, purpose or outcome of request expression of a demand, need or desire communication of enquiry, solicitation or an order to provide initiation of supply, provision or support definition of action, change or exchange identification of required products, services, capability or resources authorisation of tasking or commitments specified terms, conditions to act, agreement conveyed required availability of requested provision communicated	
8	restrictions on actions, attributes or qualities. It establishes measures or qualities for determining acceptability, conformance or merit. It may be required as part of an agreement or contract.		definition of constraints and conditions standards and regulations invoked dimensions of achievement and outcome criteria of conformance, correctness and compliance definition of measures, indicators, limitations, values, and thresholds statements of action and conduct required functions, performance, behaviour or service levels definitions of interfaces, interaction, location and connection conditions of acceptance, permissible exceptions and deviations	

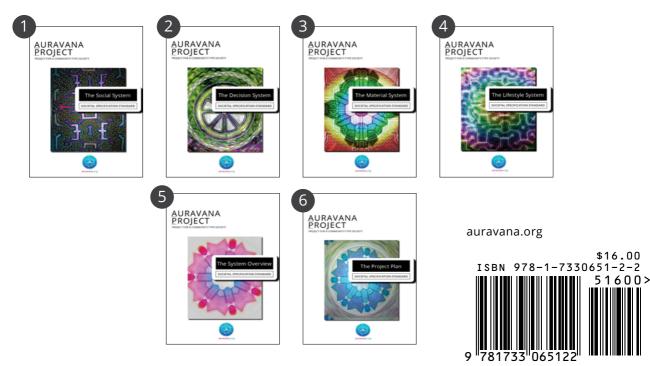

Determinants of quality of service (service quality determination, functional quality requirements)	Description	Satisfaction (dissatisfaction) rating
Attentiveness / helpfulness	Sufficiently useful	
Responsiveness	Sufficiently timely	
Care	Sufficiently precise	
Availability	Sufficiently working	
Reliability	Sufficiently dependable	
Integrity	Sufficiently trustable	
Friendliness	Sufficiently free of aggression	
Courtesy	Sufficiently respectability	
Communication	Appropriate sharing of information	
Competence	Sufficiently skilled	
Functionality	Sufficiently useful	
Commitment	Sufficiently complete	
Access	Appropriate logistics	
Flexibility	Appropriate customizability	
Aesthetics	Appropriate beauty	
Cleanliness/tidiness	Organization without dirt	
Comfort	Appropriate challenge	
Security	Appropriate safety	
Safety	The design of the system should assure that nothing dangerous would ever happen due to the design.	
Reliability	The system should work and achieve its goals, possibly under any external circumstances.	
Reusability	The ability to reuse without significant changes. Reuseability is not the same as reliability.	
Admissibility	The system should provide only admissible decisions or conclusions and should satisfy any constraints imposed on it.	
Quality	The system should satisfy certain standards, especially satisfy explicit and implicit standards and user requirements.	
Efficiency	The system should work in possibly most efficient way (perhaps even optimal) and should be specified in an efficient way (e.G. With use of minimal number of rules, in the simplest form, etc.).	
Consistency	Problems of internal consistency refer to a case when consistent application of the rules may lead to ambiguous or inconsistent results.	

Table 51. Execution > Project Lists > Non-Functional Requirements: Service quality determinants assessment criteria.

The Auravana Project exists to co-create the emergence of a community-type society through the openly shared development and operation of a information standard, from which is expressed a network of integrated city systems, within which purposefully driven individuals are fulfilled in their development toward a higher potential life experience for themselves and all others. Significant project deliverables include: a societal specification standard and a highly automated, tradeless habitat service operation, which together orient humanity toward fulfillment, wellbeing, and sustainability. The Auravana Project societal standard provides the full specification and explanation for a community-type of society.

This publication is the Project Plan for a community-type society. A societal-level project plan describes the organized thinking and execution of a socio-technical environment; the societal structuring of community. This project plan identifies humanity's project to create a global community-type society for the fulfillment of that which everyone has mutually in common. This is a planned project for a configuration of society that may be tested in its results at optimally meeting all human life requirements at the global scale. This is a planning and work proposal for an open-source, societal-level project. This document describes and explains a unified approach to actions and results that is likely, given what is known and accessible, to improve all of humanity. This is the plan for societal navigation that specifies an approach, direction, and execution to socio-technical life. The project plan has three core sections: (1) Approach to project execution, (2) Direction of project execution, and (3) Execution of project execution. The standard details the complete, plannable information set for the society's operation, including its approach to action, its direction of action, and its execution and adaptation of action. Herein, these concepts, their relationships and understandings, are defined and modeled. Discursive reasoning is provided for this specific configuration of a project plan, as opposed to the selection and encoding of other configurations. A project plan provides for the formalized project-based development operation of a society, organized in time and with available resources, coordinated to become a societal service system for human fulfillment and ecological well-being.

Fundamentally, this standard facilitates individual humans in becoming more aware of who they really are.

All volumes in the societal standard: